首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Gabbroic rocks and amphibolites were collected from the KR03‐01‐D10 dredge site located on the West Arm Rise of the Godzilla Megamullion, close to the Parece Vela Rift which appears to correspond to the termination area of a detachment fault, the Philippine Sea. The gabbroic rocks and amphibolites reveal the occurrence of a high hydrothermal activity in the lower crust close to a paleo‐ridge. In the gabbroic rocks, plagioclase compositions of both porphyroclasts and matrix were transformed into sodium‐rich compositions close to albite. Amphiboles are of secondary rather than igneous origin based on their microstructural occurrences. In the amphibolites, anorthite contents of porphyroclasts and matrix plagioclase are relatively lower than those of the gabbroic rocks, whereas the chemical compositions of amphibole within the amphibolites are similar to those of amphibole within the gabbroic rocks. Amphibolites represent the product of retrograde metamorphism associated with hydrothermal alteration of the gabbroic body by the reaction: clinopyroxene + calcic plagioclase + fluid → amphibole + sodic plagioclase. The estimated temperatures of the amphibolites derived from the amphibole thermobarometer and the gabbroic rocks derived from the hornblende–plagioclase geothermometer show ~700–950°C and 650–840°C, respectively. The hydrothermal alteration recorded in the gabbroic rocks possibly occurred under high‐T conditions; the rocks were then metamorphosed to the amphibolites during a retrogressive stage. Our study indicates that amphibolitization took place with various degrees of deformation. It may imply that the hydrothermal activity increased as the Godzilla Megamullion developed as an oceanic core complex in the paleo‐ridge.  相似文献   

2.
Studying subduction zone fluid at shallow seismogenic depths is important to understand the nature of fault rocks at the updip limit of the seismogenic zone because fluid–rock interactions affect heat and mass transfer, and fault strength. In this study, we conducted detailed analyses of distribution of shear veins, and estimation of pressure–temperature conditions for shear vein formation for the Yokonami mélange, Shikoku, Southwest Japan, which is tectonic mélange zone in an on‐land accretionary complex. We found a seismogenic fault at the upper boundary of the Yokonami mélange, indicating that the Yokonami mélange was active at seismogenic depth. The field‐transect distribution of shear veins was examined. The frequency, the total and mean thicknesses of the shear veins were about 3.7 per meter, about 10 mm per meter, and about 3 mm per shear vein, respectively. Quartz within the shear veins shows elongate‐blocky textures, suggesting precipitation from advective flow. The pressure and temperature conditions for shear vein formation were examined by fluid inclusion analysis, ranging 175–225°C and 143–215 MPa, respectively. The temperature is almost consistent with the paleotemperature determined from vitrinite reflectance, suggesting that the shear veins were formed at up to the maximum depth. The depth might be consistent with that where the seismogenic fault was formed. On the basis of the pressure and temperature conditions and the distribution of shear veins, we estimated the minimum volumetric ratio of fluid to host rocks, assuming that the shear veins had precipitated from advective flow. The estimated amount of fluid is about 106 m3 per cubic meter of host rocks. The results suggest that a large amount of fluid migrates through mélange zones at shallow seismogenic depths. This fluid possibly originates from the dehydration of clay minerals from underthrusted sediments and an altered subducting slab.  相似文献   

3.
The Zuccale fault is a regional, low-angle, normal fault, exposed on the Isle of Elba in central Italy that accommodated a total shear displacement of 6–8 km. The fault zone structure and fault rocks formed at <8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. In this study, we report results from a series of rotary shear experiments performed on 1-mm thick powdered gouges made from several fault rock types obtained from the Zuccale fault. The tests were done under conditions ranging from room temperature to in situ conditions (i.e., at temperatures up to 300 °C, applied normal stresses up to 150 MPa, and fluid-saturated.) The ratio of fluid pressure to normal stress was held constant at either λ = 0.4 or λ = 0.8 to simulate an overpressurized fault. The samples were sheared at a constant sliding velocity of 10 μm/s for at least 5 mm, after which a velocity-stepping sequence from 1 to 300 μm/s was started to determine the velocity dependence of friction. This can be represented by the rate-and-state parameter (a–b), which was determined by an inversion of the data to the rate-and-state equations. Friction of the various fault rocks varies between 0.3 and 0.8, similar to values obtained in previous studies, and decreases with increasing phyllosilicate content. Friction decreases mildly with temperature, whereas normal stress and fluid pressure do not affect friction values systematically. All samples exhibited velocity strengthening, conditionally stable behavior under room temperature conditions and (ab) increased with increasing sliding velocity. In contrast, velocity weakening, accompanied by stick–slips, was observed for the strongest samples at 300 °C and sliding velocities below 10 μm/s. An increase in fluid pressure under these conditions led to a further reduction in (a–b) for all samples, so that they exhibited unstable, stick–slip behavior at low sliding velocity. The results suggest that phyllosilicate-bearing fault rocks can deform by stable, aseismic creep at low, resolved shear stress and low shear rate conditions. An increase in fluid pressure or loading of stronger portions could lead to a runaway instability. The runaway instability might be limited in size because of (1) the fault heterogeneity, (2) the observed strengthening at higher sliding velocities, and (3) a co-seismic drop in pore-fluid pressure.  相似文献   

4.
The Median Tectonic Line (MTL) is a first‐order tectonic boundary that separates the Sanbagawa and Ryoke metamorphic belts. Documented large‐scale top‐to‐the‐north normal displacements along this fault zone have the potential to contribute to the exhumation of the Sanbagawa high‐pressure metamorphic belt. Fluid inclusion analyses of vein material formed associated with secondary faults within the Sanbagawa belt affected by movement on the MTL show normal movement was initially induced under temperatures greater than around 250°C. Microstructures of quartz and K‐feldspar comprising the vein material suggest a deformation temperature of around 300°C, supporting the results of fluid inclusion analyses and suggesting deformation at depths of around 10 km. The retrograde P–T path of the Sanbagawa metamorphic rocks and the estimated isochore of the fluid inclusions do not intersect. The semi‐ductile structures of surrounding rocks and lack of evidence for hydrothermal metamorphism around the veins imply the temperature of the rocks was similar to that of the fluid. These observations suggest fluid pressure of the veins was lower than lithostatic pressure close to the MTL.  相似文献   

5.
Spinifex-like textured metaperidotites from the Higo Metamorphic Rocks (HMR), west-central Kyushu, Japan, may be formed by high-pressure dehydration of antigorite, and may indicate deep subduction of serpentinite reaching a pressure–temperature condition of 1.6 GPa and 740–750 °C. Three rock types have been identified based on mineral assemblage and rock texture: Type I (L) consisting of medium-grained (1–5 cm long) olivine + enstatite + chromite ±tremolite with secondary talc and anthophyllite that occurs in low-grade metamorphic rocks of the biotite zone, Type I (H) of coarse-grained (up to 10 cm long) olivine + enstatite (with clinoenstatite lamella) + chromite ±tremolite with secondary talc that occurs in high-grade metamorphic rocks of the garnet-cordierite zone, and Type II composed of Al-spinel + chlorite + olivine + apatite + ilmenite with minor sodic gedrite in the garnet-cordierite zone together with Type I (H). Olivines in all rock types are mostly serpentinized during exhumation. The chromite-olivine thermometer gives 560–690 °C for Type I (L) rocks, and the spinel-olivine thermometer gives 610–740 °C for Type II rocks. The peak metamorphic pressure will be higher than 1.6 GPa based on the location of the experimentally determined invariant point (P = 1.6 GPa and T = 670 °C) of antigorite + forsterite + enstatite + talc + H2O. This estimate is consistent with the occurrence of chlorite in Type II rocks, which is stable up to 890 °C at 2.0 GPa. The spinifex-like textured metaperidotites occur as small bodies in the low P/T type gneisses, implying tectonic juxtaposition of them probably during exhumation of the HMR. Recent findings of medium pressure (0.9–1.2 GPa) granulites and gneisses from the HMR may indicate that the HMR has a deep root into the wedge mantle from which the spinifex-like textured metaperidotites have derived.  相似文献   

6.
Palau Islands, 7°30′N, are the only emergent feature on the more than 2500‐km‐long Kyushu–Palau Ridge. Small islands are mainly uplifted reef carbonate. Larger islands are volcanic with basalt to dacite and rare boninite. Polymict breccia is abundant: sills, flows, and dykes are common but pillows are rare. Palau Trench samples include all types found on the islands as well as high‐Mg basalt. Volcanism began in the late Eocene and ended by early Miocene. All igneous rocks comprise a low‐K primitive island arc‐tholeiite series. None are mid‐ocean ridge basalts. Rare earth elements and high field‐strength elements indicate a depleted mantle source. Elevated large ion lithophile elements and light rare earth elements indicate influx of ‘dehydration fluid’. Ce/Ce* and Eu/Eu* ratios show no evidence for recycling of arc‐derived clastics. Plate reconstructions and paleomagnetic data suggest that the arc probably formed on the trace of a transform fault that migrated northward and rotated clockwise up to 90°. Episodes of transtension caused upwelling of hot mantle into depleted mantle and sheared altered rocks of the transform. Episodes of transpression may have initiated subduction of old seafloor with a thin cover of pelagic sediments deposited far from terrigenous sediment sources.  相似文献   

7.
Geologic relationships in the central Pyrenees of southern France demonstrate that lherzolite has been emplaced, as a plastic solid, into middle or upper Cretaceous calcareous rocks; that it has been eroded and clastic peridotite debris deposited in rocks of approximately the same age as those it intruded; and that it has also been juxtaposed against Cretaceous limestone or marble along or within the North Pyrenean fault zone. There are at least three types of late Cretaceous lherzolite breccias known from this region.Metamorphism of the country rock and penetrative deformation of the lherzolite and marble took place during shearing. Shearing was accompanied by an important period of motion (perhaps 85–100 m.y. ago) along the North Pyrenean fault and an associated thermal event which involved temperatures of 400 ± 100°C. Cretaceous metamorphism along the North Pyrenean fault zone was not due to forcible primary hot intrusion of lherzolite.  相似文献   

8.
9.
Abstract Bahía Concepción is located in the eastern coast of the Baja California peninsula and it is shaped by northwestern–southeastern normal faults. These are associated with a 12–6 Ma rifting episode, although some have been reactivated since the Pliocene. The most abundant rocks correspond to the arc related Comondú Group, Oligocene to Miocene, which forms a mainly calc‐alkaline volcanic and volcaniclastic sequence. There are less extensive outcrops of sedimentary rocks, lava flows, domes and pyroclastic rocks of Pliocene to Quaternary ages. The Neogene volcanism in the area indicates a shift from a subduction regime to an intraplate volcanism related to continental extension and the opening of an oceanic basin. The Bahía Concepción area contains numerous Mn ore deposits, being the biggest at El Gavilán and Guadalupe. The Mn deposits occur as veins, breccias and stockworks, and are composed by Mn oxides (pyrolusite, coronadite, romanechite), dolomite, quartz and barite. The deposits are hosted in volcanic rocks of the Comondú Group and, locally, in Pliocene sedimentary rocks. Thus, the Mn deposits formed between the Middle Miocene and the Pliocene. The mineralized structures are associated with Miocene northwestern–southeastern fault systems, which are analogous to those associated with the Cu‐Co‐Zn‐Mn deposits of El Boleo. The Bahía Concepción area also bears subaerial and submarine hot springs, which are associated with the same fault systems and host rocks. The submarine and subaerial geothermal manifestations south of the bay are possibly related with recent volcanism. The geothermal manifestations within the bay are intertidal hot springs and shallow submarine diffuse venting areas. Around the submarine vents (5–15 m deep, 87°C), Fe‐oxyhydroxide crusts with pyrite and cinnabar precipitate. In the intertidal vents (62°C), aggregates of opal, calcite, barite and Ba‐rich Mn oxides occur covered by silica‐carbonate stromatolitic sinters. Some 10–30 cm thick crustiform veins formed by chalcedony, calcite and barite are also found close to the vents. The hydrothermal fluids exhibit mixed isotopic compositions between δ18O‐enriched meteoric and local marine water. The precipitation of Ba‐rich Mn oxides around the vent sites could be an active analog for the processes that produced Miocene to Pliocene hydrothermal Mn‐deposits.  相似文献   

10.
A variety of low‐ to high‐pressure metamorphic assemblages occur in the metabasic rocks and metachert in the Upper Cretaceous–Eocene ophiolite belt of the central part of the Naga Hills, an area in the northern sector of the Indo–Myanmar Ranges in the Indo–Eurasian collision zone. The ophiolite suite includes peridotite tectonite containing garnet lherzolite xenoliths, layered ultramafic–mafic cumulates, metabasic rocks, basaltic lava, volcaniclastics, plagiogranite, and pelagic sediments emplaced as dismembered and imbricated bodies at thrust contacts between moderately metamorphosed accretionary rocks/basement (Nimi Formation/Naga Metamorphics) and marine sediments (Disang Flysch). It is overlain by coarse clastic Paleogene sediments of ophiolite‐derived rocks (Jopi/Phokphur Formation). The metabasic rocks, including high‐grade barroisite/glaucophane‐bearing epidote eclogite and glaucophane schist, and low‐grade greenschist and prehnite–clinochlore schist, are associated with lava flows and ultramafic cumulates at the western thrust contact. Chemically, the metabasites show a low‐K tholeiitic affinity that favors derivation from a depleted mantle source as in the case of mid‐ocean ridge basalt. Thermobarometry indicates peak P–T conditions of about 20 kb and 525°C. Retrogression related to uplift is marked by replacement of barroisite and omphacite by glaucophane followed by secondary actinolite, albite, and chlorite formation. A metabasic lens with an eclogite core surrounded by successive layers of glaucophane schist and greenschist provides field evidence of retrogression and uplift. Presence of S‐C mylonite in garnet lherzolite and ‘mica fish’ in glaucophane schist indicates ductile deformation in the shear zone along which the ophiolite was emplaced.  相似文献   

11.
Abstract High‐ to ultrahigh‐pressure metamorphic (HP–UHPM) rocks crop out over 150 km along an east–west axis in the Kokchetav Massif of northern Kazakhstan. They are disposed within the Massif as a 2 km thick, subhorizontal pile of sheet‐like nappes, predominantly composed of interlayered pelitic and psammitic schists and gneisses, amphibolite and orthogneiss, with discontinuous boudins and lenses of eclogite, dolomitic marble, whiteschist and garnet pyroxenite. On the basis of predominating lithologies, we subdivided the nappe group into four north‐dipping, fault‐bounded orogen‐parallel units (I–IV, from base to top). Constituent metabasic rocks exhibit a systematic progression of metamorphic grades, from high‐pressure amphibolite through quartz–eclogite and coesite–eclogite to diamond–eclogite facies. Coesite, diamond and other mineral inclusions within zircon offer the best means by which to clarify the regional extent of UHPM, as they are effectively sequestered from the effects of fluids during retrogression. Inclusion distribution and conventional geothermobarometric determinations demonstrate that the highest grade metamorphic rocks (Unit II: T = 780–1000°C, P = 37–60 kbar) are restricted to a medial position within the nappe group, and metamorphic grade decreases towards both the top (Unit III: T = 730–750°C, P = 11–14 kbar; Unit IV: T = 530°C, P = 7.5–9 kbar) and bottom (Unit I: T = 570–680°C; P = 7–13.5 kbar). Metamorphic zonal boundaries and internal structural fabrics are subhorizontal, and the latter exhibit opposing senses of shear at the bottom (top‐to‐the‐north) and top (top‐to‐the‐south) of the pile. The orogen‐scale architecture of the massif is sandwich‐like, with the HP–UHPM nappe group juxtaposed across large‐scale subhorizontal faults, against underlying low P–T metapelites (Daulet Suite) at the base, and overlying feebly metamorphosed clastic and carbonate rocks (Unit V). The available structural and petrologic data strongly suggest that the HP–UHPM rocks were extruded as a sequence of thin sheets, from a root zone in the south toward the foreland in the north, and juxtaposed into the adjacent lower‐grade units at shallow crustal levels of around 10 km. The nappe pile suffered considerable differential internal displacements, as the 2 km thick sequence contains rocks exhumed from depths of up to 200 km in the core, and around 30–40 km at the margins. Consequently, wedge extrusion, perhaps triggered by slab‐breakoff, is the most likely tectonic mechanism to exhume the Kokchetav HP–UHPM rocks.  相似文献   

12.
The hydrogen isotope fractionation factors between epidote and aqueous 1 M and 4 M NaCl, 1 M CaCl2 solutions, and between epidote and seawater, have been measured over the temperature range 250–550°C over which the degree of dissociation of dissolved species varies significantly. Measured fractionations at 350°C are decreased by up to 12‰, 9‰ and 7‰ relative to pure water in seawater, 1 M CaCl2 and 1 M NaCl respectively, while above 500°C fractionations are not measurably dependent on fluid composition. Water—solution fractionation factors are derived which are generally applicable to the correction of mineral—water hydrogen isotope fractionations for the composition of the fluid phase.The hydrogen isotope compositions of natural epidotes are interpreted in the light of experimental fractionation data for situations where temperature, δD (fluid), and, in some cases, fluid chemistry, are independently known. Epidotes from active geothermal systems have hydrogen isotope quench temperatures consistent with or close to measured well temperatures unless the measured temperature has declined substantially since epidote formation or there is uncertainty in the D/H ratio of the water associated with the epidote because of isotopic heterogeneity in the well waters. Hydrothermal and metamorphic epidotes show closure temperatures of 175–225°C and 200–250°C. There is no evidence that retrograde metamorphic fluids, if present, are isotopically different from prograde fluids.The water-solution fractionations indicate strong solute-solvent interactions between 250 and 450°C and imply that both dissociated and associated species contribute to the fractionation effects through modification of the orientations and structure of the water molecules. Solute-solvent interactions become negligible at temperatures around 550°C.  相似文献   

13.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

14.
A number of lode–gold occurrences are hosted by hydrothermally altered greenstones along the southern boundary of the Palaeoproterozoic Central Lapland Greenstone Belt. The hydrothermally altered and mineralised zones are related to a major thrust and shear zone system that extends much across northern Finland. Spatial correlation between mineralized zones, brittle structural features and chemical alteration was explored and identified from high-resolution aeromagnetic data, in combination with airborne electromagnetic and gamma-ray spectrometric data and coupled with petrophysical and palaeomagnetic studies. The most prominent magnetic, ductile signatures formed during the Svecofennian Orogeny (1900–1800 Ma), resulting in elastic, curved, continuous magnetic patterns. These elastic anomaly patterns were disturbed by tectonic stress from S–SW, resulting in parallel, regularly oriented fracture families and thrust faults normal to the main stress direction. According to aeromagnetic, palaeomagnetic and structural evidence, the thrust zone was active during the latest stage of the orogenic event, but was also reactivated at a later date. Airborne gamma-ray data reveals zones of potassic alteration in the ultramafic rock units in the vicinity of cross-sections of these two fault sets. Chemical and mineralogical changes during alteration and metamorphism strongly affected the mafic and ultramafic host rocks throughout the deformation zone. The strong potassium enrichment and coinciding destruction of magnetic minerals resulted in enhanced potassium concentration and reduction of magnetic anomaly amplitudes. Palaeomagnetic results indicate that the remanent magnetization for the altered ultramafic rocks along the thrust zone is of chemical origin (CRM) and was acquired at 1880–1840 Ma, which is presumed also to be the age of the chemical alteration related to gold mineralization.  相似文献   

15.
During late Mesozoic subduction of paleo‐Pacific lithospheric plates, numerous gold vein deposits formed in the Dabie–Sulu Belt of east‐central China plus its east‐Asian extensions, and in the Klamath Mountains plus Sierran Foothills of northern California. In eastern Asia, earlier transpression and continental collision at about 305–210 Ma generated a high pressure–ultrahigh pressure orogen, but failed to produce widespread intermediate to felsic magmatism or abundant hydrothermal gold deposits. Similarly in northern California, strike‐slip ± minor transtension–transpression over the interval of about 380–160 Ma resulted in the episodic stranding of oceanic terranes, but generated few granitoid magmas or Au ore bodies. However, for both continental margin realms, nearly head‐on Cretaceous destruction of oceanic lithosphere involved sustained underflow; reaching magmagenic depths of about 100 km, the descending mafic‐ultramafic plates dewatered, producing voluminous calc‐alkaline arc magmas. Ascent of these plutons into the middle and upper crust released CO2 ± S‐bearing aqueous fluids and/or devolatilized the contact‐metamorphosed wall rocks. Such hydrothermal fluids transported gold along fractures and fault zones, precipitating it locally in response to cooling, fluid mixing, and/or reactions with wall rocks of contrasting compositions (e.g. serpentinite, marble). In contrast, where sialic crust was subducted to depths of about 100 km, only minor production of granitoid melts occurred, and few major coeval Au vein deposits formed. The mobilization of precious metal‐bearing fluids in continental margin and island arc environments apparently requires long‐continued, nearly orthogonal descent of oceanic, not continental, lithosphere.  相似文献   

16.
Basement rocks that occur along the northern margin of the South Kitakami Terrane in Japan consist of Ordovician ultramafic rocks (Hayachine ultramafic complex), gneissose amphibolite (Kuromoriyama amphibolite), and mafic rocks (Kagura igneous rocks, KIR). The KIR are composed of metagabbro, metadolerite, metabasalt, and minor felsic–intermediate dikes. Although the KIR contain green hornblende due to metamorphism of greenschist to epidote–amphibolite facies, they rarely retain primary brown hornblende. Approximately 30% of the metabasalt shows porphyritic textures, with phenocrysts of saussuritized plagioclase and/or altered mafic minerals. The geochemistry of the common metadolerite and metabasalt of the KIR shows a tholeiite trend, a low TiO2 content, and high Th/Nb and Ti/V ratios. The KIR are therefore indicative of a supra‐subduction zone tectonic setting, which implies a backarc origin (as also indicated by discrimination diagrams). Trace element patterns of the KIR resemble those of the backarc‐basin basalt of the Japan and Yamato basins in the Japan Sea. We propose that the KIR formed during backarc spreading from the Ordovician to Early Silurian. This view is supported by the geochemical data, the tectonic setting of the Hayachine ultramafic rocks, and the provenance of clastics within Silurian sedimentary rocks.  相似文献   

17.
Yong-Feng  Zhu  Hans-Joachim  Massonne  Thomas  Theye 《Island Arc》2007,16(4):508-535
Abstract Four phengite‐bearing eclogites, taken from different depths of the Chinese continental scientific drilling (CCSD) borehole in the Sulu ultrahigh pressure terrane, eastern China, were studied with the electron microprobe. The compositional zonations of garnet and omphacite are moderate, whereas phengite compositions generally vary significantly in a single sample from core to rim by decrease of the Si content. Various geothermobarometric methods were applied to constrain the P‐T conditions of these eclogites on the basis of the compositional variability of the above minerals. The constrained P‐T path for sample B218 is characterized by pressure decrease from ca 3.0 GPa (ca 600°C) to 1.3 GPa (ca 550°C). Eclogite B310 yielded P‐T conditions of 3.0 GPa and 750°C. The path for eclogite B1008 starts at about 650°C and 3.6–3.9 GPa (stage I) followed by a pressure decrease to 2.8–3.0 GPa and a significant temperature rise (stages II and IIIa, 750–810°C). Afterwards, this rock cooled down to 620–660°C at still high pressures (2.5–2.7 GPa, stage IIIb). Retrograde conditions were about 670°C and 1.3 GPa (stage IV). Eclogite B1039 yielded a P‐T path starting at ca 600°C and 3.3–3.9 GPa (stage I). A pressure decrease to about 3.0 GPa (stage II, 590–610°C) and then a moderate isobaric temperature increase to ca 630°C (stage III) followed. Stage IV is characterized by temperatures of 650°C at pressures close to 1.3 GPa. During and after this stage (hydrous) fluids partially rich in potassium penetrated the rocks causing minor changes. Relatively high oxygen fugacities led to andradite and magnetite among the newly formed minerals. We think that the above findings can be best explained by mass flow in a subduction channel. Thus, we conclude that the assembly of UHP rocks of the CCSD site, eclogites, quartzofeldspathic rocks, and peridotites, cannot represent a crustal section that was already coherent at UHP conditions as it is the common belief currently. The coherency was attained after significant exhumation of these UHP rocks.  相似文献   

18.
Mio-Pliocene hypabyssal rocks of the Combia event in the Amagá basin (NW Andes-Colombia), contain a deformational record of the activity of the Cauca-Romeral fault system, and the interaction of terranes within the Choco and northern Andean blocks. Previous paleomagnetic studies interpreted coherent counterclockwise rotations and noncoherent modes of rotation about horizontal axes for the Combia intrusives. However, rotations were determined from in-situ paleomagnetic directions and the existing data set is small. In order to better understand the deformational features of these rocks, we collected new paleomagnetic, structural, petrographic and magnetic fabric data from well exposed hypabyssal rocks of the Combia event. The magnetizations of these rocks are controlled by a low-coercivity ferromagnetic phase. Samples respond well to alternatingfield demagnetization isolating a magnetization component of moderate coercivity. These rocks do not have ductile deformation features. Anisotropy of magnetic susceptibility and morphotectonic analysis indicate that rotation about horizontal axes is consistently to the south-east, suggesting the need to apply a structural correction to the paleomagnetic data. The relationships between magnetic foliations and host-rock bedding planes indicate tectonic activity initiated before ~10 Ma. We present a mean paleomagnetic direction (declination D = 342.8°, inclination I = 12.1°, 95% confidence interval α95 = 12.5°, precision parameter k = 8.6, number of specimens n = 18) that incorporates structural corrections. The dispersion S = 27° of site means cannot be explained by secular variation alone, but it indicates a counterclockwise rotation of 14.8° ± 12.7° relative to stable South America. Paleomagnetic data within a block bounded by the Sabanalarga and Cascajosa faults forms a more coherent data set (D = 336.5°, I = 17.4°, α95 = 11.7°, k = 12.5, n = 14), which differs from sites west of the Sabanalarga fault and shows a rotation about a vertical axis of 20.2° ± 10.7°. Deformation in the Amagá basin may be tentatively explained by the obduction of the Cañas Gordas terrane over the northwestern margin of the northern Andean block. However, it can also be related to the local effects of the Cauca-Romeral fault system.  相似文献   

19.
Abstract The Shimanto accretionary complex on the Muroto Peninsula of Shikoku comprises two major units of Tertiary strata: the Murotohanto Sub-belt (Eocene-Oligocene) and the Nabae Sub-belt (Oligocene-Miocene). Both sub-belts have been affected by thermal overprints following the peak of accretion-related deformation. Palaeotemperatures for the entire Tertiary section range from ~ 140 to 315°C, based upon mean vitrinite reflectance values of 0.9–5.0%Rm. Values of illite crystallinity index are consistent with conditions of advanced diagenesis and anchimetamorphism. Illite/mica b0 lattice dimensions indicate that burial pressures were probably no greater than 2.5kbar. In general, levels of thermal maturity are higher for the Murotohanto Sub-belt than for the Nabae Sub-belt. The Eocene-Oligocene strata also display a spatial decrease in thermal maturity from south to north and this pattern probably was caused by regional-scale differential uplift following peak heating. Conversely, the palaeothermal structure within the Nabae Sub-belt is fairly uniform, except for the local effects of mafic intrusions at the tip of Cape Muroto. There is a paleotemperature difference of ~ 90°C across the boundary between the Murotohanto and Nabae Sub-belts (Shiina-Narashi fault), and this contrast is consistent with approximately 1200 m of post-metamorphic vertical offset. Subduction prior to Middle Miocene probably involved the Kula or fused Kula-Pacific plate and the background geothermal gradient during the Eocene-Oligocene phase of accretion was ~ 30–35°C/km. Rapid heating of the Shimanto Belt evidently occurred immediately after a Middle Miocene reorganization of the subduction boundary. Hot oceanic lithosphere from the Shikoku Basin first entered the subduction zone at ~ 15 Ma; this event also coincided with the opening of the Sea of Japan and the rapid clockwise rotation of southwest Japan. The background geothermal gradient at that time was ~ 70°C/km. Whether or not all portions of the inherited (Eocene-Oligocene) palaeothermal structure were overprinted during the Middle Miocene remains controversial.  相似文献   

20.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号