首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to shortage of rainfall and its increasing variability, moisture stress is identified to be one of the most critical factors affecting agricultural productivity in the drylands of Ethiopia. To circumvent this problem, a strategy of supplemental irrigation through surface water harvesting was adopted by the government and several micro‐dams have been built in the semi‐arid parts of the country. However, the benefits from the water harvesting schemes are not sustainable because of rapid water storage loss due to siltation. There is, therefore, an urgent need for improved catchment‐based erosion control and sediment management strategies. The design and implementation of such strategies require data on the rate and magnitude of sediment deposition. To this end, reservoir surveys were conducted to estimate sediment deposition rate for 11 reservoirs identified to be representative of catchments in the Tigray region of northern Ethiopia. Two approaches were employed during the survey: one was based on measurement of sediment thickness in reservoirs while the other was based on comparing the original and existing topography of the reservoir‐beds. The average annual sediment yield estimated for the study sites was about 19 t ha?1 y?1. An equation of the type SSY = 3á36A0á67 (with SSY = area specific sediment yield in t ha?1 y?1 and A = catchment area in km2) was also established for the study region, which is opposite to the ‘universal’ SSY–A relationship. In order to improve the sediment yield predictive capability of A, it was integrated with a factorial index that assesses the catchment's propensity to erosion and potential sediment yield. The effect of accelerated sediment deposition on water storage loss of reservoirs and possible controlling factors of the SSY–A relationship are outlined. The potential semi‐quantitative scoring approach to characterize catchments in terms of erosion sensitivity and the significance of the A‐index approach to predict SSY of similar catchments are also highlighted. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
H. Marttila  B. Kløve 《水文研究》2014,28(17):4756-4765
Lowland catchments in Finland are intensively managed, promoting erosion and sedimentation that negatively affects aquatic environments. This study quantified fine‐grained bed sediment in the main channel and upstream headwaters of the River Sanginjoki (399.93 km2) catchment, Northern Finland, using remobilization sediment sampling during the ice‐free period (May 2010–December 2011). Average bed sediment storage in river was 1332 g m?2. Storage and seasonal variations were greater in small headwater areas (total bed sediment storage mean 1527 g m?2, range 122–6700 g m?2 at individual sites; storage of organic sediment: mean 414 g m?2, range 27–3159 g m?2) than in the main channel (total bed sediment storage: mean 1137 g m?2, range 61–4945 g m?2); storage of organic sediment: mean 329 g m?2, range 13–1938 g m?2). Average reach‐specific bed sediment storage increased from downstream to upstream tributaries. In main channel reaches, mean specific storage was 8.73 t km?1, and mean specific storage of organic sediment 2.45 t km?1, whereas in tributaries, it was 126.94 and 34.05 t km?1, respectively. Total fine‐grained bed sediment storage averaged 563 t in the main channel and 6831 t in the catchment. The proportion of mean organic matter at individual sites was 15–47% and organic carbon 4–455 g C m?2, with both being highest in small headwater tributaries. Main channel bed sediment storage comprised 52% of mean annual suspended sediment flux and stored organic carbon comprised 7% of mean annual total organic carbon load. This indicates the importance of small headwater brooks for temporary within‐catchment storage of bed sediment and organic carbon and the significance of fine‐grained sediment stored in channels for the suspended sediment budget of boreal lowland rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence sediment transport, including the spatio‐temporal trends and patterns of sedimentation in beaver ponds. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences, which appeared in 2004. Volumes of sediment deposited behind the dams were measured, and grain‐size distribution patterns were determined. Flow discharges and sediment fluxes were measured at the inflow and outflow of each dam sequence. Between 2004 and 2011, 1710.1 m3 of sediment was deposited behind the beaver dams, with an average sediment thickness of 25.1 cm. The thickness of the sediment layer was significantly (p < 0.001) related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably because of dam failures subsequent to surges. Differences in sediment flux between the inflow and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The 7‐year‐old sequences have filtered 190.19 ton of sediment out of the Chevral river, which is of the same order of magnitude as the 374.4 ton measured in pond deposits, with the difference between the values corresponding to beaver excavations (60.24 ton), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and Castor canadensis activity are similar in magnitude. The detailed analysis of sedimentation in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration, and catchment management. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling tool for simulating the time‐dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in‐stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in‐stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l?1. The general trends in the in‐stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l?1) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in‐stream generation, storage and release of the fine sediment fraction. The in‐stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Ditch cleaning in drained peatland forests increases sediment loads and degrades water quality in headwater streams and lakes. A better understanding of the processes controlling ditch erosion and sediment transport in such systems is a prerequisite for proper peatland management. In order to relate hydrological observations to key erosion processes in headwater peatlands drained for forestry, a two‐year study was conducted in a nested sub‐catchment system (treated with ditch cleaning) and at two reference sites. The treated catchment was instrumented for continuous discharge and turbidity monitoring, erosion pin measurements of changes in ditch bed and banks and time‐integrated sampling of suspended sediment (SS) composition. The results showed that ditch cleaning clearly increased transient suspended sediment concentrations (SSCs) and suspended sediment yields (SSYs), and resulted in temporary storage of loosely deposited organic sediment in the ditch network. After exhaustion of this sediment storage, subaerial processes and erosion from ditch banks became dominant in producing sediment for transport. Recorded SSCs were higher on the rising limbs of event hydrographs throughout the study period, indicating that SS transport was limited by availability of erosion‐prone sediment. A strong positive correlation (R2 = 0.84, p < 0.001) between rainfall intensity (above a threshold of 1 mm h?1) and average SSC obtained on the rising limb of hydrographs for the sub‐catchment showed that soil detachment from ditch banks by raindrop impact can directly increase SSC in runoff. At the main catchment outlet, variation in SSC was best explained (R2 = 0.67, p < 0.05) by the linear combination of initial discharge (?), peak discharge (+) and the lag time from initial to peak discharge (?). Based on these factors, ditch cleaning slightly increased peak discharges and decreased transit times in the study catchment. The implications of the results for water pollution management in peatland forests are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Rainfall–runoff induced soil erosion causes important environmental degradation by reducing soil fertility and impacting on water availability as a consequence of sediment deposition in surface reservoirs used for water supply, particularly in semi-arid areas. However, erosion models developed on experimental plots cannot be directly applied to estimate sediment yield at the catchment scale, since sediment redistribution is also controlled by the transport conditions along the landscape. In particular, representation of landscape connectivity relating to sediment transfer from upslope areas to the river network is required. In this study, the WASA-SED model is used to assess the spatial and temporal patterns of water and sediment connectivity for a semi-arid meso-scale catchment (933 km2) in Brazil. It is shown how spatial and temporal patterns of sediment connectivity within the catchment change as a function of landscape and event characteristics. This explains the nonlinear catchment response in terms of sediment yield at the outlet.

Citation Medeiros, P. H. A., Güntner, A., Francke, T., Mamede, G. L. & de Araújo, J. C. (2010) Modelling spatio-temporal patterns of sediment yield and connectivity in a semi-arid catchment with the WASA-SED model. Hydrol. Sci. J. 55(4), 636–648.  相似文献   

9.
Among the different controls of erosion budget at basin level, the relative impact of dams and land management is yet to be investigated. In this paper, the impact of dams on sediment yield has been assessed by using a conceptual modelling framework which considers the gross erosion and the cascade of dams constructed on a river network. The sediment budget has been estimated based on the gross erosion, deposition of sediment in reservoirs, and sediment yields of 23 mainland river basins of India. The gross erosion of the country is estimated as 5.11 ± 0.4 Gt yr?1 or 1559 t km?2 yr?1, out of which 34.1 ± 12% of the total eroded soil is deposited in the reservoirs, 22.9 ± 29% is discharged outside the country (mainly to oceans), and the remaining 43.0 ± 41% is displaced within the river basins. The river basins of northern India contribute about 81% of the total sediment yield from landmass while the share of southern river basins is 19%. The components of revised sediment budget for India are prominently influenced by the sediment trapped in reservoirs and the treatment of catchment areas by soil and water conservation measures. Analysis of sediment deposition in 4937 reservoirs indicated the average annual percentage capacity loss as 1.04% though it varies from 0.8% to >2% per year in smaller dams (1–50 Mm3 capacity) and from <0.5% to 0.8% per year in larger dams (51 to >1000 Mm3 capacity). Siltation of smaller dams poses a serious threat to their ecosystem services as they cater to a wider population for domestic, agricultural, and industrial purposes. Amongst the environment controls, land use significantly impacts the gross erosion rate and specific sediment yield as compared to climatic and topographic parameters. However, to analyse their integrated effect on the complex processes of sediment fluxes in a basin, further research efforts are needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The determination of sediment storage is a critical parameter in sediment budget analyses. But, in many sediment budget studies the quantification of magnitude and time‐scale of sediment storage is still the weakest part and often relies on crude estimations only, especially in large drainage basins (>100 km2). We present a new approach to storage quantification in a meso‐scale alpine catchment of the Swiss Alps (Turtmann Valley, 110 km2). The quantification of depositional volumes was performed by combining geophysical surveys and geographic information system (GIS) modelling techniques. Mean thickness values of each landform type calculated from these data was used to estimate the sediment volume in the hanging valleys and the trough slopes. Sediment volume of the remaining subsystems was determined by modelling an assumed parabolic bedrock surface using digital elevation model (DEM) data. A total sediment volume of 781·3×106–1005·7×106 m3 is deposited in the Turtmann Valley. Over 60% of this volume is stored in the 13 hanging valleys. Moraine landforms contain over 60% of the deposits in the hanging valleys followed by sediment stored on slopes (20%) and rock glaciers (15%). For the first time, a detailed quantification of different storage types was achieved in a catchment of this size. Sediment volumes have been used to calculate mean denudation rates for the different processes ranging from 0·1 to 2·6 mm/a based on a time span of 10 ka. As the quantification approach includes a number of assumptions and various sources of error the values given represent the order of magnitude of sediment storage that has to be expected in a catchment of this size. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

12.
Recent emphasis on sediment connectivity in the literature highlights the need for quantitative baseline studies on the patterns and distribution of sediment stores to facilitate understanding of how sediment moves through the landscape at various temporal and spatial scales. This study evaluates the distribution and make‐up of sediment stores within the dramatically incised landscapes of the upper Yellow River, where basin fill deposits up to 1200 m in depth have been extensively reworked following incision by the Yellow River. Field and GIS analyses highlight the discontinuous distribution of sediment stores in Garang catchment, a 236 km2 tributary of the upper Yellow River. Volumetric estimates of sediment storage were obtained through a combination of field mapping, GPR transects, and GIS analyses. Sediment stores cover 20% of the Garang catchment, with an estimated volume of 474.0 × 106 m3, and inferred residence times from OSL and 14C dating of 103–104 years. Fans and terraces reworked from basin fill deposits, and associated cut and fill terrace features, are the dominant forms of sediment storage (~90% of total). A space‐for‐time argument is used to assess stages of basin infilling and subsequent landscape responses to incision, outlining a dramatic example of changes to sediment dynamics and connectivity relationships within the upper Yellow River. Sediments within the upper catchment lie above the regional basin fill level, offering a glimpse of pre‐incisional conditions. This contrasts markedly with the enduring influence of basin incisional history seen within the middle catchment, and the contemporary landscapes of the lower catchment where nearly all available sediment has been excavated from the basin and the landscape effectively operates under post‐incisional conditions. The need to contextualise catchment‐scale studies in terms of landscape history is emphasised. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
There is considerable interest in large‐scale spatial patterns of sediment transport in catchments, and this topic is often approached using terrain‐based modelling. In such models topography influences the discharge of overland flow and its sediment transport capacity. The sediment transport capacity of overland flow is commonly expressed as a power function of slope and discharge (i.e. qs=k1qβSγ). The relationship between discharge and contributing area can also be expressed as a power function. Several reviews reveal a limited range of values for the two exponents β and γ. In this paper we examine the sensitivity of catchment‐scale patterns of sediment delivery to valley floors to a range of sediment transport capacity and hillslope hydrology parameterizations, using two catchments on the southern tablelands of New South Wales. The results indicate that, over the limited range of β and γ identified within the literature, sediment deliveries to valley floors across the two catchments are similar for all but one of five sediment transport capacity relationships. The patterns are dominated by the trend in slope through each catchment. The sensitivity to hillslope hydrology of predicted sediment delivery patterns is strong in the catchment with systematic variation in unit hillslope area, and weak in the catchment for which there are no systematic trends in unit hillslope area. We believe there is less experimental evidence to restrict choice of hillslope hydrology parameters than there is for sediment transport capacity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Growing awareness of the wider environmental significance of fine sediment transport by rivers and associated sediment problems linked to sediment–water quality interactions, nutrient and contaminant transfer, and the degradation of aquatic habitats has resulted in the need for an improved understanding of the mobilization and transfer of sediment in catchments to support the development of effective sediment management strategies. The sediment budget provides a key integrating concept for assembling information on the internal functioning of a catchment in terms of its sediment dynamics by providing information on the mobilization, transfer, storage and output of sediment. One key feature of a catchment sediment budget is the relationship between the sediment yield at the catchment outlet and rates of sediment mobilization and transfer within the catchment, which is commonly represented by the sediment delivery ratio. To date, most attempts to derive estimates of this ratio have been based on a comparison of the measured sediment yield from a catchment with an estimate of the erosion occurring within the catchment, derived from an erosion prediction procedure, such as the Universal Soil Loss Equation (USLE) or its revised version, RUSLE. There is a need to obtain more direct and spatially distributed evidence of the erosion rates occurring within a catchment and to characterize the links between sediment mobilization, transfer, storage and output more explicitly. In this context, fallout radionuclides have proved particularly useful as sediment tracers. This paper reports the results of a study aimed at exploring the use of caesium‐137 (137Cs) measurements to establish sediment budgets for three catchments of different sizes and contrasting land use located in Calabria, southern Italy. Long‐term measurements of sediment output were available for the catchments, and, by using the estimates of gross and net rates of soil loss within the catchments provided by 137Cs measurements, it was possible to establish the key components of the sediment budget for each catchment. By documenting the sediment budgets of three catchments of different sizes, the study provides a basis for exploring the effects of scale on catchment sediment budgets and, in particular, the increasing importance of catchment storage as the size of the catchment increases. The results of this study demonstrate a reduction in the sediment delivery ratio from 98 to 2% as catchment area increases from 1·47 ha to 31·2 km2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In situ turbidity meters are being increasingly used to generate continuous records of suspended sediment concentration in rivers. However, the usefulness of the information obtained depends heavily on the existence of a close relationship between fluctuations in suspended sediment concentration and turbidity and the calibration procedure that relates suspended sediment concentration to the turbidity meter's signal. This study assesses the relationship between suspended sediment concentration and turbidity for a small (1·19 km2) rural catchment in southern Brazil and evaluates two calibration methods by comparing the estimates of suspended sediment concentration obtained from the calibrated turbidity readings with direct measurements obtained using a USDH 48 suspended sediment sampler. With the first calibration method, the calibration relationship is derived by relating the turbidity readings to simultaneous measurements of concentration obtained from suspended sediment samples collected from the vicinity of the turbidity probe during flood events. With the second method, the calibration is based on the readings obtained from the turbidity meter when the probe immersed in samples of known concentration prepared using soils collected from the catchment. Overall, there was a close link between fluctuations in suspended sediment concentration and turbidity in the stream at the outlet of the catchment, and the estimates of sediment concentration obtained using the first calibration method corresponded closely with the conventionally measured sediment concentrations. However, use of the second calibration method introduced appreciable errors. When the estimated sediment concentrations were compared with the measured values, the mean errors were ± 122 mg l?1 and + 601 mg l?1 for the first and second calibration procedures respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Z. X. Xu  J. P. Pang  C. M. Liu  J. Y. Li 《水文研究》2009,23(25):3619-3630
The Soil and Water Assessment Tool (SWAT) was used to simulate the transport of runoff and sediment into the Miyun Reservoir, Beijing in this study. The main objective was to validate the performance of SWAT and the feasibility of using this model as a simulator of runoff and sediment transport processes at a catchment scale in arid and semi‐arid area in North China, and related processes affecting water quantity and soil erosion in the catchment were simulated. The investigation was conducted using a 6‐year historical streamflow and sediment record from 1986 to 1991; the data from 1986 to 1988 was used for calibration and that from 1989 to 1991 for validation. The SWAT generally performs well and could accurately simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily, with a Nash‐Sutcliffe coefficient of greater than 0·6, 0·9 and a coefficient of determination 0·75, 0·9 at two outlet stations (Xiahui and Zhangjiafen stations) during calibration. These values were 0·6, 0·85 and 0·6, 0·9 during validation. For sediment simulation, the efficiency is lower than that for runoff. Even so, the Nash‐Sutcliffe coefficient and coefficient of determination were greater than 0·48 and 0·6 for monthly sediment yield during calibration, and these values were greater than 0·84 and 0·95 during validation. Sensitivity analysis shows that sensitive parameters for the simulation of discharge and sediment yield include curve number, base flow alpha factor, soil evaporation compensation factor, soil available water capacity, soil profile depth, surface flow lag time and channel re‐entrained linear parameter, etc. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Lowland permeable catchments in the UK are particularly prone to sedimentation problems, on account of the increased fine sediment loadings generated by recent land‐use change and their stable seasonal hydrological regimes, which are frequently depleted by groundwater abstraction. Fine‐grained sediment storage on the bed of the main channel systems of the Frome (437 km2) and Piddle (183 km2) catchments, Dorset, UK, has been examined at 29 sites using a sediment remobilization technique. Measurements encompassed the period February 2003–July 2004. At individual sites in the Frome, average values ranged between 410 and 2630 g m?2, with an overall mean of 918 g m?2. In the Piddle, the average values for individual sites varied between 260 and 4340 g m?2, with an overall mean of 1580 g m?2. Temporal variations in fine bed sediment storage at each site were appreciable, with the coefficients of variation ranging between 43 and 155% in the Frome and between 33 and 160% in the Piddle. Average reach‐scale specific bed sediment storage increased markedly downstream along each main stem from 2 to 29 t km?1 (Frome) and from 4 to 19 t km?1 (Piddle). Total fine sediment storage on the channel bed of the Frome varied between 479 t (5 t km?1) and 1694 t (17 t km?1), with a mean of 795 t (7 t km?1), compared with between 371 t (5 t km?1) and 1238 t (14 t km?1) with a mean of 730 t (9 t km?1) in the Piddle. During the study period, fine bed sediment storage was typically equivalent to 18% (Frome) and 57% (Piddle) of the mean annual suspended sediment flux at the study catchment outlets. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Sediment fences are often used to monitor hillslope erosion, but these can underestimate sediment yields due to overtopping of runoff and associated sediment. We modified four sediment fences to collect and measure the runoff and sediment that overtopped the fence in addition to the sediment deposited behind the fence. Specific objectives were to: (1) determine the catch efficiency of sediment fences measuring post-fire hillslope erosion; (2) assess particle sorting of sand, silt/clay, and organic matter from each hillslope through the sediment fence and subsequent runoff collection barrels; (3) evaluate how catch efficiency and particle size sorting relate to site and rainfall-runoff event characteristics; and (4) use runoff simulations to estimate sediment fence volumes for future post-fire monitoring. Catch efficiency ranged from 28 to 100% for events and 38 to 94% per site for the entire sampling season, indicating a relatively large underestimation of sediment yields by sediment fences. Most of the eroded sediment had similar proportions of sand and silt/clay as the hillslope soils, but the sediment behind the fence was significantly enriched in sand while the sediment that overtopped the fence was more strongly enriched in silt/clay. The sediment fences had capacities of 3 m3 for hillslopes of 0.19–0.43 ha, but simulations of runoff for 2- to 100-year storms indicate that the sediment fences would need a capacity of up to 240 m3 to store all of the runoff and associated sediment. More accurate measurements of sediment yields with sediment fences require either increasing the storage capacity of the sediment fence(s) to accommodate the expected volume of runoff and sediment, reducing the size of the contributing area, or directly measuring the runoff and sediment that overtop the fence. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号