首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laboratory Electrical Conductivity Measurement of Mantle Minerals   总被引:4,自引:1,他引:3  
Electrical conductivity structures of the Earth’s mantle estimated from the magnetotelluric and geomagnetic deep sounding methods generally show increase of conductivity from 10−4–10−2 to 100 S/m with increasing depth to the top of the lower mantle. Although conductivity does not vary significantly in the lower mantle, the possible existence of a highly conductive layer has been proposed at the base of the lower mantle from geophysical modeling. The electrical properties of mantle rocks are controlled by thermodynamic parameters such as pressure, temperature and chemistry of the main constituent minerals. Laboratory electrical conductivity measurements of mantle minerals have been conducted under high pressure and high temperature conditions using solid medium high-pressure apparatus. To distinguish several charge transport mechanisms in mantle minerals, it is necessary to measure the electrical conductivity in a wider temperature range. Although the correspondence of data has not been yet established between each laboratory, an outline tendency of electrical conductivity of the mantle minerals is almost the same. Most of mineral phases forming the Earth’s mantle exhibit semiconductive behavior. Dominant conduction mechanism is small polaron conduction (electron hole hopping between ferrous and ferric iron), if these minerals contain iron. The phase transition olivine to high-pressure phases enhances the conductivity due to structural changes. As a result, electrical conductivity increases in order of olivine, wadsleyite and ringwoodite along the adiabat geotherm. The phase transition to post-spinel at the 660 km discontinuity further can enhance the conductivity. In the lower mantle, the conductivity once might decrease in the middle of the lower mantle due to the iron spin transition and then abruptly increase at the condition of the D″ layer. The impurities in the mantle minerals strongly control the formation, number and mobility of charge carriers. Hydrogen in nominally anhydrous minerals such as olivine and high-pressure polymorphs can enhance the conductivity by the proton conduction. However, proton conduction has lower activation enthalpy compared with small polaron conduction, a contribution of proton conduction becomes smaller at high temperatures, corresponding to the mantle condition. Rather high iron content in mantle minerals largely enhances the conductivity of the mantle. This review focuses on a compilation of fairly new advances in experimental laboratory work together with their explanation.  相似文献   

2.
Recent studies of electrical properties have clarified the important parameters governing electrical conductivity in minerals — temperature, oxygen fugacity, stoichiometry, iron content — and in porous rocks — shape and interconnections of fluid-filled pore spaces. These parameters are discussed in terms of: (1) how they contribute to bulk conduction mechanisms within minerals; and (2) how they pertain to the conditions of rocks in situ.  相似文献   

3.
Frequency dependent electrical properties of minerals and partial-melts   总被引:4,自引:0,他引:4  
The resistance to current flow of minerals and partial-melts is a frequency dependent electrical property. Measurements of the frequency dependent electrical impedance of single crystal olivine, polycrystalline olivine, dunites, metapelites, and partial-melts, between 10–4 and 105 Hz, when plotted in the complex impedance plane, reveal arcs that correspond to different conduction mechanisms in the material being studied. In polycrystalline materials, two impedance arcs related to material properties (as opposed to electrode properties or electrode-sample interactions) are observed. Each impedance arc is activated over a distinct range of frequency, that is, the mechanisms occur in series. Based on experiments comparing single and polycrystalline impedance spectra, experiments on samples with different electrode configurations, and on samples of varying dimension, the mechanisms responsible for these impedance arcs are interpreted as grain interior conduction ( gi ), grain boundary conduction (in polycrystalline materials; gb ), and sample-electrode interface effects, from highest to lowest frequency, respectively. Impedance spectra of natural dunitic rocks reveal analogous behavior, that is, gb and gi add in series. The grain boundaries do not enhance the conductivity of any of the materials studied (a direct result of the observed series electrical behavior) and, under certain conditions, limit the total conductivity of the grain interior-grain boundary system. By examining the frequency dependence of the electrical properties of partial-melts, it is possible to gain information about microstructure and the distribution of the melt phase and to determine the conditions under which the presence of melt enhances the total conductivity. Impedance spectra of olivine-basalt partial-melts indicate that at least two conduction mechanisms occur in series over the frequency range 10–4-105 Hz, similar to the observed electrical response of melt-absent polycrystalline materials. In a sample containing isolated melt pockets the intermediate frequency grain boundary impedance arc is modified by the presence of melt indicating series conduction behavior. In a sample with an interconnected melt phase the high frequency grain interior impedance arc is modified by the melt phase, indicating the initiation of parallel conduction behavior. Because field EM response versus frequency curves are used to derive conductivity versus depth profiles, it is important to perform laboratory experiments to understand the frequency-dependent electrical behavior of Earth materials. Activation energies determined from studies that measure conductivity at a single frequency may be erroneous because of the shift of the dominant conduction mechanism with frequency as temperature is varied.  相似文献   

4.
Results of electrical conductivity measurments on synthetic olivines of the system Mg2SiO4Fe2SiO4 and on minerals of Dreiser Weiher peridotite nodule Ib-8 (Eifel, Germany) are discussed in relation to the measuring procedure and to the variation of thermodynamic parameters.The measurements were performed in solid state high-pressure vessels between 340 and 1100°C and at a pressure of 10 kbar. It is shown that for ternary olivines and for pyroxenes, the control of two further variables, like the chemical activities of the components, is needed besides temperature and pressure control. The experimental set-up for the control of chemical activities and oxygen partial pressure is shown. From the slopes of the lines of log σ against 1/T the activation energies were calculated. Though in most cases the same oxygen fugacity ?O2 is applied, the results reveal different values for synthetic and natural samples since the chemical activities of SiO2 are different.  相似文献   

5.
Summary In investigating the electric conductivity of rocks as a function of the temperature it was found that rocks containing ferrimagnetic minerals display a change in the slope of the functionlg =f(1/T) in the neighbourhood of the Curie temperature . In order to explain these changes the curveslg =f(1/T) and the Curie temperatures , obtained from the temperature dependence of the saturated magnetization Js=f(T), were compared. Eight samples of basalts, 2 samples of haematite and magnetite were used to demonstrate the relation between and the changes in the pattern of the electric conductivity, caused by the variations of the exchangeable energy of ferrimagnetic minerals.  相似文献   

6.
The combination of magnetotelluric survey and laboratory measurements of electrical conductivity is a powerful approach for exploring the conditions of Earth’s deep interior. Electrical conductivity of hydrous silicate melts and aqueous fluids is sensitive to composition, temperature, and pressure, making it useful for understanding partial melting and fluid activity at great depths. This study presents a review on the experimental studies of electrical conductivity of silicate melts and aqueous fluids, and introduces some important applications of experimental results. For silicate melts, electrical conductivity increases with increasing temperature but decreases with pressure. With a similar Na+ concentration, along the calc-alkaline series electrical conductivity generally increases from basaltic to rhyolitic melt, accompanied by a decreasing activation enthalpy. Electrical conductivity of silicate melts is strongly enhanced with the incorporation of water due to promoted cation mobility. For aqueous fluids, research is focused on dilute electrolyte solutions. Electrical conductivity typically first increases and then decreases with increasing temperature, and increases with pressure before approaching a plateau value. The dissociation constant of electrolyte can be derived from conductivity data. To develop generally applicable quantitative models of electrical conductivity of melt/fluid addressing the dependences on temperature, pressure, and composition, it requires more electrical conductivity measurements of representative systems to be implemented in an extensive P-T range using up-to-date methods.  相似文献   

7.
Granulite facies metamorphism of the igneous complex of South Harris has produced garnet-clinopyroxene-plagioclase assemblages from olivine-normative rocks and 2 pyroxene-plagioclase-quartz assemblages from quartz-normative rocks. The appearance of garnet can be considered in terms of two complex reactions:Olivine + plagioclase1 → (Ca, Mg, Fe) garnet + plagioclase2(olivine-normative) (A)Orthopyroxene + plagioclase1 → (Ca, Mg, Fe) garnet + plagioclase2 + quartz (quartz-normative) (B)For bulk compositions of the South Harris rocks the equilibrium pressure for reaction (A) has been exceeded whereas that for reaction (B) was not reached. Estimated physical conditions of metamorphism bracketed by these and other reactions are: 800–860°C and 10–13 kbar. These estimates, based on experimental data on simple systems combined with thermodynamic models of the solid solutions involved are in good agreement with extrapolated pressures for the experimentally determined appearance of garnet in basaltic compositions (Green and Ringwood, 1967). The latter give 9–12 kbar in the temperature range of interest. The calculations are also consistent with the occurrence of kyanite in associated metapelites and with the stability of spinel-lherzolite during the granulite metamorphism.  相似文献   

8.
The electrical properties of magmatic rocks (diabase and granite porphyry) from the complex dike located in the Main Caucasian (Akhtychaisk) fault zone are examined at temperatures of 100?C1000°C. It is established that the increase in the electrical conductivity from granite porphyry to diabase is caused by the decreased quartz content, increased total content of iron oxides FeO and Fe2O3, as well as the fine-grained texture of diabases and their secondary alterations. The pattern of temperature dependence of specific electrical conductivity observed in granite porphyry and diabases reflects the polymorphic transformation of the monoclinic structure to the triclinic structure (the MT-transformation), which occurs in the feldspar component of the rock. Another factor responsible for the shape of the mentioned temperature dependence is that the formation of an extrinsic mechanism of conduction is dominated by the defects (associated into complexes) in the crystal lattices of the minerals. This allows determining the energy of formation and migration of lattice defects and the energy of association of the lattice defects into complexes, which play an important role in the natural metamorphic processes. The AC measurements for the granite porphyry revealed frequency dispersion of the electrical conductivity, which decreases with increasing temperature.  相似文献   

9.
Abstract

The Hilhorst model was used to convert bulk electrical conductivity (σb) to pore water electrical conductivity (σp) under laboratory conditions by using the linear relationship between the soil dielectric constant (εb) and σb. In the present study, applying the linear relationship εbσb to data obtained from field capacitance sensors resulted in strong positive autocorrelations between the residuals of that regression. We were able to derive an accurate offset of the relationship εb–σb and to estimate the evolution of σp over time by including a stochastic component to the linear model, rearranging it to a time-varying dynamic linear model (DLM), and using Kalman filtering and smoothing. The offset proved to vary for each depth in the same soil profile. A reason for this might be the changes in soil temperature along the soil profile.
Editor D. Koutsoyiannis; Associate editor M.D. Fidelibus  相似文献   

10.
The electrical properties of rocks and minerals are controlled by thermodynamic parameters like pressure and temperature and by the chemistry of the medium in which the charge carriers move. Four different charge transport processes can be distinguished. Electrolytic conduction in fluid saturated porous rocks depends on petrophysical properties, such as porosity, permeability and connectivity of the pore system, and on chemical parameters of the pore fluid like ion species, its concentration in the pore fluid and temperature. Additionally, electrochemical interactions between water dipoles or ions and the negatively charged mineral surface must be considered. In special geological settings electronic conduction can increase rock conductivities by several orders of magnitude if the highly conducting phases (graphite or ores) form an interconnected network. Electronic and electrolytic conduction depend moderately on pressure and temperature changes, while semiconduction in mineral phases forming the Earth’s mantle strongly depends on temperature and responds less significantly to pressure changes. Olivine exhibits thermally induced semiconduction under upper mantle conditions; if pressure and temperature exceed ~ 14 GPa and 1400 °C, the phase transition olivine into spinel will further enhance the conductivity due to structural changes from orthorhombic into cubic symmetry. The thermodynamic parameters (temperature, pressure) and oxygen fugacity control the formation, number and mobility of charge carriers. The conductivity temperature relation follows an Arrhenius behaviour, while oxygen fugacity controls the oxidation state of iron and thus the number of electrons acting as additional charge carriers. In volcanic areas rock conductivities may be enhanced by the formation of partial melts under the restriction that the molten phase is interconnected. These four charge transport mechanisms must be considered for the interpretation of geophysical field and borehole data. Laboratory data provide a reproducible and reliable database of electrical properties of homogenous mineral phases and heterogenous rock samples. The outcome of geoelectric models can thus be enhanced significantly. This review focuses on a compilation of fairly new advances in experimental laboratory work together with their explanation.  相似文献   

11.
Specific electrical conductivity (SEC), total dissolved solids (TDS), and silica (SiO2) are ground-water quality parameters routinely measured in a laboratory. Electrical conductivity measurements are made quickly and are less costly than TDS measurements. Once the relationship between the parameters is determined by regression analysis, TDS can be estimated quickly from the SEC and SiO2 measurements. Water quality data from 25 city wells in Fresno, California, and historical ground-water quality data from the adjacent San Joaquin River/Kings River alluvial interfan (central San Joaquin Valley, California), the Kaweah River alluvial fan, and the Kern River alluvial fan (southern San Joaquin Valley) were used in this investigation. For the specific hydrologic areas studied, the model's TDS predictive ability is improved when SiO2 is included with SEC as the independent variables.  相似文献   

12.
Freshly cored samples from a microprofile (7011–7013m in depth) of the German Continental Deep Drilling Project (KTB) were taken to measure the complex electrical conductivity (1 kHz up to 1 MHz), porosity, BET-surface, permeability and density. The porosity ranged about 1 vol%, while the permeability k varied from 16.05 µD to > 0.01 µD for in-situ pressure conditions. The permeability decreased about 2 orders in magnitude up to pressures of 200 MPa. Conductivity was measured in the same pressure range on 1 M NaCl saturated samples. Thin sections and SEM analysis revealed an enrichment of carbon and ilmenite (about 1 vol%) on inner cleavage cracks of mica, thus causing an unusual high (ranging from 4.2 × 10-3 S/m to 67 × 10-3 S/m) being orders of magnitude higher than normally measured on such types of rocks (about 300 × 10-6 S/m). An inverse pressure dependence of was detected on some of the samples. Electronic conduction was confirmed by least-squares-fits of model data to the frequency dispersion of the conductivity and by measuring the time dependence of the volume conductivity and its frequency dispersion. Thus the dominating role of the reconnected network of carbon and ilmenite on the enhanced volume conductivity was proved. An increase of the conductivity due to hydrofracturing by high pore fluid pressures plays a less important role.  相似文献   

13.
含碳结构对龙门山断层带电导率影响的实验探索   总被引:1,自引:1,他引:0       下载免费PDF全文
碳是影响岩石电导率大小的一个重要因素,可能是造成龙门山断层带电导率异常的重要原因之一.为了研究不同的碳含量、矿物颗粒粒径与碳晶体结构对断层带电导率的影响,在干燥、常温、0.2~300 MPa的压力条件下实验研究了人工模拟断层泥样品(石英粉末与含碳粉末混合的样品,简称模拟样品)和采自映秀-北川断层八角庙剖面的天然断层岩样品(简称天然样品)的电导率.实验结果显示,当模拟样品中的含碳粉末连通时,电导率与碳体积率的关系符合逾渗理论模型;而含碳粉末未连通时,电导率随总孔隙度降低而指数性升高.同时模拟样品的电导率也随石英颗粒粒径的变化而发生改变.相比于模拟样品中的含碳粉末主要分布于石英颗粒支撑的孔隙中,天然样品中的碳则主要以碳膜的形式赋存在颗粒边缘,导致碳体积率相同的条件下,模拟样品的电导率小于天然样品.此外,天然样品的电导率(9×10~(-4)S·m~(-1))也要小于野外大地电磁探测的结果(0.03~0.1 S·m~(-1)).在今后的实验中还需要考虑在动态摩擦条件下对含有完整含碳结构的天然样品进行电导率的实验研究.  相似文献   

14.
Understanding petrographical, geochemical and electrical properties of rocks is essential for investigating minerals. This paper presents a study of the petrographical, geochemical and A.C. electrical properties of carbonate rock samples. The samples collected show six lithostratigraphic rock units. Electrical properties were measured using a non‐polarizing electrode at room temperature (~20°C) and a relative atmospheric humidity of ~50% by weight in the frequency range from 42 Hz to 5 MHz. The difference in electrical properties between the samples was attributed to the change in composition and texture between the samples. Electrical properties generally change with many factors (grain size, chemical composition, grain shape and facies). The dielectric constant decreases with frequency and increases with conductor composition. The conductivity increases with the increase of conductor paths between electrodes. Many parameters can contribute to the same result of the electrical properties. The main objective of the present study is to shed more light on the relation between the texture and geochemical composition of measured samples (carbonates that contain clays and quartz grains) through electrical laboratory measurements (conductivity and dielectric constant as a function of frequency).  相似文献   

15.
In order to better understand the nature of deep crustal high electrical conductivity, we studied the electrical properties of a tilted section of a former lower continental crust exposed in the Calabrian arc of the Alpine-Apennine mountain system. Geoelectric field measurements and impedance measurements on rock samples showed that these high-grade metamorphic rocks are generally highly resistive as expected for crystalline, electrolytically conducting rocks of low porosity. This holds for graphite-free metabasites as well as for metapelites which generally contain accessory, up to 3% biogenic graphite in the form of isolated grains. Clearly as an exception, a group of thin stratiform black horizons with thicknesses of 1-15 cm within the metapelitic series was detected by means of self-potential (SP) measurements. Rock samples from these horizons exhibit high, quasi-metallic bulk conductivities of up to 50 S/m (0.02 Ωm) in agreeement with up to 20% syngenetic graphite, forming a network of interconnected streaks or crack fillings. The high amount of carbon most probably originates from organic matter of Corg-rich black shales. Relative enrichment of the low mobility graphitic matter compared to the carbon content of the assumed protoliths may have been due to pressure solution and partial melting during prograde metamorphism, without major contribution of a fluid phase, resulting in isolated graphite flakes. Although enriched, graphite in this form has little effect on electrical conductivity. For the Calabrian black horizons, microscopic analyses make conceivable that, in a further decisive step, isolated graphite grains were mechanically smeared to continuous pathways during uplift by shearing, producing hereby the observed graphitic network which is needed to generate high conductivity. As Corg-rich black shales are common members of sedimentary sequences throughout the earth’s history, good conductors of this type may be expected in the continental crust at any depth depending on tectonic and metamorphic history, with the exception of magmatic protoliths. Regarding the extremely high conductivity of the meta-black shale samples containing syngenetic sheared graphite, a total thickness of a few meters of such rocks is sufficient to explain magnetotelluric high conductivity anomalies in the deep crust.  相似文献   

16.
In this paper all important results on laboratory measurements of electrical properties of rocks and minerals for the last four years are presented. Although basic results from all over world are reviewed, East European and U.S.S.R. works are described more extensively. Only D.C. conductivity results are considered, however all principal conclusions hold in similar form for both D.C. and A.C. conductivities. At the end the most important areas of further study and measurement are depicted and the main problems of the future are outlined.  相似文献   

17.
Electromagnetic measurements have demonstrated that the lower continental crust has remarkable electrical anomalies of high conductivity and electrical anisotropy on a global scale (probably with some local exceptions), but their origin is a long-standing and controversial problem. Typical electrical properties of the lower continental crust include: (1) the electrical conductivity is usually 10−4 to 10−1 S/m; (2) the overlying shallow crust and underlying upper mantle are in most cases less conductive; (3) the electrical conductivity is statistically much higher in Phanerozoic than in Precambrian areas; (4) horizontal anisotropy has been resolved in many areas; and (5) in some regions there appear to be correlations between high electrical conductivity and other physical properties such as seismic reflections. The explanation based on conduction by interconnected, highly conductive phases such as fluids, melts, or graphite films in grain boundary zones has various problems in accounting for geophysically resolved electrical conductivity and other chemical and physical properties of the lower crust. The lower continental crust is dominated by mafic granulites (in particular beneath stable regions), with nominally anhydrous clinopyroxene, orthopyroxene, and plagioclase as the main assemblages, and the prevailing temperatures are mostly 700–1,000°C as estimated from xenolith data, surface heat flow, and seismic imaging. Pyroxenes have significantly higher Fe content in the lower crust than in the upper mantle (peridotites), and plagioclase has higher Na content in the lower crust than in the shallow crust (granites). Minerals in the lower continental crust generally contain trace amounts of water as H-related point defects, from less than 100 to more than 1,000 ppm H2O (by weight), with concentrations usually higher than those in the upper mantle. Observations of xenolith granulites captured by volcano-related eruptions indicate that the lower continental crust is characterized by alternating pyroxene-rich and plagioclase-rich layers. Experimental studies on typical lower crustal minerals have shown that their electrical conductivity can be significantly enhanced by the higher contents of Fe (for pyroxenes), Na (for plagioclase), and water (for all minerals) at thermodynamic conditions corresponding to the lower continental crust, e.g., to levels comparable to those measured by geophysical field surveys. Preferred orientation of hydrous plagioclase, e.g., due to ductile flow in the deep crust, and alternating mineral fabrics of pyroxene-rich and plagioclase-rich layers can lead to substantial anisotropy of electrical conductivity. Electrical conductivity properties in many regions of the lower continental crust, especially beneath stable areas, can mostly be accounted for by solid-state conduction due to the major constituents; other special, additional conduction mechanisms due to grain boundary phases are not strictly necessary.  相似文献   

18.
The pressure dependence of P- and S-wave velocities, velocity anisotropy, shear wave splitting and crack-porosity has been investigated in a number of samples from different crustal rock types for dry and wet (water saturated) conditions. At atmospheric pressure, P-wave velocities of the saturated, low-porosity rocks (< 1%) are significantly higher than in dry rocks, whereas the differences for S-wave velocities are less pronounced. The effect of intercrystalline fluids on seismic properties at increased pressure conditions is particularly reflected by the variation of the Poisson's ratio because P-wave velocities are more sensitive to fluids than S-wave velocities in the low-porosity rocks. Based on the experimental data, the respective crack-density parameter (), which is a measure of the number of flat cracks per volume unit contained within the background medium (crack-free matrix), has been calculated for dry and saturated conditions. There is a good correlation between the calculated crack-densities and crack-porosities derived from the experimentally determined volumetric strain curves. The shear wave velocity data, along with the shear wave polarisation referred to a orthogonal reference system, have been used to derive the spatial orientation of effective oriented cracks within a foliated biotite gneiss. The experimental data are in reasonable agreement with the self consistent model of O'Connell and Budiansky (1974). Taking the various lithologies into account, it is clear from the present study, that combined seismic measurements ofV p andV s , using theV p V s -ratio, may give evidence for fluids on grain boundaries and, in addition, may provide an estimate on the in-situ crack-densities.  相似文献   

19.
The frequency dependence of complex electrical conductivity in the IP frequency range (10–3 to 103 Hertz) has been investigated for a variety of microcracked rocks from the German continental deep drilling project (KTB), Northern Bavaria. The laboratory measurements were made with a computer controlled four-electrode system on plugs saturated with brine of different salinity. It has been found that the complex nature of the conductivity is caused solely by the capacitive behaviour of the interlayer region between the solid matrix and the electrolytic pore solution. The resulting main feature of the conductivity spectra is a constant phase angle over the investigated frequency range combined with a nearly identical power law frequency dependence of the real as well as the imaginary parts. The low-frequency exponent is in the order of about 0 to 0.05. It is related to common IP-parameters. The relationships between the frequency exponent and microcrack properties are of special interest. The results of the study show that the frequency exponent is (1) proportional to the surface area to porosity ratio, (2) inversely proportional to water salinity, and (3) dependent on water composition. Complex conductivity measurements allow an uncomplicated separation of electrical volume and interface effects. Moreover, the results suggest that determination of specific surface area of microcracked rocks directly from complex electrical measurements can be made.  相似文献   

20.
Turbidity measurements by foreward scattering nephelometer have been regularly conducted on the north basin of Lake Lugano (Switzerland/Italy) since September 1992. In order to determine mass concentrations from these data, both, in-situ and laboratory calibration experiments have been performed in November and December 1992 on suspended matter of the hypolimnion. Results show:
  1. Mass concentration/turbidity ratios are different in the two turbidity zones examined due to variation in the optical signature of the suspended matter.
  2. Laboratory calibrations using suspended matter originating from the water depths of interest give representative results provided that physical and chemical alterations occuring during the particle transfer process remain negligible.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号