首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid expansion in unconventional gas development over the past two decades has led to concerns over the potential impacts on groundwater resources. Although numerical models are invaluable for assessing likelihood of impacts at particular sites, simpler analytical models are also useful because they help develop hydrological understanding. Analytical approaches are also valuable for preliminary assessments and to determine where more complex models are warranted. In this article, we present simple analytical solutions that can be used to predict: (1) the spatial extent of drawdown from horizontal wells drilled into the gas‐bearing formation, and rate of recovery after gas production ceases; (2) the potential for upward transport of contaminants from the gas‐bearing formation to shallow aquifers during hydraulic fracturing operations when pressures in the gas‐bearing formation are greatly increased; and (3) the potential downward leakage of water from shallow aquifers during depressurization of gas‐bearing formations. In particular, we show that the recovery of pressure after production ceases from gas‐bearing shale formations may take several hundred years, and we present critical hydraulic conductivity values for intervening aquitards, below which the impact on shallow aquifers will be negligible. The simplifying assumptions inherent in these solutions will limit their predictive accuracy for site‐specific assessments, compared to numerical models that incorporate knowledge of spatial variations in formation properties and which may include processes not considered in the simpler solutions.  相似文献   

2.
The vertical portion of a shale gas well, known as the “tophole” is often drilled using an air‐hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3‐D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high‐pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre‐existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane.  相似文献   

3.
Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas‐phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high‐pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High‐pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high‐pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (~10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast‐developing gas contamination (0‐3 months) or large length scales (~1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small‐volume, low‐pressure leakage events.  相似文献   

4.
The impacts of unconventional oil and gas production via high-volume hydraulic fracturing (HVHF) on water resources, such as water use, groundwater and surface water contamination, and disposal of produced waters, have received a great deal of attention over the past decade. Conventional oil and gas production (e.g., enhanced oil recovery [EOR]), which has been occurring for more than a century in some areas of North America, shares the same environmental concerns, but has received comparatively little attention. Here, we compare the amount of produced water versus saltwater disposal (SWD) and injection for EOR in several prolific hydrocarbon producing regions in the United States and Canada. The total volume of saline and fresh to brackish water injected into depleted oil fields and nonproductive formations is greater than the total volume of produced waters in most regions. The addition of fresh to brackish “makeup” water for EOR may account for the net gain of subsurface water. The total amount of water injected and produced for conventional oil and gas production is greater than that associated with HVHF and unconventional oil and gas production by well over a factor of 10. Reservoir pressure increases from EOR and SWD wells are low compared to injection of fluids for HVHF, however, the longer duration of injections could allow for greater solute transport distances and potential for contamination. Attention should be refocused from the subsurface environmental impacts of HVHF to the oil and gas industry as a whole.  相似文献   

5.
Unconventional natural gas extraction from tight sandstones, shales, and some coal‐beds is typically accomplished by horizontal drilling and hydraulic fracturing that is necessary for economic development of these new hydrocarbon resources. Concerns have been raised regarding the potential for contamination of shallow groundwater by stray gases, formation waters, and fracturing chemicals associated with unconventional gas exploration. A lack of sound scientific hydrogeological field observations and a scarcity of published peer‐reviewed articles on the effects of both conventional and unconventional oil and gas activities on shallow groundwater make it difficult to address these issues. Here, we discuss several case studies related to both conventional and unconventional oil and gas activities illustrating how under some circumstances stray or fugitive gas from deep gas‐rich formations has migrated from the subsurface into shallow aquifers and how it has affected groundwater quality. Examples include impacts of uncemented well annuli in areas of historic drilling operations, effects related to poor cement bonding in both new and old hydrocarbon wells, and ineffective cementing practices. We also summarize studies describing how structural features influence the role of natural and induced fractures as contaminant fluid migration pathways. On the basis of these studies, we identify two areas where field‐focused research is urgently needed to fill current science gaps related to unconventional gas extraction: (1) baseline geochemical mapping (with time series sampling from a sufficient network of groundwater monitoring wells) and (2) field testing of potential mechanisms and pathways by which hydrocarbon gases, reservoir fluids, and fracturing chemicals might potentially invade and contaminate useable groundwater.  相似文献   

6.
The potential environmental impacts on subsurface water resources induced by unconventional gas production are still under debate. Solving the controversy regarding the potential adverse effects of gas leakages on groundwater resources is therefore crucial. In this work, an interesting real-world case is presented in order to give further insight into methane multiphase and transport behavior in the shallow subsurface, often disregarded compared to the behavior in the deep subsurface. Multiphase flow and solute transport simulations were performed to assess the vulnerability of an existing shallow unconfined aquifer with respect to a hypothetical methane leakage resulting from a well integrity failure of a former deep geothermal well. The analysis showed that migration of gaseous methane through the aquifer under examination can be extremely fast (of the order of a few minutes), occurring predominantly vertically upwards, close to the well. By contrast, dissolved methane migration is largely affected by the groundwater flow field and occurs over larger time scales (of the order of months/years), covering a greater distance from the well. Overall, the real concern for this site in case of gas leakages is the risk of explosion in the close vicinity of the well. Predicted maximum gaseous fluxes (0.89 to 22.60 m3/d) are comparable to those reported for leaking wells, and maximum dissolved methane concentrations may overcome risk mitigation thresholds (7 to 10 mg/L) in a few years. Therefore, surface and subsurface monitoring before decommissioning is strongly advised to ensure the safety of the site.  相似文献   

7.
Environmental concerns regarding the potential for drinking water contamination in shallow aquifers have accompanied unconventional energy development in the northern Appalachian Basin. These activities have also raised several critical questions about the hydrogeological parameters that control the naturally occurring presence and migration of hydrocarbon gases in shallow aquifers within petroliferous basins. To interrogate these factors, we analyzed the noble gas, dissolved ion, and hydrocarbon gas (molecular and isotopic composition) geochemistry of 98 groundwater samples from south‐central New York. All samples were collected ?1km from unconventional drilling activities and sample locations were intentionally targeted based on their proximity to various types of documented fault systems. In agreement with studies from other petroliferous basins, our results show significant correlations between elevated levels of radiogenic [4He], thermogenic [CH4], and dissolved ions (e.g., Cl, Br, Sr, Ba). In combination, our data suggest that faults have facilitated the transport of exogenous hydrocarbon‐rich brines from Devonian source rocks into overlying Upper Devonian aquifer lithologies over geologic time. These data conflict with previous reports, which conclude that hydrodynamic focusing regulates the occurrence of methane and salt in shallow aquifers and leads to elevated levels of these species in restricted flow zones within valley bottoms. Instead, our data suggest that faults in Paleozoic rocks play a fundamental role in gas and brine transport from depth, regulate the distribution of their occurrence in shallow aquifers, and influence the geochemistry of shallow groundwater in this petroliferous basin.  相似文献   

8.
Enhanced production of unconventional hydrocarbons in the United States has driven interest in natural gas development globally, but simultaneously raised concerns regarding water quantity and quality impacts associated with hydrocarbon extraction. We conducted a pre‐development assessment of groundwater geochemistry in the critically water‐restricted Karoo Basin, South Africa. Twenty‐two springs and groundwater samples were analyzed for major dissolved ions, trace elements, water stable isotopes, strontium and boron isotopes, hydrocarbons and helium composition. The data revealed three end‐members: a deep, saline groundwater with a sodium‐chloride composition, an old, deep freshwater with a sodium‐bicarbonate‐chloride composition and a shallow, calcium‐bicarbonate freshwater. In a few cases, we identified direct mixing of the deep saline water and shallow groundwater. Stable water isotopes indicate that the shallow groundwater was controlled by evaporation in arid conditions, while the saline waters were diluted by apparently fossil meteoric water originated under wetter climatic conditions. These geochemical and isotopic data, in combination with elevated helium levels, suggest that exogenous fluids are the source of the saline groundwater and originated from remnant seawater prior to dilution by old meteoric water combined with further modification by water‐rock interactions. Samples with elevated methane concentrations (>14 ccSTP/kg) were strongly associated with the sodium‐chloride water located near dolerite intrusions, which likely provide a preferential pathway for vertical migration of deeply sourced hydrocarbon‐rich saline waters to the surface. This pre‐drill evaluation indicates that the natural migration of methane‐ and salt‐rich waters provides a source of geogenic contamination to shallow aquifers prior to shale gas development in the Karoo Basin.  相似文献   

9.
Arsenic in groundwater is a serious problem in New England, particularly for domestic well owners drawing water from bedrock aquifers. The overlying glacial aquifer generally has waters with low arsenic concentrations but is less used because of frequent loss of well water during dry periods and the vulnerability to surface‐sourced bacterial contamination. An alternative, novel design for shallow wells in glacial aquifers is intended to draw water primarily from unconsolidated glacial deposits, while being resistant to drought conditions and surface contamination. Its use could greatly reduce exposure to arsenic through drinking water for domestic use. Hypothetical numerical models were used to investigate the potential hydraulic performance of the new well design in reducing arsenic exposure. The aquifer system was divided into two parts, an upper section representing the glacial sediments and a lower section representing the bedrock. The location of the well, recharge conditions, and hydraulic properties were systematically varied in a series of simulations and the potential for arsenic contamination was quantified by analyzing groundwater flow paths to the well. The greatest risk of arsenic contamination occurred when the hydraulic conductivity of the bedrock aquifer was high, or where there was upward flow from the bedrock aquifer because of the position of the well in the flow system.  相似文献   

10.
《水文科学杂志》2012,57(2):169-182
ABSTRACT

A combination of geospatial, geophysical and statistical models using satellite data, the weighted index overlay (WIO) method and two-dimensional electrical resistivity tomography (2D-ERT) is applied to generate the highest potential groundwater area and to further explore the groundwater in Dehradun, India. The results show that of 19.7 km2 total basin area, 0.26% falls under the “poor” category as a prospect zone for groundwater, 4.3% is “moderate”, 10.10% “moderately good”, 4.9% “good” and 0.17% “very good”. In addition, the demonstration of the geophysical survey is presented, in which Purkal Youth Society Division (PYSD) site is categorized as a shallow aquifer zone and the Guru Nanak Fifth Centenary School (GNFCS) site is a deeper aquifer zone. Our study emphasizes remote sensing and geographic information system integrated with a geophysical survey to support prospecting the most probable area and confirm the existence of groundwater.  相似文献   

11.
Dramatic decreases in groundwater quality have raised widespread concerns about water supplies and ecological crises in China. In this study, hydrochemistry, stable isotopes, and graphical and multivariate statistical methods are integrated to identify hydrogeochemical processes controlling groundwater quality in the Yuncheng Basin, China. Our results show that groundwater with 21 variables (pH, temperature-T, total dissolved solid, major-trace elements, and stable isotopes) is chemically classified into three distinct clusters: fresh water [C1], brackish-saline water [C2], and saline water [C3]. Groundwater salinization is identified as the prime process in controlling groundwater quality for shallow groundwater and deep groundwater in the lowland areas. Large-scale As, F, or B contaminations found in groundwater are closely related to groundwater salinization, agricultural activity, and the exploration of geothermal water in the area. With respect to the risk of contamination, groundwater in the basin is spatially divided into the following: shallow groundwater with a high risk located in the north side of the Salt Lake, shallow groundwater with a moderate risk, and deep groundwater with a low to moderate risk. Nationally, the increasing demand on groundwater is threatened by a range of environmental and health pressures, including salinization and contaminations of nitrate, As, F, or B. Our study indicates that natural water-rock interactions and hydrogeological conditions are significant factors controlling these contaminations. Systematic management and regulation of existing groundwater resources are required to prevent further deterioration of groundwater resources. Policies should be made and implemented to ensure “green” exploitation of geothermal water.  相似文献   

12.
Contribution of baseflow nitrate export to non-point source pollution   总被引:2,自引:0,他引:2  
As a common pollutant of nitrogen in groundwater, nitrate contamination has become a major concern worldwide. Baseflow, one of the dominant hydrological pathways for nitrate migration to streamflow, has been confirmed as a leading nitrate source for stream water where groundwater or subsurface flow contaminated heavily by nitrate. That is, sufficient improvements of water quality may not be attained without proper management for baseflow, even if non-point sources (NPS) pollutants discharged through surface runoff are being well managed. This article reviews the primary nitrate sources, the main factors affecting its transport, and the methodologies for baseflow nitrate estimation, to give some recommendations for future works, including: (1) giving sufficient consideration for the effects of climatological, morphological, and geological factors on baseflow recessions to obtain more reliable and accurate baseflow separation; (2) trying to solve calibration and validation problems for baseflow loads determining in storm flow period; (3) developing a simple and convenient algorithm with certain physics that can be used to separate baseflow NPS pollution from the total directly in different regions, for a reliable estimation of baseflow NPS pollution at larger scale (e.g., national scale); (4) improving groundwater quality simulation module of existing NPS pollution models to have a better simulation for biogeochemical processes in shallow aquifers; (5) taking integrated measures of “source control”, “process interception” and “end remediation” to prevent and control NPS nitrate pollution effectively, not just only the strict control of nutrients loss from surface runoff.  相似文献   

13.
Regional nitrate contamination in groundwater is a management challenge involving multisector benefits. There is always conflict between restricting anthropogenic activities to protect groundwater quality and prioritizing economic development, especially in productive agriculture dominated areas. To mitigate the nitrate contamination in groundwater, it is necessary to develop management alternatives that simultaneously support environmental protection and sustainable economic development. A regional transport modeling framework is applied to evaluate nitrate fate and transport in the Dagu Aquifer, a shallow sandy aquifer that supplies drinking water and irrigation water for a thriving agricultural economy in Shandong Province in east coastal China. The aquifer supports intensive high-value vegetable farms and nitrate contamination is extensive. Detailed land-use information and fertilizer use data were compiled and statistical approaches were employed to analyze nitrogen source loadings and the spatiotemporal distribution of nitrate in groundwater to support model construction and calibration. The evaluations reveal that the spatial distribution and temporal trends of nitrate contamination in the Dagu Aquifer are driven by intensive fertilization and vertical water exchange, the dominant flow pattern derived from intensive agricultural pumping and irrigation. The modeling framework is employed to assess the effectiveness of potentially applicable management alternatives. The predictive results provide quantitative comparisons for the trend and extent of groundwater quality mitigation under each scenario. Recommendations are made for measures that can both improve groundwater quality and sustain productive agricultural development.  相似文献   

14.
The quaternary coastal Collo aquifer in northeast Algeria (NE Algeria) marks an important local water resource supporting domestic, industrial and agricultural activities. The aquifer shows signs of contamination due to the existence of various pollution sources, especially nitrogen compounds. Focusing the local identification of key vulnerable zones and related main hazard types for wise future water management, the present study highlights results from a coupled analysis of the well-established Geographical Information System (GIS)-based GOD (groundwater occurrence, overall aquifer class, depth to groundwater) hazard index analysis and the COST Action 620 plan. Most prevalent hazard types in the study area were identified as the urban/residential areas without public sewage systems, landfill and agricultural/pasturing areas. Regarding the vulnerability analysis particularly the northern aquifer region is endangered, dominated by high (22.4%) and moderate (27.4%) vulnerability classes. Central, western and southern aquifer regions are characterized by low (23.3%) and very low (26.9%) vulnerability classes. Overall, these GOD-derived results are in good agreement with earlier results obtained by the more complex DRASTIC approach. Final risk assessment and validation related to 2014/2015 nitrate sampling campaigns indicate that “high risk” and “very high risk” classes only apply to a small part of the study area in the northern sector (8%), whereas the main part (>60%) broadly affecting the central, western and southern sector only bears a low to very low risk of water pollution. Apart from a future-oriented groundwater abstraction strategy it is recommended to update the evaluation regularly to effectively consider dynamic changes of local anthropogenic activities and hazards.  相似文献   

15.
Surface water is a scarce resource in Namibia with about sixty percent of Namibia's population dependent on groundwater for drinking purposes. With increasing population, the country faces water challenges and thus groundwater resources need to be managed properly. One important aspect of Integrated Water Resources Management is the protection of water resources, including protection of groundwater from contamination and over-exploitation. This study explores vulnerability mapping as a basic tool for protecting groundwater resources from pollution. It estimates groundwater vulnerability to pollution in the upper Niipele sub-basin of the Cuvelai-Etosha in Northern Namibia using the DRASTIC index. The DRASTIC index uses GIS to estimate groundwater vulnerability by overlaying different spatially referenced hydrogeological parameters that affect groundwater contamination. The study assesses the discontinuous perched aquifer (KDP) and the Ohangwena multi-layered aquifer 1 (KOH-1). For perched aquifers, point data was regionalized by a hydrotope approach whereas for KOH-1 aquifer, inverse distance weighting was used. The hydrotope approach categorized different parts of the hydrogeological system with similar properties into five hydrotopes. The result suggests that the discontinuous perched aquifers are more vulnerable than Ohangwena multi-layered aquifer 1. This implies that vulnerability increases with decreasing depth to water table because contaminants have short travel time to reach the aquifer when they are introduced on land surface. The nitrate concentration ranges between 2 and 288 mg/l in perched aquifers while in Ohangwena multi-layered aquifer 1, it ranges between 1 and 133 mg/l. It was observed that perched aquifers have high nitrate concentrations than Ohangwena 1 aquifer, which correlates well with the vulnerability results.  相似文献   

16.
The potential discharge of groundwater contaminated by oil sands process‐affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For “pond‐site” samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, “non‐pond” samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond‐site and non‐pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na‐Cl ratio, were noted between a small subset of samples from two pond‐site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator‐based screening suggests that OSPW‐affected groundwater may be reaching Athabasca River sediments at a few locations.  相似文献   

17.
Managing nonpoint-source (NPS) pollution of groundwater systems is a significant challenge because of the heterogeneous nature of the subsurface, high costs of data collection, and the multitude of scales involved. In this study, we assessed a particularly complex NPS groundwater pollution problem in Michigan, namely, the salinization of shallow aquifer systems due to natural upwelling of deep brines. We applied a system-based approach to characterize, across multiple scales, the integrated groundwater quantity–quality dynamics associated with the brine upwelling process, assimilating a variety of modeling tools and data—including statewide water well datasets scarcely used for larger scientific analysis. Specifically, we combined (1) data-driven modeling of massive amounts of groundwater/geologic information across multiple spatial scales with (2) detailed analysis of groundwater salinity dynamics and process-based flow modeling at local scales. Statewide “hotspots” were delineated and county-level severity rankings were developed based on dissolved chloride (Cl) concentration percentiles. Within local hotspots, the relative impact of upwelling was determined to be controlled by: (1) streams—which act as “natural pumps” that bring deeper (more mineralized) groundwater to the surface; (2) the occurrence of nearly impervious geologic material at the surface—which restricts fresh water dilution of deeper, saline groundwater; and (3) the space–time evolution of water well withdrawals—which induces slow migration of saline groundwater from its natural course. This multiscale, data-intensive approach significantly improved our understanding of the brine upwelling processes in Michigan, and has applicability elsewhere given the growing availability of statewide water well databases.  相似文献   

18.
Las Tablas de Daimiel National Park is one of Spain's most representative groundwater‐dependent ecosystems. Under natural conditions, water inflows combined brackish surface water from River Gigüela with freshwater inputs from River Guadiana and the underlying aquifer. Since the mid‐1970s, aquifer overexploitation caused the desiccation of the wetlands and neighbouring springs. The National Park remained in precarious hydrological conditions for three decades, with the only exception of rapid floods due to extreme rainfall events and sporadic water transfers from other basins. In the late 2000s, a decrease in groundwater abstraction and an extraordinarily wet period reversed the trend. The aquifer experienced an unexpected recovery of groundwater levels (over 20 m in some areas), thus restoring groundwater discharge to springs and wetlands. The complex historical evolution of the water balance in this site has resulted in substantial changes in surface and groundwater quality. This becomes evident when comparing the pre‐1980 groundwater quality and the hydrochemical status in the wetland in two different periods, under “dry” and “wet” conditions. Although the system is close to full recovery from the groundwater‐level viewpoint, bouncing back in the major hydrochemical constituents has not yet been obtained. These still appear to evolve in response to the previous overexploitation state. Moreover, in some sectors, there are groundwater‐dependent ecosystems that remain different to those found in preoverexploitation times. The experience of Las Tablas de Damiel provides an observatory of long‐term changes in wetland water quality, demonstrating that the effects of aquifer overexploitation on aquatic ecosystems are more than a mere alteration of the water balance and that groundwater quality is the key to aquifer and aquatic ecosystem sustainability.  相似文献   

19.
Groundwater contributions to baseflow in Minnehaha Creek, a creek located in a highly developed watershed in the Minneapolis-St. Paul metropolitan area, from the watershed's Quaternary aquifer were quantified as part of an effort to manage low flow conditions in the creek. Considerable uncertainty exists with any single method used to quantify groundwater contributions to baseflow; therefore, a “weight of evidence” approach in which methods spanning multiple spatial scales was utilized. Analyses conducted at the watershed-scale (streamflow separation and stable isotope analyses) were corroborated with site-scale measurements (piezometer, seepage meter, and streambed temperature profiles) over a multi-year period to understand processes and conditions controlling connectivity between the stream, its shallow aquifer system and other flow sources. In the case of Minnehaha Creek, groundwater discharge was found to range from 6.2 to 23 mm year−1, which represented only 5 to 11% of annual streamflow during the study period. From the weight of evidence, it is conjectured that regional-scale hydrogeological conditions control groundwater discharge in Minnehaha Creek. Implications of these results with regard to possible augmentation of baseflow by increasing groundwater recharge with infiltration of stormwater are discussed.  相似文献   

20.
Groundwater is the main source of water in arid regions. Thus, groundwater pollution becomes a major issue due to the increasing contamination, which poses serious and harmful risk to the environment. Groundwater vulnerability maps can be used as a tool to help decision makers to protect groundwater resources from contamination. The vulnerability of the Mio-Plio-Quaternary shallow aquifer (Southeast Tunisia) has been assessed using a DRASTIC model based on Geographic Information System (GIS). The different parameters of the model were collected from several sources and converted into thematic maps using ArcGis©. Each DRASTIC parameter was assigned a weight and rating based on a range of information within the parameter. Groundwater vulnerability map shows a large area (48%) with high risk of pollution. It indicates that the Southern part of the aquifer and the wadi beds are the most susceptible to contamination. The measured nitrate concentration is coherent with the DRASTIC model results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号