首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6–8), and involved H2O-poor, low-δ18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900–1,050°C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli or fiamme, and the rhyolite extrusions are small volume silicic domes and coulées. SR-type volcanism seems to have occurred at numerous times in Earth history, because elements of the facies association occur within some other volcanic fields, including Trans-Pecos Texas, Etendeka-Paraná, Lebombo, the English Lake District, the Proterozoic Keewanawan volcanics of Minnesota and the Yardea Dacite of Australia. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

2.
Peralkaline silicic welded ash-flow tuffs differ characteristically in a number of properties from most calc-alkaline welded tuffs, due to their generally lower viscosity and higher temperatures. For example, individual cooling units are relatively small (less than 30 m thick, less than 5 km3 in volume); rocks can be thoroughly welded and crystallized to feldspar, quartz, and mafic minerals; several primary deformational structures (e.g. lineations, stretching of pumice, folds, ramp structures) indicate late stage laminar creep, resulting from the low yield strength of the nearly homogeneous glass of very low viscosity. Theoretical considerations also suggest that peralkaline melts are of low viscosity and high temperature, as inferred from,e.g., their chemical composition (high iron- and alkali-, and low alumina-concentrations). The low viscosity may also be due to trapping of volatiles. Absence or paucity of OH-bearing phenocryst phases, paucity of pyroclastic rocks, other than ash flow tuffs, formed from highly explosive eruptions, and apparently high crystallization temperatures, indicate that peralkaline silicic magmas are comparatively dry. The common occurrence of peralkaline ash-flow tuffs may be due to an increased water content of the magmas, resulting also in amphibole phenocrysts in some welded tuffs, or to specific volcanotectonic conditions. Ash flows of peralkaline composition move as particularly dense particulate flows. This type of flowage and the very rapid welding of the low viscosity glass lead to a high degree of homogenization of the fine glass shards. This in turn inhibits complete degassing of the collapsing ash flow. Semiclosed systems result where gas overpressures can develop and where volatiles play an important role by fluxing crystallization and transporting dissolved matter. Several types of vesicles can form under these conditions: (a) Spherical vesicles within collapsed ash and pumice particles formed after deposition of the ash flow. (b) Round or irregular vesicles transsecting pyroclastic particles, vesicle sheets, and large cavities, several m in diameter, may form in a largely homogenized ash-flow tuff beneath tightly welded layers. (c) Lensoid cavities formed during granophyric crystallization of large pumice particles. Small ash particles of peralkaline composition may assume spherical shapes due to their low viscosity and in some cases, expansion of bubbles. They form during transport and are preserved under low load pressure in the top part of cooling units. Globule lavas and most froth flows are interpreted as welded ash-flow tuffs, some of their unusual features being due to their peralkaline composition.  相似文献   

3.
 Non-welded, lithic-rich ignimbrites, hereintermed the Roque Nublo ignimbrites, are the most distinctive deposits of the Pliocene Roque Nublo group, which forms the products of second magmatic cycle on Gran Canaria. They are very heterogeneous, with 35–55% volume lithic fragments, 15-30% mildly vesiculated pumice, 5–7% crystals and 20–30% ash matrix. The vitric components (pumice fragments and ash matrix) are largely altered and transformed into zeolites and subordinate smectites. The Roque Nublo ignimbrites originated from hydrovolcanic eruptions that caused rapid and significant erosion of vents thus incorporating a high proportion of lithic clasts into the eruption columns. These columns rapidly became too dense to be sustained as vertical eruption columns and were transformed into tephra fountains which fed high-density pyroclastic flows. The deposits from these flows were mainly confined to palaeovalleys and topographic depressions. In distal areas close to the coast line, where these palaeovalleys widened, most of the pyroclastic flows expanded laterally and formed numerous thin flow units. The combined effect of the magma–water interaction and the high content of lithic fragments is sufficient to explain the characteristic low emplacement temperature of the Roque Nublo ignimbrites. This fact also explains the transition from pyroclastic flows into lahar deposits observed in distal facies of the Roque Nublo ignimbrites. The existence of hydrovolcanic eruptions generating high-density pyroclastic flows, unable to efficiently separate the water vapour from the vitric components during transport, also accounts for the intense zeolitic alteration in these deposits. Received: 5 November 1996 / Accepted: 3 March 1997  相似文献   

4.
The Rio Caliente ignimbrite is a multi-flow unit orcompound ignimbrite formed during a major late Quaternary explosive rhyolitic eruption of La Primavera volcano, Mexico. The eruption sequence of the ignimbrite is complex and it occurs between lower and upper plinian air-fall deposits. It is, therefore, anintraplinian ignimbrite. Air-fall layers, pyroclastic surge, mudflow and fluviatile reworked pumice deposits also occur interbedded between ignimbrite flow units. A chaotic near-vent facies of the ignimbrite includes co-ignimbrite lag breccias segregated from proximal pumice flows. The facies locates a central vent but one which could not have been associated with a well defined edifice. Many of the lithics in the exposed lag breccias and near-vent facies of the ignimbrite appear to be fragments of welded Rio Caliente ignimbrite, and indicate considerable vent widening, or migration, during the eruption. Nearer vent the ignimbrite is thickest and composed of the largest number of flow units. Here it is welded and is a simple cooling unit. Evidence suggests that it was only the larger thicker pumice flows that escaped to the outer parts of the sheet. Detailed analysis of four flow units indicates that the pumice flows were generally poorly expanded, less mobile flows which would be produced by collapse of low eruption columns. The analogy of a compound ignimbrite with a compound lava flow is, therefore, good — a compound lava flow forms instead of a simple one when the volumetric discharge rate (or intensity) is low, and in explosive eruptions this predicts lower eruption column heights. A corollary is that the ignimbrite has a high aspect ratio. The complex eruption sequence shows the reinstatement of plinian activity several times during the eruption after column collapse occurred. This, together with erosional breaks and evidence that solidified fragments of already welded ignimbrite were re-ejected, all suggest the eruption lasted a relatively significant time period. Nearly 90 km3 of tephra were erupted. The associated plinian pumice fall is one of the largest known having a volume of 50 km3 and the ignimbrite, plus a co-ignimbrite ash-fall, have a volume of nearly 40 km3. Published welding models applied to the reejected welded blocks indicate an eruption duration of 15-20d, and a maximum average magma-discharge rate of 1.4 × 104 m3/s for the ignimbrite. This is low intensity when compared with available data from other ignimbrite-forming eruptions, and concurs with all the geological evidence presented. The total eruption duration was perhaps 15-31d, which is consistent with other estimates of the duration of large magnitude explosive silicic eruptions.  相似文献   

5.
Surface-exposure dating (SED) methods typically rely on the measurement of a geochemical parameter that systematically changes with time. A pivotal task in the calibration of many of these techniques is to demonstrate that lava flow surfaces sampled for dating have not experienced erosion. Although criteria for identification of constructional basaltic lava flow surfaces have been published, no such criteria presently exist for the recognition of constructional silicic flows. Here we present several criteria for identifying constructional silicic lava flow features in the field. First, crease structures are fractures with easily identified, curved, striated walls that are commonly observed on recent and active silicic lava flows. Crease structures form during extrusion, and are resistant to mechanical disintegration because they expose dense material from the flow interior. Second, some crease structures break apart during formation, leaving a deposit of striated blocks on the flow surface. Crease structure blocks are striated on only one side, whereas blocks from internal columnar joints exposed through erosion are striated on two or more sides. Only the striated side of the crease structure block is definitively constructional. Finally, many silicic flow surfaces exhibit expanded or breadcrusted textures. These features consist of a dense, fractured rind, 1 –2cm thick, enclosing highly vesicular material. Breadcrust flow textures appear similar to breadcrust bombs produced during volcanic explosions, so it is imperative to demonstrate that they are part of the lava flow surface. These criteria should enable investigators to positively identify constructional silicic lava flow surfaces when calibrating an SED method.  相似文献   

6.
The 3-month long eruption of Asama volcano in 1783 produced andesitic pumice falls, pyroclastic flows, lava flows, and constructed a cone. It is divided into six episodes on the basis of waxing and waning inferred from records made during the eruption. Episodes 1 to 4 were intermittent Vulcanian or Plinian eruptions, which generated several pumice fall deposits. The frequency and intensity of the eruption increased dramatically in episode 5, which started on 2 August, and culminated in a final phase that began on the night of 4 August, lasting for 15 h. This climactic phase is further divided into two subphases. The first subphase is characterized by generation of a pumice fall, whereas the second one is characterized by abundant pyroclastic flows. Stratigraphic relationships suggest that rapid growth of a cone and the generation of lava flows occurred simultaneously with the generation of both pumice falls and pyroclastic flows. The volumes of the ejecta during the first and second subphases are 0.21 km3 (DRE) and 0.27 km3 (DRE), respectively. The proportions of the different eruptive products are lava: cone: pumice fall=84:11:5 in the first subphase and lava: cone: pyroclastic flow=42:2:56 in the second subphase. The lava flows in this eruption consist of three flow units (L1, L2, and L3) and they characteristically possess abundant broken phenocrysts, and show extensive "welding" texture. These features, as well as ghost pyroclastic textures on the surface, indicate that the lava was a fountain-fed clastogenic lava. A high discharge rate for the lava flow (up to 106 kg/s) may also suggest that the lava was initially explosively ejected from the conduit. The petrology of the juvenile materials indicates binary mixing of an andesitic magma and a crystal-rich dacitic magma. The mixing ratio changed with time; the dacitic component is dominant in the pyroclasts of the first subphase of the climactic phase, while the proportion of the andesitic component increases in the pyroclasts of the second subphase. The compositions of the lava flows vary from one flow unit to another; L1 and L3 have almost identical compositions to those of pyroclasts of the first and second subphases, respectively, while L2 has an intermediate composition, suggesting that the pyroclasts of the first and second subphases were the source of the lava flows, and were partly homogenized during flow. The complex features of this eruption can be explained by rapid deposition of coarse pyroclasts near the vent and the subsequent flowage of clastogenic lavas which were accompanied by a high eruption plume generating pumice falls and/or pyroclastic flows.Editorial responsibility: T. Druitt  相似文献   

7.
 Remote monitoring of active lava domes provides insights into the duration of continued lava extrusion and detection of potentially associated explosive activity. On inactive flows, variations in surface texture ranging from dense glass to highly vesicular pumice can be related to emplacement time, volatile content, and internal structure. Pumiceous surface textures also produce changes in thermal emission spectra that are clearly distinguishable using remote sensing. Spectrally, the textures describe a continuum consisting of two pure end members, obsidian and vesicles. The distinct spectral features of obsidian are commonly muted in pumice due to overprinting by the vesicles, which mimic spectrally neutral blackbody emitters. Assuming that this energy combines linearly in direct proportion to the percentage of vesicles, the surface vesicularity can be estimated by modeling the pumice spectrum as a linear combination of the glass and blackbody spectra. Based on this discovery, a linear retrieval model using a least-squares fitting approach was applied to airborne thermal infrared data of the Little Glass Mountain and Crater Glass rhyolite flows at Medicine Lake Volcano (California) as a case study. The model produced a vesicularity image of the flow with values from 0 to ∼70%, which can be grouped into three broad textural classes: dense obsidian, finely vesicular pumice, and coarsely vesicular pumice. Values extracted from the image compare well with those derived from SEM analysis of collected samples as well as with previously reported results. This technique provides the means to accurately map the areal distributions of these textures, resulting in significantly different values from those derived using aerial photographs. If applied to actively deforming domes, this technique will provide volcanologists with an opportunity to monitor dome-wide degassing and eruptive potential in near-real-time. In July 1999 such an effort will be possible for the first time when repetitive, global, multispectral thermal infrared data become available with the launch of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) instrument aboard the Earth Observing System satellite. Received: 25 June 1998 / Accepted: 14 December 1998  相似文献   

8.
Young pumice deposits on Nisyros,Greece   总被引:1,自引:1,他引:1  
The island of Nisyros (Aegean Sea) consists of a silicic volcanic sequence upon a base of mafic-andesitic hyaloclastites, lava flows, and breccias. We distinguish two young silicic eruptive cycles each consisting of an explosive phase followed by effusions, and an older silicic complex with major pyroclastic deposits. The caldera that formed after the last plinian eruption is partially filled with dacitic domes. Each of the two youngest plinian pumice falls has an approximate DRE volume of 2–3 km3 and calculated eruption column heights of about 15–20 km. The youngest pumice unit is a fall-surge-flow-surge sequence. Laterally transitional fall and surge facies, as well as distinct polymodal grainsize distributions in the basal fall layer, indicate coeval deposition from a maintained plume and surges. Planar-bedded pumice units on top of the fall layer were deposited from high-energy, dry-steam propelled surges and grade laterally into cross-bedded, finegrained surge deposits. The change from a fall-to a surge/flow-dominated depositional regime coincided with a trend from low-temperature argillitic lithics to high-temperature, epidote-and diopside-bearing lithic clasts, indicating the break-up of a high-temperature geothermal reservoir after the plinian phase. The transition from a maintained plume to a surge/ash flow depositional regime occurred most likely during break-up of the high-temperature geothermal reservoir during chaotic caldera collapse. The upper surge units were possibly erupted through the newly formed ringfracture.  相似文献   

9.
Distinguishing strongly rheomorphic tuffs from extensive silicic lavas   总被引:2,自引:6,他引:2  
High-temperature silicic volcanic rocks, including strongly rheomorphic tuffs and extensive silicic lavas, have recently been recognized to be abundant in the geologic record. However, their mechanisms of eruption and emplacement are still controversial, and traditional criteria used to distinguish conventional ash-flow tuffs from silicic lavas largely fail to distinguish the high-temperature versions. We suggest the following criteria, ordered in decreasing ease of identification, to distinguish strongly rheomorphic tuffs from extensive silicic lavas: (1) the character of basal deposits; (2) the nature of distal parts of flows; (3) the relationship of units to pre-existing topography; and (4) the type of source. As a result of quenching against the ground, basal deposits best preserve primary features, can be observed in single outcrops, and do not require knowing the full extent of a unit. Lavas commonly develop basal breccias composed of a variety of textural types of the flow in a finer clastic matrix; such deposits are unique to lavas. Because the chilled base of an ashflow tuff generally does not participate in secondary flow, primary pyroclastic features are best preserved there. Massive, flow-banded bases are more consistent with a lava than a pyroclastic origin. Lavas are thick to their margins and have steep, abrupt flow fronts. Ashflow tuffs thin to no more than a few meters at their distal ends, where they generally do not show any secondary flow features. Lavas are stopped by topographic barriers unless the flow is much thicker than the barrier. Ash-flow tuffs moving at even relatively slow velocities can climb over barriers much higher than the resulting deposit. Lavas dominantly erupt from fissures and maintain fairly uniform thicknesses throughout their extents. Tuffs commonly erupt from calderas where they can pond to thicknesses many times those of their outflow deposits. These criteria may also prove effective in distinguishing extensive silicic lavas from a postulated rock type termed lava-like ignimbrite. The latter have characteristics of lavas except for great areal extents, up to many tens of kilometers. These rocks have been interpreted as ash-flow tuffs that formed from low, boiling-over eruption columns, based almost entirely on their great extents and the belief that silicic lavas could not flow such distances. However, we interpret the best known examples of lava-like ignimbrites to be lavas. This interpretation should be tested through additional documentation of their characteristics and research on the boiling-over eruption mechanism and the kinds of deposits it can produce. Flow bands, flow folds, ramps, elongate vesicles, and probably upper breccias occur in both lavas and strongly rheomorphic tuffs and are therefore not diagnostic. Pumice and shards also occur in both tuffs and lavas, although they occur throughout ash-flow tuffs and generally only in marginal breccias of lavas. Dense welding, secondary flow, and intense alteration accompanying crystallization at high temperature commonly obliterate primary textures in both thick, rheomorphic tuffs and thick lavas. High-temperature silicic volcanic rocks are dominantly associated with tholeiitic flood basalts. Extensive silicic lavas could be appropriately termed flood rhyolites.  相似文献   

10.
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ∼850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号