首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head‐dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over‐ or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive‐use management tools.  相似文献   

2.
The term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water‐budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head‐dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three‐dimensional, volumetric portion of a groundwater flow field that discharges to a well. A closely related issue that has become associated with the source of water to wells is streamflow depletion, which refers to the reduction in streamflow caused by pumping, and is a type of capture. Rates of capture and streamflow depletion are calculated by use of water‐budget analyses, most often with groundwater‐flow models. Transport models, particularly particle‐tracking methods, are used to determine capture zones to wells. In general, however, transport methods are not useful for quantifying actual or potential streamflow depletion or other types of capture along aquifer boundaries. To clarify the sometimes subtle differences among these terms, we describe the processes and relations among capture, capture zones, and streamflow depletion, and provide proposed terminology to distinguish among them.  相似文献   

3.
In deeply weathered laterite catchments of the Darling Range in south-western Australia, the direct contribution (i.e., discharge) of permanent groundwater to streamflow has long been considered as minor. Instead, downslope shallow throughflow was thought to dominate, generating more than 90% of streamflow. We used a chemical hydrograph separation approach to estimate annual groundwater discharge for three catchments over periods of up to 39 years, and found that direct groundwater contributions to streamflow were far more variable across catchments and through time than has previously been acknowledged. The estimated proportion of annual streamflow sourced directly from groundwater ranged from 0 to 93% and was related linearly to the size of the groundwater discharge area in the catchment valley floor. In contrast, contributions from shallow sources including shallow throughflow varied primarily and linearly with annual rainfall. However, the response to rainfall was “amplified” in a predictable way by the size of the groundwater discharge area, consistent with the variable source area concept. We derived a functional relationship between catchment annual rainfall-runoff ratio and groundwater discharge area and successfully applied this to a further four catchments, inferring that the results were broadly applicable across the Darling Range. The implications for an improved understanding of streamflow generating processes in the study region, and for laterite catchments generally, are discussed.  相似文献   

4.
ABSTRACT

This paper assesses how various sources of uncertainty propagate through the uncertainty cascade from emission scenarios through climate models and hydrological models to impacts, with a particular focus on groundwater aspects from a number of coordinated studies in Denmark. Our results are similar to those from surface water studies showing that climate model uncertainty dominates the results for projections of climate change impacts on streamflow and groundwater heads. However, we found uncertainties related to geological conceptualization and hydrological model discretization to be dominant for projections of well field capture zones, while the climate model uncertainty here is of minor importance. How to reduce the uncertainties on climate change impact projections related to groundwater is discussed, with an emphasis on the potential for reducing climate model biases through the use of fully coupled climate–hydrology models.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   

5.
Long-term catchment experiments from South Africa have demonstrated that afforestation of grasslands and shrublands significantly reduces surface-water runoff. These results have guided the country's forestry policy and the implementation of a national Invasive Alien Plant (IAP) control programme for the past few decades. Unfortunately, woody IAP densities continue to increase, compounding existing threats to water security from population growth and climatic change. Decision makers need defensible estimates of the impacts of afforestation or invasions on runoff to weigh up alternative land use options, or guide investment of limited resources into ecosystem restoration through IAP clearing versus engineering-based water-augmentation schemes. Existing attempts to extrapolate the impacts observed in catchment afforestation experiments to broad-scale IAP impacts give no indication of uncertainty. Globally, the uncertainty inherent in the results from paired-catchment experiments is seldom propagated into subsequent analyses making use of these data. We present a fully reproducible Bayesian model that propagates uncertainty from input data to final estimates of changes in streamflow when extrapolating from catchment experiments to broader landscapes. We apply our model to South Africa's catchment experiment data, estimating streamflow losses to plantations and analogous plant invasions in the catchments of southwestern South Africa, including uncertainty. We estimate that regional streamflow is reduced by 304 million m3 or 4.14% annually as a result of IAPs, with an upper estimate of 408 million m3 (5.54%) and a lower estimate of 267 million m3 (3.63%). Our model quantifies uncertainty associated with all parameters and their contribution to overall uncertainty, helping guide future research needs. Acknowledging and quantifying inherent uncertainty enables more defensible decisions regarding water resource management.  相似文献   

6.
One of the first and most important decisions facing practitioners when constructing a numerical groundwater model is vertical discretization. Several factors will influence this decision, such as the conceptual model of the system and hydrostratigraphy, data availability, resulting computational burden, and the purpose of the modeling analysis. Using a coarse vertical discretization is an attractive option for practitioners because it reduces data requirements and model construction efforts, can increase model stability, and can reduce computational demand. However, using a coarse vertical discretization as a form of model simplification is not without consequence; this may give rise to unwanted side-effects such as biases in decision-relevant simulated outputs. Given its foundational role in the modeled representation of the aquifer system, herein we investigate how vertical discretization may affect decision-relevant simulated outputs using a paired complex-simple model analysis. A Bayesian framework and decision analysis approach are adopted. Two case studies are considered, one of a synthetic, linked unsaturated-zone/surface-water/groundwater hydrologic model and one of a real-world linked surface-water/groundwater hydrologic-nitrate transport model. With these models, we analyze decisions related to abstraction-induced changes in ecologically important streamflow characteristics and differences in groundwater and surface-water nitrate concentrations and mass loads following potential land-use change. We show that for some decision-relevant simulated outputs, coarse vertical discretization induces bias in important simulated outputs, and can lead to incorrect resource management action. For others, a coarse vertical discretization has little or no consequence for resource management decision-making.  相似文献   

7.
Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first-order second-moment uncertainty quantification with null-space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post-calibration predictive uncertainty of groundwater head, river-groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states (“additional” data) as well as knowledge of model parameters (“parametric” data). The data worth analysis is extended to account for non-uniqueness of model parameters by null-space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of “additional” data and is unable to estimate “parametric” data, while the POD model is in agreement with the complex benchmark for both “additional” and “parametric” data. The variance of the POD data worth estimates suggests the need to account for parameter non-uniqueness, like presented here, for robust results.  相似文献   

8.
Groundwater contributions to baseflow in Minnehaha Creek, a creek located in a highly developed watershed in the Minneapolis-St. Paul metropolitan area, from the watershed's Quaternary aquifer were quantified as part of an effort to manage low flow conditions in the creek. Considerable uncertainty exists with any single method used to quantify groundwater contributions to baseflow; therefore, a “weight of evidence” approach in which methods spanning multiple spatial scales was utilized. Analyses conducted at the watershed-scale (streamflow separation and stable isotope analyses) were corroborated with site-scale measurements (piezometer, seepage meter, and streambed temperature profiles) over a multi-year period to understand processes and conditions controlling connectivity between the stream, its shallow aquifer system and other flow sources. In the case of Minnehaha Creek, groundwater discharge was found to range from 6.2 to 23 mm year−1, which represented only 5 to 11% of annual streamflow during the study period. From the weight of evidence, it is conjectured that regional-scale hydrogeological conditions control groundwater discharge in Minnehaha Creek. Implications of these results with regard to possible augmentation of baseflow by increasing groundwater recharge with infiltration of stormwater are discussed.  相似文献   

9.
Aquifers supporting irrigated agriculture are a resource of global importance. Many of these systems, however, are experiencing significant pumping-induced stress that threatens their continued viability as a water source for irrigation. Reductions in pumping are often the only option to extend the lifespans of these aquifers and the agricultural production they support. The impact of reductions depends on a quantity known as “net inflow” or “capture.” We use data from a network of wells in the western Kansas portions of the High Plains aquifer in the central United States to demonstrate the importance of net inflow, how it can be estimated in the field, how it might vary in response to pumping reductions, and why use of “net inflow” may be preferred over “capture” in certain contexts. Net inflow has remained approximately constant over much of western Kansas for at least the last 15 to 25 years, thereby allowing it to serve as a target for sustainability efforts. The percent pumping reduction required to reach net inflow (i.e., stabilize water levels for the near term [years to a few decades]) can vary greatly over this region, which has important implications for groundwater management. However, the reduction does appear practically achievable (less than 30%) in many areas. The field-determined net inflow can play an important role in calibration of regional groundwater models; failure to reproduce its magnitude and temporal variations should prompt further calibration. Although net inflow is a universally applicable concept, the reliability of field estimates is greatest in seasonally pumped aquifers.  相似文献   

10.
A. Smith  C. Welch  T. Stadnyk 《水文研究》2016,30(21):3871-3884
Quantifying streamflow sources within remote, data scarce, Boreal catchments remains a significant challenge because of limited accessibility and complex, flat topography. The coupled use of hydrometric and isotopic data has previously been shown to facilitate quantification of streamflow sources, but application has generally been limited to small basins and short time scales. A lumped flow‐isotope model was used to estimate contributing streamflow sources (soil, ground, and wetland water) over a four‐year period in two large nested headwater catchments (Sapochi and Odei Rivers) in northern Manitoba, Canada. On average, the primary streamflow source was estimated as soil water (60%) in the Sapochi River, and groundwater (54%) in the Odei River. A strong seasonal influence was observed: soil water was the primary streamflow source in summer, changing to groundwater and wetlands during the winter. Interannual variability in streamflow sources was strongly linked to the presence or absence of late summer rainfall. The greatest uncertainties in source quantification were identified during the spring freshets and high precipitation events, and hence, simulations may be improved through explicit representation of the soil freeze/thaw process and data collection during this period. Assessment of primary streamflow components and qualitative uncertainty estimation using coupled isotope‐flow modelling is an effective method for first‐order identification of streamflow sources in data sparse remote headwaters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Bayesian networks (BNs) are being increasingly applied to environmental research. Nonetheless, most of the literature related to environmental sciences use discrete or discretized data, which entails a loss of information. We propose a novel methodology based on continuous BNs to predict the probability that surface waters do not meet the standards, in relation to nitrate concentration, established by the European Water Framework Directive. In order to achieve our purpose, a Tree Augmented Naive Bayes (TAN), was developed and applied to estimate and map the risk of failing to meet the European standards established. The TAN models were tested by means of the k-fold cross validation method. The results revealed that the TAN model performed proper risk maps and suggested that poor water quality is highly probable in watersheds dominated by irrigated herbaceous crops. On the contrary, “good surface water status” is more likely to occur in areas where forest is notably present.  相似文献   

12.
Few approaches exist that explicitly use the uncertainty associated with the spread of climate model simulations in assessing climate change impacts. An approach that does so is second-order approximation (SOA). This incorporates quantification of uncertainty to ascertain its impact on the derived response using a Taylor series expansion of the model. This study uses SOA in a statistical downscaling model of monthly streamflow, with a focus on the influence of dependence in the uncertainty of multiple atmospheric variables. Uncertainty is quantified using the square root error variance concept with a new extension that allows the inter-dependence terms among the atmospheric variable uncertainty to be specified. Applying the model to selected point locations in Australia, it is noted that the downscaling results differ considerably from downscaling that ignores uncertainty. However, when the effects of dependence in uncertainty are incorporated, the results differ according to the regional variations in dependence structure.  相似文献   

13.
Although stream temperature energy balance models are useful to predict temperature through time and space, a major unresolved question is whether fluctuations in stream discharge reduce model accuracy when not exactly represented. However, high‐frequency (e.g., subdaily) discharge observations are often unavailable for such simulations, and therefore, diurnal streamflow fluctuations are not typically represented in energy balance models. These fluctuations are common due to evapotranspiration, snow pack or glacial melt, tidal influences within estuaries, and regulated river flows. In this work, we show when to account for diurnally fluctuating streamflow. To investigate how diurnal streamflow fluctuations affect predicted stream temperatures, we used a deterministic stream temperature model to simulate stream temperature along a reach in the Quilcayhuanca Valley, Peru, where discharge varies diurnally due to glacial melt. Diurnally fluctuating streamflow was varied alongside groundwater contributions via a series of computational experiments to assess how uncertainty in reach hydrology may impact simulated stream temperature. Results indicated that stream temperatures were more sensitive to the rate of groundwater inflow to the reach compared with the timing and amplitude of diurnal fluctuations in streamflow. Although incorporating observed diurnal fluctuations in discharge resulted in a small improvement in model RMSE, we also assessed other diurnal discharge signals and found that high amplitude signals were more influential on modelled stream temperatures when the discharge peaked at specific times. Results also showed that regardless of the diurnal discharge signal, the estimated groundwater flux to the reach only varied from 1.7% to 11.7% of the upstream discharge. However, diurnal discharge fluctuations likely have a stronger influence over longer reaches and in streams where the daily range in discharge is larger, indicating that diurnal fluctuations in stream discharge should be considered in certain settings.  相似文献   

14.
The extension of MODFLOW onto the landscape with the Farm Process (MF-FMP) facilitates fully coupled simulation of the use and movement of water from precipitation, streamflow and runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. This allows for more complete analysis of conjunctive use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” comprised of one or more model cells that can represent a single farm, a group of farms, or other hydrologic or geopolitical entities. Simulation of micro-agriculture in the Pajaro Valley and macro-agriculture in the Central Valley are used to demonstrate the utility of MF-FMP. For Pajaro Valley, the simulation of an aquifer storage and recovery system and related coastal water distribution system to supplant coastal pumpage was analyzed subject to climate variations and additional supplemental sources such as local runoff. For the Central Valley, analysis of conjunctive use from different hydrologic settings of northern and southern subregions shows how and when precipitation, surface water, and groundwater are important to conjunctive use. The examples show that through MF-FMP's ability to simulate natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand can be analyzed, understood, and managed. This analysis of conjunctive use would be difficult without embedding them in the simulation and are difficult to estimate a priori.  相似文献   

15.
We compared streamflow in basins under the combined impacts of an upland dam and groundwater pumping withdrawals, by examining streamflow in the presence and absence of each impact. As a qualitative analysis, inter‐watershed streamflow comparisons were performed for several rivers flowing into the east side of the Central Valley, CA. Results suggest that, in the absence of upland dams supporting large reservoirs, some reaches of these rivers might develop ephemeral streamflow in late summer. As a quantitative analysis, we conducted a series of streamflow/groundwater simulations (using MODFLOW‐2000 plus the streamflow routing package, SFR1) for a representative hypothetical watershed, with an upland dam and groundwater pumping in the downstream basin, under humid, semi‐arid, and arid conditions. As a result of including the impact of groundwater pumping, post‐dam removal simulated streamflow was significantly less than natural streamflow. The model predicts extensive ephemeral conditions in the basin during September for both the arid and semi‐arid cases. The model predicts continued perennial conditions in the humid case, but spatially weighted, average streamflow of only 71% of natural September streamflow, as a result of continued pumping after dam removal. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

16.
Recharge estimation is an important and challenging element of groundwater management and resource sustainability. Many recharge estimation methods have been developed with varying data requirements, applicable to different spatial and temporal scales. The variability and inherent uncertainty in recharge estimation motivates the recommended use of multiple methods to estimate and bound regional recharge estimates. Despite the inherent limitations of using daily gauged streamflow, recession curve displacement methods provide a convenient first‐order estimate as part of a multimethod hierarchical approach to estimate watershed‐scale annual recharge. The implementation of recession curve displacement recharge estimation in the United States Geologic Survey (USGS) RORA program relies on the subjective, operator‐specific selection of baseflow recession events to estimate a gauge‐specific recession index. This paper presents a parametric algorithm that objectively automates this tedious, subjective process, parameterizing and automating the implementation of recession curve displacement. Results using the algorithm reproduce regional estimates of groundwater recharge from the USGS Appalachian Valley and Piedmont Regional Aquifer‐System Analysis, with an average absolute error of less than 2%. The algorithm facilitates consistent, completely automated estimation of annual recharge that complements more rigorous data‐intensive techniques for recharge estimation.  相似文献   

17.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   

18.
From the literature, we found that PGV–PD3 regressions for on-site earthquake early warning (EEW) can be quite different depending on the presumption whether or not PGV–PD3 data from different regions should be “mixable” in regression analyses. As a result, this becomes a source of epistemic uncertainty in the selection of a PGV–PD3 empirical relationship for on-site EEW. This study is aimed at examining the influence of this epistemic uncertainty on EEW decision-making, and demonstrating it with an example on the use of PGV–PD3 models developed with data from Taiwan, Japan, and Southern California. The analysis shows that using the “global” PGV–PD3 relationship for Southern California would accompany a more conservative EEW decision-making (i.e., early warning is activated more frequently) than using the local empirical model developed with the PGV–PD3 data from Southern California only. However, the influence of this epistemic uncertainty on EEW is not that obvious for the cases of Taiwan and Japan.  相似文献   

19.
Groundwater is a critical resource not only for human communities but also for many terrestrial, riparian, and aquatic ecosystems and species. Yet groundwater planning and management decisions frequently ignore or inadequately address the needs of these natural systems. As a consequence, ecosystems dependent on groundwater have been threatened, degraded, or eliminated, especially in arid regions. There is growing acknowledgment that governmental protections for these ecological resources are necessary, but current legal, regulatory and voluntary provisions are often inadequate. Groundwater management premised on “safe yield,” which aims to balance human withdrawals with natural recharge rates, typically provides little to no consideration for water needed by ecosystems. Alternatively, the “sustainable yield” concept aims to integrate social, economic and environmental needs for groundwater, but the complexity of groundwater systems creates substantial uncertainty about the impact that current or future groundwater withdrawals will have on ecosystems. Regardless of the legal or regulatory framework, guidance is needed to help ensure environmental water needs will be met, especially in the face of pressure to increase human uses of groundwater resources. In this paper, we describe minimum provisions for planning, managing, and monitoring groundwater that collectively can lower the risk of harm to groundwater-dependent ecosystems and species, with a special emphasis on arid systems, where ecosystems and species may be especially reliant upon and sensitive to groundwater dynamics.  相似文献   

20.
Many current watershed modeling efforts now incorporate surface water and groundwater for managing water resources since the exchanges between groundwater and surface water need a special focus considering the changing climate. The influence of groundwater dynamics on water and energy balance components is investigated in the Snake River Basin (SRB) by coupling the Variable Infiltration Capacity (VIC) and MODFLOW models (VIC‐MF) for the period of 1986 through 2042. A 4.4% increase in base flows and a 10.3% decrease in peak flows are estimated by VIC‐MF compared to the VIC model in SRB. The VIC‐MF model shows significant improvement in the streamflow simulation (Nash‐Sutcliffe efficiency [NSE] of 0.84) at King Hill, where the VIC model could not capture the effect of spring discharge in the streamflow simulation (NSE of ?0.30); however, the streamflow estimates show an overall decreasing trend. Two climate scenarios representing median and high radiative‐forcings such as representative concentration pathways 4.5 and 8.5 show an average increase in the water table elevations between 2.1 and 2.6 m (6.9 and 8.5 feet) through the year 2042. The spatial patterns of these exchanges show a higher groundwater elevation of 15 m (50 feet) in the downstream area and a lower elevation of up to 3 m (10 feet) in the upstream area. Broadly, this study supports results of previous work demonstrating that integrated assessment of groundwater‐surface water enables stakeholders to balance pumping, recharge and base flow needs and to manage the watersheds that are subjected to human pressures more sustainably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号