首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Effect of streambed sediment on benthic ecology   总被引:5,自引:2,他引:3  
Benthic macroinvertebrates have been commonly used as indicator species for assessment of aquatic ecology. Streambed sediment, or substrate, plays an important role in habitat conditions for macroinvertebrate communities. Field investigations were done to study the benthic diversity and macroinvertebrate compositions in various stream substrata. Sampling sites with different bed sediment, latitude, and climate were selected along the Yangtze River, the Yellow River, the East River, and the Juma River, in China. The results show that benthic community structures found in different substrata clearly differ, while those found in substrata of similar composition and flow conditions but in different macroclimates are similar. The study, thus, demonstrates that the benthic macroinvertebrate community is mainly affected by substrate composition and flow conditions, but is generally unaffected by latitudinal position and macroclimate. Taxa richness of the maeroinvertebrate community was found to be the highest on hydrophyte-covered cobbles, high on moss-covered bedrock, and low on clay beds and cobble beds devoid of plant biomass. Sandy beds are compact and unstable, thus, no benthic macroinvertebrates were found colonizing such substrata. Aquatic insects account for most of the macroinvertebrates collected in these rivers. Different insects dominate in different types of substrata: mainly EPT species (Ephemeroptera, Ptecoptera, Tfichoptera) in cobble, gravel, and moss-covered bedrock; and Chironomidae larvae in clay beds. The relation between the number of species in the samples and the size of the sampling area fits a power function of the species area. One square meter (lm) is suggested as the minimum sampling area. A substrate suitability index is proposed by integrating the suitability of sediment, periphyton, and benthic organic materials for macroinvertebrates. The biodiversity of macroinvertebrates increases linearly with the substrate suitability index. Benthic taxa richness increases linearly with the suitability index.  相似文献   

2.
The equilibrium relations for water and sediment transport refer to the relative balance of sediment transport and the relative stability of river courses formed by the automatic adjustment of riverbeds.This is the theoretical basis for the comprehensive management of sediment in the Yellow River.Based on the theories of sediment carrying capacity and the delayed response of riverbed evolution,in this study,the equilibrium relations for water and sediment transport in the Yellow River are established.These relations include the equilibrium relationships between water and sediment transport and bankfull discharge in the upper and lower Yellow River and between water and sediment transport and the Tongguan elevation in the middle Yellow River.The results reveal that for the Ningmeng reach,the Tongguan reach,and the lower Yellow River,erosion and deposition in the riverbeds are adjusted automatically,and water and sediment transport can form highly constrained equilibrium relationships.These newly established equilibrium relationships can be applied to calculate the optimal spatial allocation scheme for sediment in the Yellow River.  相似文献   

3.
I. INTRODUCTIONThe Yellow River is a heavily sediment--laden river. The sediment load of the Yellow River ranks the first in the world while its annual runoff is only of medium size. Toharness the river, it is necessary to build reservoirs for regulating runoff to meet the demands of economic development. Since the founding of PRC in 1949, I S4 large and medium--sized reservoirs have been constructed on the main stem and the tributaries with atotal storage capacity of 84.5 billion m3.…  相似文献   

4.
The method of multiple regression is used to analyze the influences of flood events from the coarse sediment producing areas on the channel siltation and fluvial process of the lower Yellow River based on the flood events from 1950 to 1985. The results showed that the flood events from the coarse sediment producing areas carry larger amounts of sediment load and coarser particle sizes than from other source areas, which increases deposition in the lower river channel. And there exist good correlations between channel siltation of the lower reaches of the Yellow River and the coming water and sediment of flood events from the coarse sediment producing areas. Through these correlations, the amounts of sediment deposition in the lower river channel could be roughly estimated based on the runoff and sediment load of flood events from the coarse sediment producing areas. The sediment deposition caused the fluvial process. There exists a complex response of channel form change to the coming water and sediment load of flood events from the coarse sediment producing areas. When the sediment concentration is smaller than 200kg/m3, the ratio between wide-depth ratio after flood and wide-depth ratio before flood((B/h)a / (B/h)b) will increase with the increase of the maximum sediment concentration; when the sediment concentration is near 200kg/m3, (B/h)a / (B/h)b reaches the maximum value; and when the sediment concentration reaches the limits of hyperconcentrated flow, (B/h)a / (B/h)b will decrease with the increase of the maximum sediment concentration. Generally, flood events from the coarse sediment producing areas made channel form of the lower Yellow River deeper and narrower, but a large amount of sediment deposition simultaneously occurs. So, the impacts of flood events from the coarse sediment producing areas on the channel of the lower Yellow River are lessened.  相似文献   

5.
Wind-blown sand is one of the key factors affecting the evolution of sediment transport,erosion,and deposition in rivers crossing desert areas.However,the differences and complex variations in the spatial and temporal distribution of the underlying surface conditions are seldom considered in research on the river inflow of wind-blown sand over a long time period.The Yellow River contains a large amount of sediment.The NingxiaeInner Mongolia reach of the Yellow River was selected as the research area of the current study.The reach flows out of Heishanxia and then flows through the Tengger,Hedong,Ulan Buh,and Kubuqi Deserts.In the current study,the wind speed,vegetation coverage,and sand matter on the river basin's surface were analyzed from the perspectives of the river basin surface and riverbank line.The vegetation coverage of the river basin's surface was calculated using the normalized difference vegetation index.Based on the types of sand matter,vegetation coverage,and other underlying surface conditions,the loose particle sediment transport efficiency was determined,the Lettau and Lettau formula for the sediment transport rate was modified,a surface wind-erosion sand flux model was established,and the amount of wind-blown sand transported into the NingxiaeInner Mongolia reach was calculated.The results show that,from 1981 to 2014,the annual average amount of wind-blown sand transported into the main stream and tributaries of the NingxiaeInner Mongolia reach of the Yellow River were 7,310,000 and 13,190,000 t,respectively.The ShizuishaneBayangole reach received 51%of the total wind-blown sand that transported into the main stream,while the tributaries in the Shidakongdui area were the most important source wind-blown sand,providing 74%of the total windblown sand inflow from the tributaries.In recent years,the amount of sand transported into the river of the mainstream and tributaries of the NingxiaeInner Mongolia reach of the Yellow River has significantly decreased from 1981 to 2002,particularly in 1993e2002,which is mainly the result of the weakening wind speed,increasing vegetation coverage,and embankment construction.More specifically,environmental protection policies led by the government,such as“returning farmland to forest”,have played an important and positive role.Therefore,when regulating the water and sediment in the NingxiaeInner Mongolia reach of the Yellow River,the issue of wind-blown sand deposition into the river should be fully considered in water and sediment regulation.  相似文献   

6.
I. CHAncEL CHANGal m THE FLOODED AREA ArVER BREACHING AT TONGWAXIANG AND THEIR IMPACTSIn mid--June of 1855 a great flood occurred in the lower reaches of the Yellow River. The findmainly came down from the main stem of the river and itS tributary Qinhe River. In the meantimethe riparian area of the Yellow River had just been subjected to a heavy rain, and large amountS of water from mountains and hills were flowing into the river and lakes were also full. The Weis…  相似文献   

7.
Coarse sediment retention by check dams is analyzed for five typical catchments in the Hekou-Longmen section of the midstream of the Yellow River, which is an area of high .coarse sediment concentration. The catchments are the Huangfuchuan, Kuye, Wuding, Sanchuan and Qiushui River Basins. The amount of coarse sediment retained by check clams in these areas for different periods was measured. Sediment reduction due to check clams is compared with other soil conservation measures and the results show that check clams are the most effective to rapidly reduce the amount of coarse sediment entering the Yellow River. If the average percentage of the drainage area with check clams for the five typical catchments reaches 3.0%, the average sediment reduction ratio can reach 60%. Therefore, to rapidly and effectively reduce the amount of sediment, especially coarse sediment, entering the Yellow River, the area percentage of check clams in the Hekou-Longmen section should be kept around 3%. The Kuye and Huangfuchuan River Basins are the preferred main catchments in which such water conservation measures are implemented.  相似文献   

8.
Small runoff, large sediment load, and incompatible relationship of flow and sediment load are very important characteristics of the Yellow River. They are also the crux of the most prominent problems of the Yellow River. To solve these problems, the regimes of flow and sediment load have to be improved by increasing water, reducing sediment load, and by using reservoirs to regulate flow and sediment load. The results of experiments for regulating the flow and sediment load in the last three years by the Xiaolangdi Reservoir have indicated that this measure is a realistic and effective way to mitigate the prominent problems in flood control of the Lower Yellow River at present and in the near future. However, the regulation system is still imperfect. It is advisable to speed up the pace of research and construction of the system for regulating flow and sediment load.  相似文献   

9.
Concentrations of suspended particle material(SPM), dissolved silicate(DSi), biogenic silica(BSi), phytoliths(plant produced siliceous microscopic structures), and other parameters were analyzed to examine the influence of both natural processes and human activities on silica delivery to the estuary of the Huanghe River(Yellow River). Our results indicate that the concentrations of DSi in the river decreased significantly since 1986. Approximately 34% of dissolved silica was trapped in the basin between 1986 and 2010 due to a reduction of soil erosion. Phytoliths comprised 67.2%–96.3% of BSi, with the smoothing bar type being the dominant form. Concentrations of BSi are significantly higher in the Huanghe River compared to other major rivers throughout the world due to its high sediment yield. We also found that the ratios of BSi/(BSi+DSi) and BSi/SPM were approximately 0.5 and 0.003 at Lijin near the river mouth, indicating that BSi carried in suspension by the Huanghe River was an important component of the rivers silica load. Significant amounts of BSi were also composed of phytoliths in Bohai Sea sediments near the Huanghe River estuary with the smoothing bar form again being the most abundant. The relatively high specific fluxes of BSi in the Huanghe River reflect its high turbidity and high erosion rates in the basin. The high sediment load originating on the Loess Plateau is likely responsible for the higher BSi flux, in agreement with a general trend of increasing BSi flux with increasing sediment flux in global river systems. This study demonstrates that BSi transported by rivers can be composed largely of phytoliths originating from the erosion of topsoils. The flux of phytoliths in river's suspended sediment load may therefore represent a significant contribution to the biogeochemical cycle of silica in coastal waters.  相似文献   

10.
1 INTRODUCTION Shortage of water resources is one of the important issues in the Yellow River basin in China. The runoff and sediment in the Yellow River come from different sources. The runoff comes from the dry areas of its upper reaches, while the sedi…  相似文献   

11.
Studies investigating the effects of human activities on the functional organization of macroinvertebrate communities in tropical streams and rivers are very limited, despite these areas witnessing the greatest loss of natural forests globally. We investigated changes in taxon richness, numerical abundance and biomass of macroinvertebrate functional feeding groups (FFGs) in streams draining different land-use types in the Sosiani-Kipkaren River in western Kenya. Twenty-one sites in river reaches categorized as forested, mixed, urban or agricultural were sampled during the dry and wet seasons. Collected macroinvertebrates were identified to the lowest taxon possible (mainly genus) and classified into five major FFGs; collector-gatherers, collector-filterers, scrapers, predators and shredders. There were significant (p < 0.05) spatial variation in habitat quality, organic matter standing stocks, total suspended solids, electrical conductivity, dissolved oxygen, temperature and nutrient concentrations across land-uses, with forested sites recording lowest values in mean water temperature, electrical conductivity and nutrients while recording highest levels in dissolved oxygen concentrations. Responses in macroinvertebrates to changes in land-use varied with richness, abundance and biomass showing differences within FFGs. Biomass-based metrics responded more strongly to change in land-use while taxon richness was the least predictive, indicating replacement of taxa within FFGs across land-use types. Higher shredder abundance, biomass and richness were recorded in forested streams which were cooler with protected riparian areas and high biomass of coarse particulate organic matter. Collector-gatherers dominated agricultural and urban streams owing to an abundance of particulate organic matter and nutrients, while scrapers responded positively to increased nutrient levels and open canopy in mixed and agricultural streams where primary production and algal biomass was likely increased. Overall, this study provides further evidence of the effects of agricultural and urban land-uses on tropical streams and rivers and contributes to the use of macroinvertebrate FFGs as indicators of ecological health.  相似文献   

12.
In order to assess and compare the ecological impacts of channelization and shallow lowland reservoirs, macroinvertebrate communities of a lowland metapotamal river below reservoirs with epilimnial release were studied. The study was carried out in the Dyje River (Czech Republic) at five sites located from 1.5 to 22.5 km downstream of the reservoir outfall. The five sites differed in the degree of channel modification from natural muddy banks to riprap regulation. Seven samples were collected during the years 1998 and 1999 at each site using a semiquantitative method. The data were processed using multivariate analyses and methods for assessing the ecological and functional structure of communities. Altogether, 261 species of benthic macroinvertebrates were recorded including several rare and threatened taxa. Based on the results of principal component analysis (PCA), most of the variability within the species data (the first PCA axis) was explained by the degree of channel modification, from natural muddy banks with aquatic vegetation to a man-made riprap. The second axis was strongly correlated with current velocity. The sites differed in species richness, total abundances, proportion of individual functional feeding groups, pattern of the distribution of the current preference groups, and values of several biotic indexes, all of which also corresponded to the degree of channel modification. Thus, the morphological man-made modifications of the river channel were found to be the main factor affecting lowland river macroinvertebrates and their biodiversity. Our results suggest that the biggest threat to benthic macroinvertebrate diversity of lowland rivers comes from channelization. The impact of reservoirs can be completely overwhelmed by the impact of channelization, especially when muddy banks with aquatic vegetation present a substantial part of habitat diversity and significantly contribute to the total species pool.  相似文献   

13.
2013年4月对巢湖流域8个水系147个样点的大型底栖动物进行调查,分析其群落结构及与环境因子的关系.共采集到大型底栖动物213种,隶属于3门7纲22目76科177属.8个水系大型底栖动物物种数差异较大,在杭埠河发现172种,而在十五里河仅发现10种.大型底栖动物密度组成呈现出显著的空间差异.南淝河和十五里河的寡毛纲相对密度均超过96%,派河的寡毛纲和摇蚊幼虫的相对密度分别为47.8%和41.1%.裕溪河、白石天河、柘皋河和杭埠河的腹足纲相对密度最大.杭埠河的水生昆虫相对密度达30.6%,是水生昆虫相对密度最大的水系.相似性分析结果表明,8个水系特征种差异明显,霍甫水丝蚓(Limnodrilus hoffmeisteri)是十五里河和派河的最主要优势种,而铜锈环棱螺(Bellamya aeruginosa)是兆河、裕溪河、杭埠河、白石天河和柘皋河的最主要优势种,铜锈环棱螺和霍甫水丝蚓是南淝河贡献率较大的两种优势种.生物多样性结果表明,Shannon-Wiener、Simpson及Margalef指数在8个水系间具有显著差异,Pielou指数在8个水系间差异不明显.典范对应分析结果表明,影响大型底栖动物群落结构的主要因素为水体营养状态和底质异质性.高营养盐浓度导致南淝河、派河和十五里河的耐污种密度高、生物多样性低,而相对较高的底质异质性维持了杭埠河大型底栖动物的高多样性和敏感型物种的生存.  相似文献   

14.
汉江上游是丹江口水库的水源区,其生态环境状况对保障汉江全流域及南水北调中线生态安全起着举足轻重的作用.本研究于2017年11月和2018年4月对汉江上游干流及源于秦岭南麓的5条典型支流开展了系统调查,旨在摸清汉江上游干支流的底栖动物群落特征,以及评价其水质状况.共采集到大型底栖动物240种,其中水生昆虫209种,软体动物13种,环节动物9种,其他类群9种.其中四节蜉Baetis sp.在各条河流中均为优势种,此外其他优势种还有拟细裳蜉Paraleptophlebia sp.、细蜉Caenis sp.、扁蜉Heptagenia sp.、花翅蜉Baetiella sp.、直突摇蚊Orthocladius sp.、纹石蛾Hydropsyche sp.、蜉蝣Ephemera sp.、带肋蜉Cincticostella sp.、高翔蜉Epeorus sp.、似波摇蚊Sympotthastia sp.和真开摇蚊Eukiefferiella sp..从各类群的密度来看,水生昆虫在汉江及五条支流中均占有绝对优势,占总密度的90.8%~98.9%,而在生物量上,除汉江干流中软体动物占绝对优势外,水生昆虫在各支流中均占绝对优势,占总生物量的47.0%~98.9%.就功能摄食类群的密度而言,直接收集者在汉江干支流中均为最主要功能摄食类群,而从生物量方面来看则表现出差异性,捕食者是金水河和旬河中最主要功能摄食类群,刮食者为汉江干流和月河中最主要功能摄食类群,直接收集者是金钱河中最主要功能摄食类群,滤食者为湑水河中最主要功能摄食类群.冗余分析结果表明,流速、总磷和电导率为影响汉江干支流底栖动物分布的关键环境因子.采用底栖动物生物指数(BI)和Shannon-Wiener指数进行水质生物评价,结果显示除汉江的极个别断面、湑水河和月河下游及旬河的中下游河段处于轻-中度污染状态外,其他调查河段均处于清洁状态.本研究结果可为汉江上游流域生态管理和科学保护提供依据.  相似文献   

15.
云南小江流域为典型干热河谷区,该区域干热少雨,流域内泥石流沟众多,生态环境十分脆弱.2017年4月和9月对小江流域的吊嘎河、蒋家沟、蓝泥坪沟、清水沟、陶家小河5条泥石流沟及小江干流开展了系统调查,旨在摸清5条泥石流沟及小江干流河流地貌、水环境及底栖动物群落现状,分析不同河床结构发育程度的泥石流沟间的底栖动物群落差异,揭示底栖动物对反映河床结构发育程度的河流地貌特征参数凹凸度的响应关系.调查期间于5条泥石流沟及小江干流中共采集到底栖动物70种,隶属于4门6纲38科69属,其中环节动物6种,软体动物2种,节肢动物61种,扁形动物1种.从种类类群来看,5条泥石流沟及小江干流的底栖动物物种数、密度、生物量上均以节肢动物占绝对优势,分别占总量的78.0%~92.5%、98.7%~100%、65.0%~100%.从功能摄食类群上来看,5条泥石流沟及小江干流底栖动物密度上均以直接收集者为主,占总量的74.3%~96.3%.回归分析表明,5条泥石流沟中底栖动物物种数、密度及生物量均与河流地貌特征参数凹凸度呈正相关关系,由此可见,发育良好的河床结构在维持河流地貌稳定和改善河流生态方面起着举足轻重的作用.本研究结果可为小江流域山区河流泥石流沟河床结构重建及生态修复提供科学依据.  相似文献   

16.
基于2006-2016年近10年的长期监测数据,对乌江下游两座高坝的修建对底栖动物群落结构的影响效应进行研究.结果表明:大坝蓄水前后底栖动物群落结构发生显著变化,不同时期的群落结构差异明显.蜉蝣目稚虫对生境的剧烈变动不适应,软体动物田螺科和觹螺科的一些种类对生境的剧烈扰动较为适应,生活史较短的机会主义物种在水库淹没区和坝下河段逐渐定殖下来.建坝以及大坝的运行调度对乌江下游底栖动物的群落结构产生了重大影响,底栖动物群落结构随着时间发生一定程度的演替.在底栖动物所有类群中,软体动物对栖息地的丧失以及流量的剧烈波动具有较高的耐受性,水生昆虫相对较不耐受环境的剧烈变化,而甲壳动物的适应性极强.百分比模式相似性指数(Percent Model Affinity,PMA)的变动趋势可有效地反映大坝对底栖动物群落的影响效应,其均值随离坝距离的增加而呈现逐步增加的趋势,表明大坝调度对水生态造成的负面影响会随着离坝距离的增加而逐步弱化,这与河流不连续体理论(Serial Discontinuity Concept,SDC)的预测趋势基本一致.根据长期监测成果,蜉蝣目扁蜉科、四节蜉科、细裳蜉科以及毛翅目纹石蛾科的种群恢复状况以及PMA指数可作为评估大坝不利影响减缓措施效果的依据.  相似文献   

17.
Since 1986, with a sharp decrease in water dis-charges, the Yellow River has entered a period charac-terized by low discharges and seasonally occurring dry-ups[1,2]. Since 1999, more strict management of water diversion has been imposed, and therefore the dry-ups have been well under control. However, the lower reaches of the Yellow River is still predominated by low-discharges, and has become a man-induced shrinking river. In the past 40 years, significant effect of soil and water conservat…  相似文献   

18.
In this study, we investigated patterns of spatial variation in macroinvertebrate assemblages in the Lower Mekong Basin (LMB) and examined their relationship with environmental factors. Cluster analysis was used to group macroinvertebrate samples and Linear Discriminant Analysis was performed to discriminate the major factors associated with the macroinvertebrate assemblages. Four clusters could be distinguished based on the dissimilarity between macroinvertebrate assemblages. The assemblages related to the tributaries and the upstream parts (cluster II) were characterized by a lower richness, abundance, diversity and a lower number of indicator taxa compared to the assemblage found downstream in the Mekong delta (cluster I). Aquatic insects and their indicator taxa (e.g. Caenodes sp., Dipseudopsis sp. and Gomphidae sp.), preferring a high-altitude environment with a high dissolved oxygen concentration and a high density of wood/shrub and evergreen forests, were the most predominant group in the assemblages occupying the tributaries and the upstream parts (cluster IIa). The assemblage found in the delta, consisting largely of molluscs and a moderate richness and abundance of worms, crustaceans and dipteran insects, was mainly represented by Corbicula leviuscula and C. moreletiana (molluscs), Namalycastis longicirris and Chaetogaster langi (worms), Corophium minutum and Grandidierella lignorum (crustaceans), and Cricotopus sp. and Clinotanypus sp. (dipteran insects). This assemblage was associated with a large watershed surface area, deep and wide rivers and a high water temperature. The intermediate assemblage (cluster IIb1) in-between could be discriminated based on land cover types including inundated, wetland and agricultural land, and was represented most by molluscs. Strikingly, the assemblage occupying the upstream parts (cluster IIa), which is related to intensified agriculture and a moderate conductivity, was characterized by a higher macroinvertebrate diversity compared to the mountainous and less impacted tributaries. This could mean that the natural stress is high in these systems for some taxa, leading to a lower overall taxonomic richness and abundance. Nevertheless, the number of taxa and the diversity of macroinvertebrates remained relatively high across the basin, especially in the delta assemblage. Therefore, the LMB deserves a particular attention for conservation.  相似文献   

19.
Three large rivers have their headwaters in the Patagonian Ice Fields (PIFs) in the Andes Mountains, the largest mid-latitude ice masses on Earth: Santa Cruz, Baker and Pascua. They are the last large free flowing rivers in Patagonia, but plans are advanced for building dams for hydroelectric power generation. The three PIF rivers, with a discharge dominated by ice melt, share a common, unique hydrograph compared to that of the other eight large rivers in the region: a distinct seasonal cycle, and an extremely stable discharge, with much lower variability than other rivers. In this study we present the first extensive survey of habitats and benthic macroinvertebrates in the least studied system, the Santa Cruz River. We assess how much of the natural capital provided and sustained by benthic invertebrates are expected to be lost by flooding and discuss how dams would affect riverine habitat and biota. In the Santa Cruz River, we conducted an intensive field survey during September 2010; a total of 52 sites located at regular 6 km intervals were sampled along the 310 river-km for macroinvertebrates and seventeen habitat variables. Although some habitat structure is apparent at the local scale, the Santa Cruz River could be described as very homogeneous. Macroinvertebrate density and the richness (38 genera) found in the Santa Cruz River resulted to be one of the lowest in comparison with 42 other Patagonian rivers. Albeit weak, the structure of the macroinvertebrates assemblages was successfully described by a reduced set of variables. The reduced flow variation and the lack of bed scouring flows have a direct and negative effect on the heterogeneity of riverbeds and banks. The high turbidity of the Santa Cruz River may also contribute to shorter food webs, by affecting autotrophic production, general trophic structure, and overall macroinvertebrate productivity and diversity. Dams will obliterate 51% of the lotic environment, including the most productive sections of the river according to our macroinvertebrate data. Since Santa Cruz River has a naturally homogeneous flow cycle, dams may provide more variable flows and more diverse habitat. Our data provide critically valuable baseline information to understand the effects of dams on the unique set of glacial driven large rivers of Patagonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号