首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The present contribution considers the dynamics of beaches occupied by outcropping/buried beachrocks, i.e. hard coastal formations consisting of beach material lithified by in situ precipitated carbonate cements. The dynamics of a Greek microtidal beach with beachrocks (Vatera, Lesbos) are examined through the collection and analysis of morphological and sedimentary field data, a 2-D nearshore hydrodynamic model and a specially constructed 1-D morphodynamic model. The results showed that the beachrock-occupied part of the beach is characterised by distinctive morphodynamics as: (i) its beachface is associated with large slopes; (ii) there is a good spatial correlation between the sub-aerial and shallow submerged mean beach profile and the buried/outcropping upper beachrock surface; and (iii) the seaward margins of the submerged beachrock outcrops are always associated with a ‘scour step’ i.e. a submerged cliff. The results also showed that beachrock outcrops can bias cross-shore sediment exchanges by impeding onshore transport due to the presence of the scour step. In this sense, beachrock outcrops may be considered as offshore transport ‘conduits’ for the beach sediments. A conceptual model of beach sediment transport, based on the field data and the hydrodynamic modelling is proposed. According to this model, fresh beach material from adjacent terrestrial sources is transported alongshore, towards the central part of the embayment, where a littoral transport convergence zone occurs under most wave conditions. There, the laterally supplied sediments are lost offshore.  相似文献   

2.
Recent work at three contrasting sites in England and Wales has shown characteristics atypical of those frequently reported elsewhere. These differences are:
  • (a) Taking each entire beach system there is no uniform trend of erosion or accretion, nor a progressive variation in beach elevation or volume alongshore, from one survey to the next. However, for Swansea Bay the ‘long-term’ (i. e. 18 months) range in profile height along that stretch of coast where the alignment of the beach is normal to the direction of wave approach, correlates well with computed wave energy derived from relevant offshore wave directions.
  • (b) While beach variability is greatest during the ‘winter’ (i. e. storm) period there is no overall tendency for a drawdown of sediment from the intertidal zone at that time. Response times are relatively short. Thus high beach levels need not necessarily be associated with ‘summer’ conditions.
  • (c) Although in Swansea Bay there is a tendency for the beach height to fluctuate least at mid-tide level this is not true of the other two sites. In no area does sediment eroded from the upper exposed part of the beach regularly appear to be deposited on the lower exposed part, or vice versa.
  相似文献   

3.
In order to decrease the simulation time of morphodynamic models, often-complex wave climates are reduced to a few representative wave conditions (RWC). When applied to embayed beaches, a test of whether a reduced wave climate is representative or not is to see whether it can recreate the observed equilibrium (long-term averaged) bathymetry of the bay. In this study, the wave climate experienced at Milagro Beach, Tarragona, Spain was discretized into ‘average’ and ‘extreme’ RWCs. Process-based morphodynamic simulations were sequenced and merged based on ‘persistent’ and ‘transient’ forcing conditions, the results of which were used to estimate the equilibrium bathymetry of the bay. Results show that the effect of extreme wave events appeared to have less influence on the equilibrium of the bay compared to average conditions of longer overall duration. Additionally, the persistent seasonal variation of the wave climate produces pronounced beach rotation and tends to accumulate sediment at the extremities of the beach, rather than in the central sections. It is, therefore, important to account for directional variability and persistence in the selection and sequencing of representative wave conditions as is it essential for accurately balancing the effects beach rotation events.  相似文献   

4.
Multiple intertidal bars and troughs, often referred to as ‘ridges and runnels’, are significant features on many macrotidal sandy beaches. Along the coastline of England and Wales, they are particularly prevalent in the vicinity of estuaries, where the nearshore gradient is gentle and a large surplus of sediment is generally present. This paper examines the dynamics of such bar systems along the north Lincolnshire coast. A digital elevation model of the intertidal morphology obtained using LIDAR demonstrates that three to five intertidal bars are consistently present with a spacing of approximately 100 m. The largest and most pronounced bars (height = 0·5–0·8 m) are found around mean sea level, whereas the least developed bars (height = 0·2–0·5 m) occur in the lower intertidal zone. Annual aerial photographs of the intertidal bar morphology were inspected to try to track individual bars from year to year to derive bar migration rates; however, there is little resemblance between concurrent photographs, and ‘resetting’ of the intertidal profile occurs on an annual basis. Three‐dimensional beach surveys were conducted monthly at three locations along the north Lincolnshire coast over a one‐year period. The intertidal bar morphology responds strongly to the seasonal variation in the forcing conditions, and bars are least numerous and flattest during the more energetic winter months. Morphological changes over the monthly time scale are strongly affected by longshore sediment transport processes and the intertidal bar morphology can migrate along the beach at rates of up to 30 m per month. The behaviour of intertidal bars is complex and varies over a range of spatial and temporal scales in response to a combination of forcing factors (e.g. incident wave energy, different types of wave processes, longshore and cross‐shore sediment transport), relaxation time and morphodynamic feedback. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Geomorphological process research demands quantitative information on erosion and deposition event timing and magnitude, in relation to fluctuations in the suspected driving forces. This paper establishes a new measurement principle – thermal consonance timing (TCT) – which delivers clearer, more continuous and quantitative information on erosion and deposition event magnitude, timing and frequency, to assist understanding of the controlling mechanisms. TCT is based on monitoring the switch from characteristically strong temperature gradients in sediment, to weaker gradients in air or water, which reveals the moment of erosion. The paper (1) derives the TCT principle from soil micrometeorological theory; (2) illustrates initial concept operationalization for field and laboratory use; (3) presents experimental data for simple soil erosion simulations; and (4) discusses initial application of TCT and perifluvial micrometeorology principles in the delivery of timing solutions for two bank erosion events on the River Wharfe, UK, in relation to the hydrograph. River bank thermal regimes respond, as soil temperature and energy balance theory predicts, with strong horizontal thermal gradients (often >1 K cm?1 over 6·8 cm). TCT fixed the timing of two erosion events, the first during inundation, the second 19 h after the discharge peak and 13 h after re‐emergence from the flow. This provides rare confirmation of delayed bank retreat, quantifies the time‐lag involved, and suggests mass failure processes rather than fluid entrainment. Erosion events can be virtually instantaneous, implying ‘catastrophic retreat’ rather than ‘progressive entrainment’. Considerable potential exists to employ TCT approaches for: validating process models in several geomorphological contexts; assisting process identification and improving discrimination of competing hypotheses of process dominance through high‐resolution, simultaneous analysis of erosion and deposition events and driving forces; defining shifting erodibility and erosion thresholds; refining dynamic linkages in event‐based sediment budget investigations; and deriving closer approximations to ‘true’ erosion and deposition rates, especially in self‐concealing scour‐and‐fill systems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The occurrence and characteristics of transverse finger bars at Surfers Paradise (Gold Coast, Australia) have been quantified with 4 years of time-exposure video images. These bars are attached to the inner terrace and have an oblique orientation with respect to the coastline. They are observed during 24 % of the study period, in patches up to 15 bars, with an average lifetime of 5 days and a mean wavelength of 32 m. The bars are observed during obliquely incident waves of intermediate heights. Bar crests typically point toward the incoming wave direction, i.e., they are up-current oriented. The most frequent beach state when bars are present (43 % of the time) is a rhythmic low-tide terrace and an undulating outer bar. A morphodynamic model, which describes the feedback between waves, currents, and bed evolution, has been applied to study the mechanisms for finger bar formation. Realistic positive feedback leading to the formation of the observed bars only occurs if the sediment resuspension due to roller-induced turbulence is included. This causes the depth-averaged sediment concentration to decrease in the seaward direction, enhancing the convergence of sediment transport in the offshore-directed flow perturbations that occur over the up-current bars. The longshore current strength also plays an important role; the offshore root-mean-square wave height and angle must be larger than some critical values (0.5 m and 20°, respectively, at 18-m depth). Model-data comparison indicates that the modeled bar shape characteristics (up-current orientation) and the wave conditions leading to the bar formation agree with data, while the modeled wavelengths and migration rates are larger than the observed ones. The discrepancies might be because in the model we neglect the influence of the large-scale beach configuration.  相似文献   

8.
Ephemeral aeolian sand strips are commonplace on beaches. Their formation during high energy sand transport events often precedes the development of protodunes and their dynamics present interesting feedback mechanisms with surface moisture patterns. However, due to their temporary nature, little is known of their formation, mobility or the specifics of their interaction with beach surface characteristics. Similarly surface moisture has an important influence on sediment availability and transport in aeolian beach systems, yet it is difficult to quantify accurately due to its inherent variability over both short spatial and temporal scales. Whilst soil moisture probes and remote sensing imagery techniques can quantify large changes well, their resolution over mainly dry sand, close to the aeolian transport threshold is not ideal, particularly where moisture gradients close to the surface are large. In this study we employed a terrestrial laser scanner to monitor beach surface moisture variability during a three and a half hour period after a rain event and investigated relationships between bedform development, surface roughness and surface moisture. Our results demonstrate that as the beach surface dries, sand transport increases, with sediment erosion occurring at the wet/dry surface boundary, and deposition further downwind. This dynamic structure, dependent upon changing surface moisture characteristics, results in the formation of a rippled sand strip and ultimately a protodune. Our findings highlight dynamic mobility relationships and confirm the need to consider transient bedforms and surface moisture across a variety of scales when measuring aeolian transport in beach settings. The terrestrial laser scanner provides a suitable apparatus with which to accomplish this. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper addresses a series of geomorphic questions relating to large‐scale (> 1 km), long‐term (100 – 1,000 years) coastal planshape evolution. Previous research on soft‐cliff coasts has recognised the role of protective fronting beach volumes on reducing rates of cliff toe retreat. However, it is the maintenance of this critical threshold that ultimately determines two contrasting modes of shoreline behaviour: Mode A, in which there is little beach sediment and shoreline evolution is controlled by material strength; and, Mode B, when ample beach sediment means that shoreline evolution is controlled by longshore sediment transport. Here we use a numerical model (SCAPE) to investigate temporal and spatial changes in beach volume on a broader range of feedbacks than considered in previous models. The transition between Mode A and Mode B coasts is defined by relative sediment inputs to outputs and used to explore how these contrasting modes control the evolution of an initial linear frontage exhibiting longshore changes in cliff lithology (material resistance and the proportion of beach grade material in the eroded bedrock). Under Mode A, relative changes in material resistance result in long term heterogeneous rates of retreat, which result in the development of persistent headland and embayment features. However, under Mode B, feedbacks between coastal planshape, longshore sediment transport, beach volume and wave energy result in steady state retreat rates regardless of longshore variations in resistance. Results are compared and contrasted to previous simulations and site specific examples and a conceptual model of Mode A and Mode B interactions presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The formation of an inner nearshore bar was observed during a high‐energy event at the sandy beach of Vejers, Denmark. The bar accreted in situ during surf zone conditions and the growth of the bar was associated with the development of a trough landward of the bar. Measurements of hydrodynamics and sediment fluxes were obtained from electromagnetic current meters and optical backscatter sensors. These process measurements showed that a divergence in sediment transport occurred at the location of the developing trough, and observed gradients in cross‐shore net sediment flux were consistent with the morphological development. The main cause for the flux gradients were cross‐shore gradients in offshore‐directed mean current (undertow) speed which depended upon local relative wave height and local bed slope. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Hydrological characteristics of englacial and subglacial drainage systems in Gulkana Glacier, Alaska, were examined by analysing temporal variations of discharge and sediment load in the proglacial Phelan Creek in 2001. From data plots on semi‐log paper, it appeared appropriate to separate both discharge and sediment load into fast and slow components. The two components were possibly produced by two different drainage systems: an englacial and subglacial, ‘channellized’ system in the ablation zone, and a subglacial, ‘distributed’ system in the accumulation zone. The data indicate the occurrence of an event during which part of the ‘distributed’ drainage system changed into the ‘channellized’ drainage system. The daily time‐series of discharge and sediment load were represented using a tank model. In the model, the drainage from an additional tank was added, supposing that a subglacial reservoir full of water and sediment collapsed slowly when the subglacial drainage system changed from distributed to channellized. The simulation with the collapsed tank gave much more reasonable results than those with no collapsed tank. The contribution of the collapsed tank to total sediment load is 24%, which is much larger than 9% to total discharge. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The present work deals with storm classification, using the Storm Power Index, and beach morphological response to storm events in the Gulf of Cadiz (SW Spain). Over the 1958–2001 period, 377 events divided into five classes ranging from ‘weak’ to ‘extreme’ were characterized. Classes I (weak) and II (moderate) accounted for 60% and 23% of events, respectively. Class III (significant), were 9% of the recorded events and Classes IV (severe) and V (extreme) accounted for 5% and 2%, respectively. The probability of storm occurrence per year ranged from 93% for Class I to 15% for Class V. In order to characterize beach response to storm events, 214 beach profiles carried out with a monthly periodicity over the 1996–1998 period along the Chipiona‐Rota littoral were analysed, as well as published data. Different beach types were observed: (i) ‘Intermediate’ beaches underwent important vertical relief changes ranging from 0.3 m to 1.33 m associated with average slope changes from tan β = 0.06 to tan β = 0.03; (ii) the ‘dissipative’ beaches were characterized by smaller and homogeneous foreshore vertical changes, from c. 0.36 m to 0.65 m, according to the parallel retreat mechanism characterized by small slope variations (from tan β = 0.025 to tan β = 0.035); and (iii) ‘intermediate with rock shore platform’ experienced small morphological and foreshore slope variations, related to both beach pivoting and parallel retreat mechanisms. The most important morphological changes were due to the impact of usually ‘weak’ and ‘moderate’ events during October and November that produced berm erosion and upper foreshore lowering, and the impact of ‘severe’, ‘significant’ and ‘extreme’ events in December and January which produced dune escarpment, overwash and/or damage to coastal structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The influence of the seasons of the year on beach changes is well documented in the literature. One generalization which has emerged is that beaches are ‘combed down’ in winter and ‘built up’ in summer. Some workers have disagreed with this dictum because field evidence does not necessarily support the assertion. This study, located in the humid tropics, shows, with the aid of graduated pegs emplaced perpendicularly to the shoreline, that the magnitude and frequency of beach changes are greater in the wet, than in the dry season. Furthermore, there is a net loss of beach materials in the wet season and a net gain in the dry season, even though erosion and accretion occur throughout the year with no statistically significant difference in their magnitudes. Erosion prevails at the northern half of the beach while accretion is dominant to the south. The upper and lower foreshore zones are more prone to changes than the mid-tide level.  相似文献   

14.
Markov models offer an objective and quantitative method of assessing beach changes. For a stretch of the Holderness coast a beach classification scheme was devised and a probabilistic first order matrix model based on surveyed profile data was produced. This could describe and predict transitions between beach types and between different time periods. Different profile types dominated different coastal locations and seasonal variations were seen. In order to improve the accuracy of prediction throughout the year a second, ‘winter’, model was added to the original ‘summer’ one. Although the models had been prepared independently of wave conditions, a comparison of the wave record and beach transitions revealed that waves under 0·3–0·5 m high produced fairly static beaches; when waves were between 0·5 and 1·0 m the beach was more dynamic and variable, while waves over 1·0 m led to the depletion of the upper beach. This was broadly in accordance with published theory. Markov models have the advantage that they can be adjusted periodically if conditions change, and are thus useful for prediction on coasts for which no wave records exist.  相似文献   

15.
A mathematical model which estimates the scale-independent sediment surface profile of alluvial fans has been developed. This model utilizes a diffusive sediment transport model and an unsteady, radial flow, conservation relationship. These equations are approximately solved assuming a quasi-steady-state closure with appropriate modelling assumptions for two end member fan types: (1) fans where most of the fan surface is depositionally active (denoted here as ‘homogeneous’) and (2) fans characterized by channelling and sediment sorting processes. The fundamental result for these two fan types is a dimensionless sediment profile relationship which approximates most fan surfaces. The model suggests that the overall dimensionless morphology of alluvial fans is governed more by fundamental diffusion principles in sediment deposition than by individual environmental or basin characteristics. Additionally, this work potentially can be extended to model temporal variation in fan development. Preliminary comparison with alluvial fan profiles is reasonable, indicating that this model provides useful qualitative and quantitative information relating to alluvial fan process and morphology. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
M. E. Grismer 《水文研究》2014,28(2):161-170
Establishment and ‘crediting’ for total maximum daily loads (TMDL) of sediment require development of stream monitoring programs capable of detecting changes in land use and erosion ‘connectivity’ conditions across the watershed. As a ‘proof of concept’ directed at developing such an effective stream monitoring program considering only the effects of soil disturbances or restoration in the Lake Tahoe Basin, variability in daily stream sediment load predictions from a local‐scale, field data–based distributed runoff and erosion model developed previously is analysed for the west‐shore watersheds of Homewood (HMR) and Madden Creeks. The areal extent effects of forest fuel reductions (slight soil disturbances in Madden) and soil restoration efforts (e.g. dirt road removal and ski‐run rehabilitation in HMR) on watershed daily sediment loads for the 1994–2005 period are considered. Based on model predictions, forest fuel management in the Madden Creek watershed must occur across more than 30% of the basin area to result in a detectable increase in daily sediment loads at the >95% confidence level. Similarly, a daily load reduction that could be assessed with >95% confidence within the HMR basin required substantial dirt road removal (50% by roaded area) and restoration of 20% of the ski‐run area (combined for ~5% of the basin area) for the 11‐year record but was also possible within 2–3 years following restoration. These modelling results suggest that despite considerable flow–load variability, it may be possible to detect cumulative changing land‐use conditions within several years of project completion such that quantitative TMDL ‘crediting’ may be developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A previous model for nearshore orthogonal gradients (Hardisty, 1986) was based upon a simple bedload function and identified feedback relationships between the equilibrium seabed gradient and wave induced flow asymmetry. That model is developed here with the inclusion of suspended load transport, first order shoaling transformations, second order wave induced flows, and a measure of the sediment grain size. The results are compared with some of the general features of prototype geomorphologies.  相似文献   

19.
The form, height and volume of coastal foredunes reflects the long‐term interaction of a suite of nearshore and aeolian processes that control the amount of sand delivered to the foredune from the beach versus the amount removed or carried inland. In this paper, the morphological evolution of more than six decades is used to inform the development of a simple computer model that simulates foredune growth. The suggestion by others that increased steepness of the seaward slope will retard sediment supply from the beach to the foredune due to development of a flow stagnation zone in front of the foredune, hence limiting foredune growth, was examined. Our long‐term data demonstrate that sediment can be transferred from the beach to the foredune, even with a steep foredune stoss slope, primarily because much of the sediment transfer takes place under oblique rather than onshore winds. During such conditions, the apparent aspect ratio of the dune to the oncoming flow is less steep and conditions are not as favourable for the formation of a stagnation zone. The model shows that the rate of growth in foredune height varies as a function of sediment input from the beach and erosion due to storm events, as expected, but it also demonstrates that the rate of growth in foredune height per unit volume increase will decrease over time, which gives the perception of an equilibrium height having been reached asymptotically. As the foredune grows in size, an increasing volume of sediment is needed to yield a unit increase in height, therefore the apparent growth rate appears to slow. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
A large amount of the total sediment load in the Chinese Yellow River is transported during hyperconcentrated floods. These floods are characterized by very high suspended sediment concentrations and rapid morphological changes with alternating sedimentation and erosion in the main channel, and persistent sedimentation on the floodplain. However, the physical mechanisms driving these hyperconcentrated floods are still poorly understood. Numerical modelling experiments of these floods reveal that sedimentation is largely caused by large vertical concentration gradients, both in the channel during the rising stage of the flood, as well as on the floodplains, during a later stage of the flood. These vertical concentration gradients are large because the turbulent mixing rates are reduced by the increased sediment‐induced density gradients, resulting in a positive feedback mechanism that produces high deposition rates. Erosion prevails when the sediment is largely held in suspension due to hindered settling, and is strengthened by the reduced wetted cross‐section caused by massive sedimentation on the floodplain. Observed patterns of erosion and sedimentation during these floods can be qualitatively reproduced with a numerical model in which sediment‐induced density effects and hindered settling are included. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号