首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Analysis of a suite of ferromanganese nodules and crusts from the dredge Y73-3-22D in the Bauer Deep (13°40′S, 102°08′W) shows distinct differences between the nodules and crusts. Ultra-slow-scan X-ray diffraction shows that the nodules are more enriched in todorokite while the crusts are more enriched in δ MnO2. Both have phillipsite and smectite as accessory minerals as well as minor amounts of apatite, barite, and quartz. Chemical analyses show that the nodules also have higher abundances of Mn, Ni, Cu, Zn, and Ba, while crusts are more enriched in Fe, Co, and Ca. We suggest that normal authigenic precipitation of ferromanganese oxyhydroxides from seawater controls the mineralogy and chemistry of the crusts, while nodule mineralogy and chemistry are governed by small-scale diagenetic reactions in the sediment. Todorokite may form because iron in the Fe-Mn oxyhydroxide material dispersed in the sediment reacts with amorphous silica to form iron-rich smectites. The remaining oxyhydroxide material recrystallizes as todorokite.  相似文献   

2.
Interiors of manganese nodules from siliceous ooze beneath the Pacific equatorial high-productivity region, when examined by scanning electron microscopy (SEM) and electron microprobe, display post-depositional recrystallization textures and metalliferous oxide bands (diameter 1–10 μm, 30–40 wt.% Mn, 4–5% Ni, 3–4% Cu). SEM has revealed biogenic siliceous matter in all stages of degradation and dissolution within nodule interiors, creating cavities and voids. Often these miniature vugs contain authigenic phillipsite crystallites which are coated with delicate clusters of crystalline Mn-Fe oxides (todorokite) containing significant amounts of Ni and Cu. We postulate the following diagenetic processes and mechanism of uptake of transition metals inside manganese nodules: (1) palagonite + biogenic silica + pelagic clay → phillipsite + montmorillonite; (2) biogenic matter + amorphous FeOOH or δ-MnO2 → Feaq2+ and/or MnIIMnIV oxide (todorokite); (3) aerated seawater or δ-MnO2 + Feaq2+ → FeOOH and/or todorokite (deposited on phillipsite); (4) (NiII and CuII) organic chelates (adsorbed on clays, etc.) + amorphous FeOOH or δ-MnO2 → Ni-Cu-todorokite + phillipsite, etc.This mechanism explains the well-known positive Mn-Ni-Cu and negative Fe-Ni, Fe-Cu correlations in nodules. By analogy with terrestrial todorokites, which require about 8 wt.% Mn to be in the divalent state to stabilize the crystal structure, as much as 8 wt.% (Ni + Cu) could be accommodated in todorokite-bearing deep-sea manganese nodules. However, although such nodules beneficiate Ni and Cu with respect to marine sediments and seawater, they remain undersaturated in these divalent cations.  相似文献   

3.
Early diagenetic manganese nodules from the northeast Pacific nodule belt and from the southeast Pacific (Peru Basin) show primary growth features of dendritic microtextures consisting of alternating laminae of crystalline 10-Åmanganate (A1 substance) and amorphous material which is composed of an intimate mixture of ferric hydroxide, silicate, and δ-MnO2 (A2 substance). The formation of rhythmic sequences of A1 and A2 microlayers is explained by physico-chemical changes in the peneliquid sediment layer and in the microenvironment of the accreting nodule surface: (a) upward diffusion of Mn2+ in the interstitial water as a result of decay of organic matter and Mn mobilization; (b) oxidation of Mn2+ and formation of 10-Åmanganate in the upper part of the peneliquid sediment layer, leading to pH depression in the microenvironment of the nodule surface which decreases the mobility of silicate, resulting in formation of A2 layers; (c) restoration of pH and renewed precipitation of 10-Åmanganate.Based on data of 171 bulk analyses and on electron microprobe investigations, interelement relationships between Co, Mn, and Fe are pointed out. Fe and Co show a significant positive correlation (r = 0.84), while Mn and Co are poorly negatively correlated (r = ?0.21), assuming linear regression. The enrichment of Co within the amorphous A2 phase is attributed to specific surface adsorption and subsequent oxidation of Co2+ to Co3+ in the strong electric field of Si4+. Robust complexes of Co(III) and ≡ FeH2SiO4? prevent most of the Co from being available for the 10-Åmanganate precipitation. Concerning the relation between Mn and Fe and Co respectively, the highest correlation coefficients are obtained using an inverse logarithmic regression. Under early diagenetic conditions, the concentration and precipitation of Mn2+ in the interstitial water depends on the redox gradient which is controlled by the amount of decomposing organic matter. The Nernst equation describes the relationship as a reciprocal logarithmic function. However, the quantities of colloidal ferric hydroxide and of dissolved silicate are not affected by variations of the redox potential. These different characteristics in the precipitation of Mn and the Fe- and Si-rich colloidal phase may cause the significantly negative logarithmic correlation of Mn versus Fe and Co, respectively.  相似文献   

4.
The usually high concentrations of Zn, Pb, Cd, and Cu in the most recently accreted portions of ferromanganese nodules from the western Baltic Sea are thought to reflect increased metal input due to anthropogenic mobilization. If so, the point of increase represents a time horizon within the structure of the nodule. Similar trace metal distributions of radiometrically dated sediments from the same area suggest that the ferromanganese nodules have grown in thickness between 0.02 and 0.16 mm yr?1. From this growth rate anthropogenic Zn flux to the nodule surface was calculated to be 80 mg m?2 yr?1.  相似文献   

5.
Analyses have been made of the REE contents of a suite of hydrogenous δMnO2-rich ferromanganese encrustations obtained from a variety of depths (1000–4700 m) on the Line Islands Archipelago. The crusts form a coherent sample group, the REE contents of which are distinctly higher than those of diagenetic nodules. Crusts from 1 to 2 km depth exhibit higher Mn/Fe ratios and are approximately 50% REE depleted with respect to crusts below ~ 2 km. Furthermore, the shale-normalised patterns of the REE fall into the same depth-related categories. Crusts from depths greater than 2000–2500 m exhibit slight heavy REE depletion relative to intermediate REE whilst crusts from above that level exhibit more fractionated, heavy-REE-enriched patterns.To explain these depth-related processes, it is proposed that Mn and Fe oxides exhibit distinct behaviour with respect to REE scavenging. Between ~ 1 and 2 km, higher Mn/Fe ratios in the crusts are considered to be caused by an enhanced supply of Mn2+ —by diffusion and advection from nearshore sediments—which is adsorbed by and occludes existing oxide flocs. At these depths, oxides therefore tend to exhibit predominantly Mn oxide adsorptive properties. Consideration of the REE patterns shows that Fe oxides must be enriched overall in REE relative to Mn oxides and exhibit a flat shale-normalised REE pattern, whilst Mn oxide exhibits a heavy-REE-enriched pattern.Comparison of dissolved REE depth profiles with the crust data enables a qualitative appraisal of the application of scavenging models to the oxide-REE system. The data are not simply described by either equilibrium or irreversible adsorption models alone. It is concluded that whilst oxides may play a general role in creating the LREE depleted seawater pattern, they have little effect on individual vertical profiles, except close to points where fresh oxides precipitate.  相似文献   

6.
Three ferromanganese nodules handpicked from the tops of 2500 cm2 area box cores taken from the north equatorial Pacific have been analysed for their U-Th series nuclides.230Thexc concentrations in the surface 1–2 mm of the top side of the nodules indicate growth rates of 1.8–4.6 mm/106 yr. In two of the nodules a significant discontinuity in the230Thexc depth profile has been observed at ~0.3 m.y. ago, suggesting that the nodule growth has been episodic. The concentration profiles of231Paexc (measured via227Th) yield growth rates similar to the230Thexc data. The bottom sides of the nodules display exponential decrease of230Thexc/232Th activity ratio with depth, yielding growth rates of 1.5–3.3 mm/106 yr.The230Thexc and231Paexc concentrations in the outermost layer of the bottom face are significantly lower than in the outermost layer of the top face. Comparison of the extrapolated230Thexc/232Th and230Thexc/231Paexc activity ratios for the top and bottom surfaces yields an “age” of (5?15) × 104 yr for the bottom relative to the top. This “age” most probably represents the time elapsed since the nodules have attained the present orientation.The210Pb concentration in the surface ~0.1 mm of the top side is in large excess over its parent226Ra. Elsewhere in the nodule, up to ~1 mm depth in both top and bottom sides,210Pb is deficient relative to226Ra, probably due to222Rn loss. The absence of210Pbexc below the outermost layer of the top face rules out the possibility of a sampling artifact as the cause of the observed exponentially decreasing230Thexc and231Paexc concentration profiles. The flux of210Pbexc to the nodules ranges between 0.31 and 0.58 dpm/cm2 yr. The exhalation rate of222Rn, estimated from the226Ra-210Pb disequilibrium is ~570 dpm/cm2 yr from the top side and >2000 dpm/cm2 yr from the bottom side.226Ra is deficient in the top side relative to230Th up to ~0.5–1 mm and is in large excess throughout the bottom. The data indicate a net gain of226Ra into the nodule, corresponding to a flux of (24?46) × 10?3 dpm/cm2 yr. On a total area basis the gain of226Ra into the nodules is <20% of the226Ra escaping from the sediments. A similar gain of228Ra into the bottom side of the nodules is reflected by the high228Th/232Th activity ratios observed in the outermost layer in contact with sediments.  相似文献   

7.
The formation of protective layers against corrosion was investigated by experiments performed in three different media: drinking water, drinking water enriched by chlorides and a concentrated chloride solution. In explanations of the LANGELIER and RYZNAR indices it is stated that the results of both chemical-physical relations supply only indications of the trends of solutions towards formation of protective layers or of aggressivity. The aggressive action of increasing chloride and sulphate concentrations is clearly inhibited by the presence of calcium(II)- and magnesium (II)-ions. A high availability of alkaline earths and hydrogencarbonate allows the formation of a protective layer consisting of FeOOH · H2O, CaCO3 and FeCO3.  相似文献   

8.
The metal composition of oceanic ferromanganese deposits occurring in seamount regions (Line Islands chain and Mid-Pacific Mountains) varies with water depth and age. The results of metal determinations of carbonate plankton samples suggest that carbonate dissolution in the water column might have an important influence on the accretion and composition of hydrogenetic precipitates. Two ferromanganese crust generations of different age have been observed The precipitation of the older crust took probably place during early Oligocene, the younger crust began to form during middle Miocene. Between the two crust generations periods of carbonate sedimentation and of phosphorite deposition occur. The hydrogenetic formation of the crusts is controlled by the metal supply from the water column, according to the laws of colloidal surface chemistry.Dissolution experiments with carbonate plankton samples show that the main Fe source for the hydrogenetic crust formation are colloidal Fe-hydroxide particles being released in the water column from the dissolution of carbonate plankton skeletons. In the case of Mn, maximum dissolved Mn occurs in the oxygen minimum zone as the result of in-situ break-down of organic matter and the in-situ reduction of Mn-bearing solid phases. Closely beneath the oxygen minimum zone a Fe supply, mobilized within the oxygen minimum zone, has also to be taken into account. In the water column below the oxygen minimum zone, a mixture of colloidal particles of MnFe-oxyhydroxide and colloidal AlFe-silicate, precipitate together on the surface of substratum rocks. The mixing ratio of these colloidal phases controlling the metal composition of the ferromanganese precipitates, is depth-dependent and shows also temporal variations. In general, Mn/Fe ratio, Ni, and Co contents decrease with depth down to the calcite compensation depth.The most probable mechanism for the ultimate removal of Co and Ni from the water column might be a surface reaction. δ-MnO2 is specifically able to absorb hydrous Co2+ and Ni2+ ions. Because of the surface enrichment of Co and the strong electrical field of Mn(IV), a subsequent oxidation of Co2+ to Co3+ takes place leading to higher enrichment of Co in comparison to Ni. The most important factor governing the high Co enrichment in the ferromanganese crusts is the growth rate: the lower the growth rate, the higher the Co content. Maximum values of up to 2% Co occurring in samples from water depths between 1500 and 1100 m [1] are related to lower carbonate dissolution rates and corresponding lower Fe supply.The metal supply from the water column is strongly related to distinct environmental factors such as bio-productivity, range of lysocline and calcite compensation depth, rate of carbonate dissolution, and activity of the Antarctic bottom water. Thus, our model shows that the growth periods and the metal composition of hydrogenetic seamount crusts are controlled by changes in the paleoceanography and reflect distinct environmental conditions.  相似文献   

9.
Hafnium and Nd isotopes are increasingly used as paleoceanographic proxies. Comparing the “mantle–crust array” and the “seawater array” in plots of εHf vs. εNd, it has been observed that for a given εNd value the corresponding εHf value is higher for seawater than it is for terrestrial rocks. While this difference had initially been explained by significant hydrothermal input of mantle Hf into seawater, the currently favoured explanation is incongruent weathering of continental rocks producing radiogenic riverine Hf input.We here address this topic from the perspective of the behaviour of these two elements in seawater and in ferromanganese (Fe–Mn) crusts. We distinguish between a “truly dissolved” and a “dissolved” Hf and Nd pool, the latter being comprised of truly dissolved and colloid-bound (“colloidal”) Hf and Nd. While there exists a hydrothermal pathway for colloid-bound dissolved mantle Hf into the oceans, there is, in marked contrast to Nd, no important riverine pathway for colloidal or truly dissolved continental Hf. Owing to their respective chemical speciation in seawater, there exists truly dissolved Nd in the ocean, while the amount of truly dissolved Hf is insignificant.Neodymium is in exchange equilibrium between local seawater and both, the hydrous Fe and Mn oxides hydrogenetic Fe–Mn crusts are composed of. Due to continuous ad- and desorption there is continuous isotopic re-equilibration and the isotopic composition of Nd in a Fe–Mn crust reflects that of truly dissolved Nd in local ambient seawater. In contrast, Hf is only associated with the hydrous Fe oxides on which it forms surface precipitates that do not exchange with seawater. Due to this lack of isotopic re-equilibration, the isotopic composition of Hf in a Fe–Mn crust is the average of that of all the Hf scavenged during the lifetime of the hydrous Fe oxide particles. Since the Hf-bearing hydrous Fe oxides in a Fe–Mn crust do not form from local ambient seawater at the crust's growth site but are advected as colloids or fine particles, their Hf isotopic composition depends on the origin and migration pathway of these colloids. Hence, while Nd isotopes in Fe–Mn crusts provide reliable information on truly dissolved Nd in local ambient seawater, Hf isotopes rather indicate the origin and pathway of hydrous Fe oxide colloids, and might differ from truly dissolved Hf in local ambient seawater. This may explain the occasional decoupling of Nd and Hf isotopes in Fe–Mn crusts and supports the notion of a significant hydrothermal mantle signal of Hf in seawater.  相似文献   

10.
Thermal and compositional evolution of magmas after emplacement of basalt into continental crust has been investigated by means of fluid dynamic experiments using a cold solid mixture with eutectic composition and a hot liquid with higher salinity in the NH4Cl–H2O binary eutectic system. The experiments were designed to simulate cases where crystallization of a basalt magma is accompanied by melting at both the roof and floor of a crustal magma chamber. The results show that thermal and compositional convection occur simultaneously in the solution; the thermal convection is driven by cooling at the roof and the compositional convection is driven by melting and crystallization at the floor. The roof was rapidly melted by the convective heat flux, which resulted in formation of a separate eutectic melt layer (the upper liquid layer) with negligible mixing of the underlying liquid (the lower liquid layer). On the other hand, a mushy layer formed at the floor. The compositional convection at the floor carried a low heat flux, so that the heat transfer at the floor was basically explained by simple heat conduction. The thermal boundary layer in the lower liquid layer at the interface with the upper liquid layer became thicker with time and subsequently temperature decreased upward throughout the lower liquid layer. Compositional gradient with NH4Cl content decreasing upward formed by compositional convection in the lower liquid layer. The formation of these gradients resulted in formation of double-diffusive convecting layers in the lower liquid layer. The upward heat transfer was suppressed when compared with the case where the liquid region is homogenized by vigorous convection.These experimental results imply that, when a basalt magma is emplaced in continental crust, floor melting does not always enhance the cooling of the magma, but it may even reduce the total heat loss from the magma to the crusts due to suppression of convection by formation of a stabilizing compositional gradient.  相似文献   

11.
Dissolved and particulate Mn and Fe in the nearshore waters were determined at 27 stations along the west coast of Taiwan during 19-23 November 2004. The latitudinal distributions of Mn and Fe were very similar; however, the concentration in the dissolved phase was lower, whereas that in the particulate phase was higher in the northern regime. The higher percentage of Fe than Mn that was associated with particles resulted in a two-order of magnitude higher particle-water partition coefficient for Fe, Kd(Fe), than that for Mn, Kd(Mn). The removal fluxes of Mn and Fe could be estimated by multiplying the particulate 234Th removal flux with the Mn/234Th and Fe/234Th ratios in suspended particles, which ranged from 0.1 to 3.8 mmol m−2 d−1 for Mn, and from 3.4 to 194.5 mmol m−2 d−1 for Fe. Residence times ranged from 1 to 20 days for Mn and Fe were estimated in the nearshore.  相似文献   

12.
Trace element study in Tisa River and Danube alluvial sediment in Serbia   总被引:2,自引:0,他引:2  
The contaminated sediment serves as a long-term source of toxic elements,since that mobility and transport in the environment of these elements are strongly influenced to associated solid phase.In this study,the modified Tessier sequential extraction procedure was applied for the fractionation of Cd,As,Hg,Cu,Zn,Cr,Pb,Ni and V in the sediments(Tisa River and canal sediments - Danube alluvial formation),to obtain an overall classification of trace element pollution in these areas through its spatial distribution.Investigations of this region are important due to the widespread occurrence of metal mining activities throughout the Tisa and Danube drainage basins and possibilities of contamination with toxic elements at studies localities.Five steps of the sequential extraction procedure partitioned elements into CH3COONH4 extractable(F1),NH2OH·HC carbonate extractable and easily reducible(F2), H2C2O4/(NH42C2O4 moderately reducible(F3),H2O2-HNO3 organic extractable(F4),and HCl acid soluble residue (F5).Analyses of the extracts were performed by flame atomic absorption spectrometry.To indicate the degree of risk of toxic elements,risk assessment code and contamination factor have been used.The results of partitioning study indicate that more easily mobilized forms(metals in adsorbed/exchangeable/carbonate forms or bound to amorphous Fe and Mn oxyhydroxides and Fe and Mn oxides) were predominant for copper,zinc,cadmium and lead,which can be used as indicators for input from anthropogenic source.In contrast,the largest amount of chromium and nickel were associated with the inert fraction,which reduced their solubility and rendered them immobile under natural conditions and indicative of natural origins.Most of remaining portion of metals was bound to ferromanganese oxides fraction.It is concluded that sequential extraction results proved useful to distinguish between anthropogenic and geochemical sources of elements in the sediments.  相似文献   

13.
Using a fluorescence microscope and EPMA, abundant microbe ”bodies“ and clear microbic fluorescent microstructure are determined in the ferromanganese nodules recently collected from the East Pacific deep sea floor. The microbic fluorescent structure shows a close relation to the formation of the ferromanganese nodules. According to their morphological features, the microbes are classified into two types: one is named clumpy microbe, which takes a bar-shaped manganese mineral as a pillar and grows like fasciculate coral, resulting in irregular cauliflorate nodules with rough surfaces; the other is called filamentous microbe, which grows in very thin arcuate and/or concentric circular laminae composed of a microbe layer and a metal (manganese and iron)-rich layer, leading to potato-shaped nodules with relatively smooth surfaces. It also can be seen that the two types of microbes are intergrown together, resulting in nodules complicated in compositions and shapes.  相似文献   

14.
Two diagenetic manganese nodules from the Peru Basin were investigated by thermal ionization mass spectrometry and high resolution alpha spectrometry for uranium and thorium. The TIMS concentrations for nodule 62KD (63KG) vary as follows: 0.12–1.01 ppb (0.06–0.59) 230Th, 0.51–1.98 ppm (0.43–1.40) 232Th, 0.13–0.80 ppb (0.09–0.49) 234U, and 1.95–13.47 ppm (1.66–8.24) 238U. Both nodules have average growth rates of 110 mm per million years. However, from the variations of excess 230Th with depth we estimate partial accumulation rates which range from 50 to 400 mm per million years. The δ234U dating method cannot be applied due to remobilization of U from the sediment and subsequent incorporation into the nodules' crystal lattice, reflected by decay corrected δ234U values far above the ocean water value. Sections of fast nodule growth are related to those layers having high Mn/Fe ratios (up to 200) and higher densities. As a possible explanation we develop a scenario that describes similar glacial/interglacial trends in both nodules as a record of regional changes of sediment and/or deep water chemistry.  相似文献   

15.
Structure refinement of astrophyllite   总被引:1,自引:0,他引:1  
The crystal structure of astrophyllite K2Na(Fe, Mn, Mg,□)7[Ti2(Si4O12)2|O3](OH, F)4 has been refined. The dimensions of the triclinic unit cell are: a = 0.5359(2) nm,b = 1.1614(4) nm, c = 1.1861(4) nm, α= 113.16(2)°, β= 103.04(2)°,γ= 94.56(2)°,V = 0.6495(5) nm3, Z= 1, space group P1, R=0.057 for 5308 reflections |Fo|>3σ|Fo|. According to structural and compositional differences the monoclinic astrophyllite K2NaNa(Fe, Mn)4Mg2Ti2[Si4O12]2(OH)4(OH, F)2 and astrophyllite should be considered as two different mineral species. Astrophyllite, monoclinic astrophyllite, bafertisite and lamprophyllite contain heteropolyhedral sheets which topologically are related with Si, O sheets of mica where one or several SiO4 tetrahedra are replaced by TiO n polyhedra. Therefore this heterophyllotitanosilicate series represents a kind of functional substitution in inorganic crystals.  相似文献   

16.
Late Cenozoic alkali basaltic lavas of the Lunar Crater Volcanic Field (LCVF), located in the center of the Great Basin of the Western U.S.A., contain a diverse suite of nodule samples of the lower crust and upper mantle. This paper documents a composite nodule from the Marcath flow in which an amphibole-bearing wehrlite (59% olivine, 30% clinopyroxene, 6% amphibole) is cut by a 6–9 mm wide vein of andesine-amphibolite (80% kaersutite, 15% andesine, 3% ilmenite). Aside from nodule-basalt reaction at the nodule exterior, there is little chemical variation either within or between individual grains of hydrous and anhydrous phases in the vein and host wehrlite. Furthermore, there is no systematic compositional zoning in the wehrlite relative to vein proximity. The whole-rock major and trace element composition of the vein is similar to a primitive (Mg/(Mg+Fe)=0.692) basaltic liquid and has Al, Fe, Mg, Ca, Mn, Na, K, Zr, Y and Sr contents similar to basalts observed in the LCVF. In contrast to the Sr isotopic equilibrium displayed by vein feldspar and vein amphibole, Sr isotopic disequilibrium is exhibited between the vein (0.70318(4)), wehrlite (0.70322(4)), and host basalt (0.70357(5) n=3). However, the Sr isotopic ratios of older LCVF basalts (0.7030–0.7038; n=14) overlap those of the vein and wehrlite, and the magmatic activity leading to vein and wehrlite formation could be related to this older phase of LCVF volcanism. Petrographic and geochemical evidence is not consistent with a metasomatic origin for the vein and instead supports the view that the vein originated by the intrusion into a wehrlite mass and subsequent crystallization of a relatively primitive alkali basaltic magma in the lower crust or upper mantle. The wehrlite contains olivine of FO71 and probably originated by crystal separation and accumulation from a relatively differentiated basaltic magma in the lower crust or upper mantle.  相似文献   

17.
Fluxes of metals to the top and bottom surfaces of a manganese nodule were determined by combining radiochemical (230Th,231Pa,232Th,238U,234U) and detailed chemical data. The top of the nodule had been growing in its collected orientation at 4.7 mm Myr?1 for at least 0.5 Myr and accreting Mn at 200 μg cm?2 kyr?1. The bottom of the nodule had been growing in its collected orientation at about 12 mm Myr?1 for at least 0.3 Myr and accreting Mn at about 700 μg cm?2 yr?1. Although the top of the nodule was enriched in iron relative to the bottom, the nodule had been accreting Fe 50% faster on the bottom.232Th was also accumulating more rapidly in the bottom despite a 20-fold enrichment of230Th on the top.The distribution of alpha-emitting nuclides calculated from detailed radiochemical measurements matched closely the pattern revealed by 109-day exposures of alpha-sensitive film to the nodule. However, the shape and slope of the total alpha profile with depth into the nodule was affected strongly by226Ra and222Rn migrations making the alpha-track technique alone an inadequate method of measuring nodule growth rates.Diffusion of radium in the nodule may have been affected by diagenetic reactions which produce barite, phillipsite and todorokite within 1 mm of the nodule surface; however, our sampling interval was too broad to document the effect. We have not been able to resolve the importance of nodule diagenesis on the gross chemistry of the nodule.  相似文献   

18.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

19.
The elastic moduli of a synthetic single crystal of pyrope (Mg3Al2Si3O12) have been determined using a technique based on Brillouin scattering. These results are used in an evaluation of the effect of composition on the elastic properties of silicate garnet solid solution series (Mg, Fe, Mn, Ca)3 (Al, Fe, Cr)2 Si3O12. In the pyralspites (Mg FeMn aluminum garnets), for which a large amount of data is available, this analysis indicates that the bulk modulus K is independent of the Fe2+/Mg2+ ratio, which is similar to the behavior observed in olivines and pyroxenes. However, the shear modulus μ of the garnets increases by 10% from the Mg to the Fe end member, in contrast to the decrease of μ with Fe content which is observed in olivines and pyroxenes. This contrasting behavior is most probably related to the oxygen coordination of the cation site occupied by Mg2+ and Fe2+ in these different minerals.  相似文献   

20.
Soil containing calcic nodules is widely present on the northern Loess Plateau of China owing to soil genesis under local climate conditions. In most studies, little attention is payed to the effect of calcic nodules on soil evaporation and ecoenvironment, resulting in inaccurate evaporation estimation in this kind of soil and further improper field water management measures and irrigation effects. In this paper, soil column experiments were conducted in order to investigate evaporation process in soil containing calcic nodules and the effect of calcic nodules on soil evaporation was determined. The results indicated that evaporation reduction was positively related to calcic nodule content (CNC = mass of calcic nodules/total mass), and could be estimated by the experiential equation: Esoil = E0 (1 – 0.4 CNC) (Esoil = actual evaporation, E0 = theory evaporation in soil without calcic nodules). When CNC was below 0.2, the impact could be neglected. While, as CNC exceeded 0.2, the impact needed to be considered during soil evaporation estimation. As CNC reached 0.5, soil evaporation could be reduced by 7.5 mm, accounting for around 10% of the total soil water. Water balance calculation in soil columns showed that water absorbed by calcic nodules was partially available to evaporation. Water available to evaporation was positively related to CNC, and this water could not exceed 63% of the water absorbed by calcic nodules. Generally, evaporation behavior was dominated by calcic nodule quantity and its water absorption. These results provide new ideas for irrigation measures in arid areas of the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号