首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed. This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration (I-D) thresholds. First, the study on landslide susceptibility in China is introduced. The entire territory has been classified into five categories, among which high-susceptibility regions (Zone 4- ‘High’ and 5-‘Very high’) account for 4.15% of the total extension of China. Second, rainfall is considered as an external triggering factor that may induce landslide initiation. Real-time satellite-based TMPA 3B42 products may provide real rainfall spatial and temporal patterns, which may be used to derive rainfall duration time and intensity. By using a historical record of 60 significant past landslides, the rainfall I-D equation has been calibrated. The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours. The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds, where the susceptibility category is ‘high’ or ‘very high’. This study shows a useful tool to be part of a systematic landslide simulation methodology, potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.  相似文献   

2.
Many landslides are triggered by rainfall. Previous studies of the relationship between landslides and rainfall have concentrated on deriving minimum rainfall thresholds that are likely to trigger landslides. Though useful, these minimum thresholds derived from a log–log plot do not offer any measure of confidence in a landslide monitoring or warning system. This study presents a new and innovative method for incorporating rainfall into landslide modelling and prediction. The method involves three steps: compiling radar reflectivity data in a QPESUMS (quantitative precipitation estimation and segregation using multiple sensors) system during a typhoon (tropical hurricane) event, estimating rainfall from radar data and using rainfall intensity and rainfall duration as explanatory variables to develop a landslide logit model. Given the logit model, this paper discusses ways in which the model can be used for computing probabilities of landslide occurrence for a real‐time monitoring system or a warning system, and for delineating and mapping landslides. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Many investigators have attempted to define the threshold of landslide failure, that is, the level of the selected climatic variable above which a rainfall-induced landslide occurs. Intensity–duration (Id) relationships are the most common type of empirical thresholds proposed in the literature for predicting landslide occurrence induced by rainfall. Recent studies propose the use of the kinetic power per unit volume of rainfall (J m−2 mm−1) to quantify the threshold of landslides induced by rainfall. In this paper, the relationship between rainfall duration and kinetic power corresponding to landslides triggered by rain was used to propose a new approach to define the threshold for predicting landslide occurrence. In particular, for the first time, a kinetic power per unit volume of rainfall–duration relationship is proposed for defining the minimum threshold needed for landslide failure. This new method can be applied using commonly used relationship for estimating the kinetic power per unit volume of rainfall and a new equation based on the measured raindrop size distribution. The applicability of this last method was tested using the data of rainfall intensity, duration and median volume diameter for 51 landslides in Taiwan. For the 51 landslides, the comparison between the measured pairs' kinetic power–duration and all selected relationships demonstrated that the equation based on the measured raindrop size distribution is the best method to define the landslide occurrence threshold, as it is both a process-oriented approach and is characterized by the best statistical performance. This last method has also the advantage to allow the forecasting of landslide hazard before the end of the rainfall event, since the rainfall kinetic power threshold value can be exceeded for a time interval less than the event duration.  相似文献   

4.
—Rainfall-triggered landslides constitute a serious hazard and an important geomorphic process in many parts of the world. Attempts have been made at various scales in a number of countries to investigate triggering conditions in order to identify patterns in behaviour and, ultimately, to define or calculate landslide-triggering rainfall thresholds. This study was carried out in three landslide-prone regions in the North Island of New Zealand. Regional landslide-triggering rainfall thresholds were calculated using an empirical “Antecedent Daily Rainfall Model.” In this model, first introduced by, triggering rainfall conditions are represented by a combination of rainfall occurring in a period before the event (antecedent rainfall) and rainfall on the day of the event. A physically-based decay coefficient is derived for each region from the recessional behaviour of storm hydrographs and is used to produce an index for antecedent rainfall. Statistical techniques are employed to obtain the thresholds which best separate the rainfall conditions associated with landslide occurrence from those of non-occurrence or a given probability of occurrence.The resultant regional models are able to represent the probability of occurrence of landsliding events on the basis of rainfall conditions. The calculated thresholds show regional differences in susceptibility of a given landscape to landslide-triggering rainfall. These differences relate to both the landslide database and the difference of existing physical conditions between the regions.  相似文献   

5.
The tectonically stable central highlands of Sri Lanka and its alluvial valleys are the source areas and sinks, respectively, for one of the most prolific Quaternary gemstone provinces in the world. However, the known 10Be/26Al cosmogenic‐nuclide‐determined low natural (preanthropogenic) denudation rates of 2–11 mm kyr?1, and resulting sediment fluxes, are grossly inadequate to deliver the vast throughputs of overburden required to concentrate the known gemstone deposits. Basin‐wide, unstable, slow‐moving channelized landslides and debris flows, aided by biotic factors, are the dominant mechanisms of mass‐wasting on hill‐slopes and bulk delivery of sediment to the alluvial valleys and fluvial networks. Channelization ensures modulated sediment transfer and run‐out during an erosional–depositional continuum. In a selected inventory of landslides, mobilized sediment volumes ranged from less than 1000 cubic metres to a maximum of ~800 000 cubic metres per event. Monsoonal rainfall (both cumulative seasonal and total daily thresholds) is the primary external factor, which interacts with colluvium thickness and steep slopes in triggering landslides. There are three to five ‘threshold’ rainfall events per year in the highlands that can be expected to generate landslides. They can occur under conditions of decreasing daily rainfall as the seasonal total rainfall increases. GIS databases show a very significant spatial overlap and direct causal linkage between several hundred landslide occurrences and the innumerable gem pits and mines in the catchments of the best known mining region of Sri Lanka. Landslide‐associated mass movements, besides providing significant numbers of gemstones to the alluvial valleys over time, are also a fundamental factor in the geomorphic evolution of the rugged central highland landscape. Rainfall‐driven landslide activity may be a natural geological response affecting erosional equilibrium in high‐relief tectonically stable terrains. Climatically forced base level changes will, over time, control sediment storage, removal or reworking in the valleys. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Rainfall characteristics for shallow landsliding in Seattle,Washington, USA   总被引:2,自引:0,他引:2  
Shallow landsliding in the Seattle, Washington, area, has caused the occasional loss of human life and millions of dollars in damage to property. The effective management of the hazard requires an understanding of the rainfall conditions that result in landslides. We present an empirical approach to quantify the antecedent moisture conditions and rainstorm intensity and duration that have triggered shallow landsliding using 25 years of hourly rainfall data and a complementary record of landslide occurrence. Our approach combines a simple water balance to estimate the antecedent moisture conditions of hillslope materials and a rainfall intensity–duration threshold to identify periods when shallow landsliding can be expected. The water balance is calibrated with field‐monitoring data and combined with the rainfall intensity–duration threshold using a decision tree. Results are cast in terms of a hypothetical landslide warning system. Two widespread landslide events are correctly identified by the warning scheme; however, it is less accurate for more isolated landsliding. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Rainfall thresholds for shallow landslide initiation were determined for hillslopes with two types of bedrock, permeable sandstone and impermeable mudstone, in the Boso Peninsula, Japan. The pressure‐head response to rainfall was monitored above a slip scarp due to earlier landslides. Multiple regression analysis estimated the rainfall thresholds for landsliding from the relation between the magnitude of the rainfall event and slope instability caused by the increased pressure heads. The thresholds were expressed as critical combinations of rainfall intensity and duration, incorporating the geotechnical properties of the hillslope materials and also the slope hydrological processes. The permeable sandstone hillslope has a greater critical rainfall and hence a longer recurrence interval than the impermeable mudstone hillslope. This implies a lower potential for landsliding in sandstone hillslopes, corresponding to lower landslide activity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Probabilistic thresholds for triggering shallow landslides by rainfall are developed using two approaches: a logistic regression model and Iverson's physically based model. Both approaches are applied to a 180 km2 area in northern Italy. For the physically based model a Monte Carlo approach is used to obtain probabilities of slope failure associated with differing combinations of rainfall intensity and duration as well as differing topographic settings. For the logistic regression model hourly and daily rainfall data and split‐sample testing are used to explore the effect of antecedent rainfall on triggering thresholds. It is demonstrated that both the statistical and physically based models provide stochastic thresholds that express the probability of landslide triggering. The resulting thresholds are comparable, even though the two approaches are conceptually different. The physically based model also provides an estimate of the percentage of potentially unstable areas in which failure can be triggered with a certain probability. The return period of rainfall responsible for landslide triggering is studied by using a Gumbel scaling model of rainfall intensity–duration–frequency curves. It is demonstrated that antecedent rainfall must be taken into account in landslide forecasting, and a method is proposed to correct the rainfall return period by filtering the rainfall maxima with a fixed threshold of antecedent rainfall. This correction produces an increase of the return periods, especially for rainstorms of short duration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A new method for spatio-temporal prediction of rainfall-induced landslide   总被引:2,自引:0,他引:2  
1 Introduction The landslides influences on the human society have become an environment difficult problem not able to be neglected, and according to the priority of harms, harms of landslides are only smaller than those from earthquakes in all sorts of natural hazards[1]. Landslide is part of rock mass, soil mass or their compound mass slides downward along a certain slid- ing surface under the actions of inner and external dy- namics, and it is one severe instability phenomenon of rock and s…  相似文献   

10.
The growing availability of digital topographic data and the increased reliability of precipitation forecasts invite modelling efforts to predict the timing and location of shallow landslides in hilly and mountainous areas in order to reduce risk to an ever‐expanding human population. Here, we exploit a rare data set to develop and test such a model. In a 1·7 km2 catchment a near‐annual aerial photographic coverage records just three single storm events over a 45 year period that produced multiple landslides. Such data enable us to test model performance by running the entire rainfall time series and determine whether just those three storms are correctly detected. To do this, we link a dynamic and spatially distributed shallow subsurface runoff model (similar to TOPMODEL) to an in?nite slope model to predict the spatial distribution of shallow landsliding. The spatial distribution of soil depth, a strong control on local landsliding, is predicted from a process‐based model. Because of its common availability, daily rainfall data were used to drive the model. Topographic data were derived from digitized 1 : 24 000 US Geological Survey contour maps. Analysis of the landslides shows that 97 occurred in 1955, 37 in 1982 and ?ve in 1998, although the heaviest rainfall was in 1982. Furthermore, intensity–duration analysis of available daily and hourly rainfall from the closest raingauges does not discriminate those three storms from others that did not generate failures. We explore the question of whether a mechanistic modelling approach is better able to identify landslide‐producing storms. Landslide and soil production parameters were ?xed from studies elsewhere. Four hydrologic parameters characterizing the saturated hydraulic conductivity of the soil and underlying bedrock and its decline with depth were ?rst calibrated on the 1955 landslide record. Success was characterized as the most number of actual landslides predicted with the least amount of total area predicted to be unstable. Because landslide area was consistently overpredicted, a threshold catchment area of predicted slope instability was used to de?ne whether a rainstorm was a signi?cant landslide producer. Many combinations of the four hydrological parameters performed equally well for the 1955 event, but only one combination successfully identi?ed the 1982 storm as the only landslide‐producing storm during the period 1980–86. Application of this parameter combination to the entire 45 year record successfully identi?ed the three events, but also predicted that two other landslide‐producing events should have occurred. This performance is signi?cantly better than the empirical intensity–duration threshold approach, but requires considerable calibration effort. Overprediction of instability, both for storms that produced landslides and for non‐producing storms, appears to arise from at least four causes: (1) coarse rainfall data time scale and inability to document short rainfall bursts and predict pressure wave response; (2) absence of local rainfall data; (3) legacy effect of previous landslides; and (4) inaccurate topographic and soil property data. Greater resolution of spatial and rainfall data, as well as topographic data, coupled with systematic documentation of landslides to create time series to test models, should lead to signi?cant improvements in shallow landslides forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Landslide erosion is a dominant hillslope process and the main source of stream sediment in tropical, tectonically active mountain belts. In this study, we quantified landslide erosion triggered by 24 rainfall events from 2001 to 2009 in three mountainous watersheds in Taiwan and investigated relationships between landslide erosion and rainfall variables. The results show positive power‐law relations between landslide erosion and rainfall intensity and cumulative rainfall, with scaling exponents ranging from 2·94 to 5·03. Additionally, landslide erosion caused by Typhoon Morakot is of comparable magnitude to landslide erosion caused by the Chi‐Chi Earthquake (MW = 7·6) or 22–24 years of basin‐averaged erosion. Comparison of the three watersheds indicates that deeper landslides that mobilize soil and bedrock are triggered by long‐duration rainfall, whereas shallow landslides are triggered by short‐duration rainfall. These results suggest that rainfall intensity and watershed characteristics are important controls on rainfall‐triggered landslide erosion and that severe typhoons, like high‐magnitude earthquakes, can generate high rates of landslide erosion in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A model‐based method is proposed for improving upon existing threshold relationships which define the rainfall conditions for triggering shallow landslides but do not allow the magnitude of landsliding (i.e. the number of landslides) to be determined. The SHETRAN catchment‐scale shallow landslide model is used to quantify the magnitude of landsliding as a function of rainfall return period, for focus sites of 180 and 45 km2 in the Italian Southern Alps and the central Spanish Pyrenees. Rainfall events with intensities of different return period are generated for a range of durations (1‐day to 5‐day) and applied to the model to give the number of landslides triggered and the resulting sediment yield for each event. For a given event duration, simulated numbers of landslides become progressively less sensitive to return period as return period increases. Similarly, for an event of given return period, landslide magnitude becomes less sensitive to event duration as duration increases. The temporal distribution of rainfall within an event is shown to have a significant impact on the number of landslides and the timing of their occurrence. The contribution of shallow landsliding to catchment sediment yield is similarly quantified as a function of the rainfall characteristics. Rainfall intensity–duration curves are presented which define different levels of landsliding magnitude and which advance our predictive capability beyond, but are generally consistent with, published threshold curves. The magnitude curves are relevant to the development of guidelines for landslide hazard assessment and forecasting. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Landslide inventories and their statistical properties   总被引:1,自引:0,他引:1  
Landslides are generally associated with a trigger, such as an earthquake, a rapid snowmelt or a large storm. The landslide event can include a single landslide or many thousands. The frequency–area (or volume) distribution of a landslide event quanti?es the number of landslides that occur at different sizes. We examine three well‐documented landslide events, from Italy, Guatemala and the USA, each with a different triggering mechanism, and ?nd that the landslide areas for all three are well approximated by the same three‐parameter inverse‐gamma distribution. For small landslide areas this distribution has an exponential ‘roll‐over’ and for medium and large landslide areas decays as a power‐law with exponent ‐2·40. One implication of this landslide distribution is that the mean area of landslides in the distribution is independent of the size of the event. We also introduce a landslide‐event magnitude scale mL = log(NLT), with NLT the total number of landslides associated with a trigger. If a landslide‐event inventory is incomplete (i.e. smaller landslides are not included), the partial inventory can be compared with our landslide probability distribution, and the corresponding landslide‐event magnitude inferred. This technique can be applied to inventories of historical landslides, inferring the total number of landslides that occurred over geologic time, and how many of these have been erased by erosion, vegetation, and human activity. We have also considered three rockfall‐dominated inventories, and ?nd that the frequency–size distributions differ substantially from those associated with other landslide types. We suggest that our proposed frequency–size distribution for landslides (excluding rockfalls) will be useful in quantifying the severity of landslide events and the contribution of landslides to erosion. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of sufficient ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing a preliminary real-time prediction system to identify where rainfall-triggered landslides will occur is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.gov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, land cover classification, etc.) using a GIS weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide hazards at areas with high susceptibility. A major outcome of this work is the availability for the first time of a global assessment of landslide hazards, which is only possible because of the utilization of global satellite remote sensing products. This preliminary system can be updated continuously using the new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and mitigation activities across the world.  相似文献   

15.
Landsliding induced by earthquakes and rainstorms in montane regions is not only a sculptor for shaping the landscape, but also a driver for delivering sediments and above‐ground biomass downstream. However, the terrain attributes of earthquake‐ and rainstorm‐induced landslides are less discussed comprehensively in Taiwan. As part of an island‐wide inventory, we here compare and contrast the landslide terrain attributes resulting from two catastrophic events: the Chi‐Chi earthquake (M w = 7.6, September 1999) and typhoon Morakot (rainfall >2500 mm, August 2009). Results show that the earthquake‐induced landslides are relatively small, round‐shaped and prone to occur primarily in middle and toe of slopes. In contrast, the rainstorm‐induced landslides are larger, horseshoe‐shaped and preferentially occurring in slope toes. Also, earthquake‐induced landslides, particularly large landslides, are usually found at steeper gradients, whereas rainstorm‐induced landslides aggregate at gradients between 25° and 40°. Lithologic control plays a secondary role in landsliding. From an island‐wide perspective, high landslide density locates in the region of earthquake intensity ≥ VI or one‐day rainfall ≥600 mm day?1. Through the landslide patterns and their terrain attributes, our retrospective approach sheds light on accessing the historical and remote events for close geophysical investigations. Finally, we should bear in mind that the landslide location, size, and terrain attributes varying with triggers may affect the landscape evaluation or biogeochemical processes in landslide‐dominated regions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
David Dunkerley 《水文研究》2012,26(15):2211-2224
Small plots and a dripper rainfall simulator were used to explore the significance of the intensity fluctuations (‘event profile’) within simulated rainfall events on infiltration and runoff from bare, crusted dryland soils. Rainfall was applied at mean rain rates of 10 mm/h. Fourteen simulated rainfall events each involved more than 5000 changes of intensity and included multipeak events with a 25‐mm/h peak of intensity early in the event or late in the event and an event that included a temporary cessation of rain. These are all event profiles commonly seen in natural rain but rarely addressed in rainfall simulation. A rectangular event profile of constant intensity, as commonly used in rainfall simulation experiments, was also adopted for comparative purposes. Results demonstrate that event profile exerts an important effect on infiltration and runoff for these soils and rainfall event profiles. ‘Uniform’ events of unvarying intensity yielded the lowest total runoff, the lowest peak runoff rate and the lowest runoff ratio (0.13). These parameters increased for ‘early peak’ profiles (runoff ratio 0.24) and reached maxima for ‘late peak’ profiles (runoff ratio 0.50). Differences in runoff ratio and peak runoff rate between the ‘uniform’ event profile and those of varying intensity were all statistically significant at p ≤ 0.01. Compared with ‘uniform’ runs, the varying intensity runs yielded larger runoff ratios and peak runoff rates, exceeding those of the ‘uniform’ events by 85%–570%. These results suggest that for small‐plot studies of infiltration and erosion, the continued use of constant rainfall intensity simulations may be sacrificing important information and misrepresenting the mechanisms involved in runoff generation. The implications of these findings for the ecohydrology of the research site, an area of contour‐aligned banded vegetation in which runoff and runon are of critical importance, are highlighted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Local reactivations of landslides in forests are rarely reported in landslide catalogues. The occurrence of hillslope sections with fresh morphological landslide features in forested old, deep‐seated landslides, however, suggests that landslide reactivations are not restricted to residential areas. In this study, a dendrogeomorphological analysis of beech stands was used to investigate the periods of reactivation of a deep‐seated rotational slide in the Koppenberg forest (Flemish Ardennes, Belgium). The relation to rainfall and the correspondence to landslide reactivations reported in a nearby built‐up area were also analysed. A dendrometrical study preceding the dendrochronological analysis proved that, compared with the nearby reference site, trees on the Koppenberg forest landslide site were significantly more inclined and showed more knees, indicating that the landslide site has not stabilized yet. As the sampled trees are younger than the landslide, dendrochronology did not allow determination of the year in which the landslide was initiated, but analysis of two different tree ring width parameters (i.e. ring eccentricity and growth change) calculated for trees sampled on the Koppenberg landslide and the reference site proved to be of great help in determining the temporal sequence of landslide reactivation. During the past 80 years, several periods indicative of local reactivations (i.e. 1943–1945, 1949–1952, 1967–1970, 1972–1977, 1979–1981, 1988–1997) were found within the investigated landslide, but delineation of the spatial extent of the reactivations during these indicative periods was not straightforward. These periods generally correspond to years with above‐average rainfall. Finally, the fact that at least 34% of the years indicative of reactivation of the Koppenberg forest landslide correspond to a year in which a landslide reactivation was reported in the Flemish Ardennes suggests that in built‐up areas, apart from anthropogenic interventions, natural triggering factors remain very important. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Over the past geological and historical period, tens of thousands of landslides occurred in the upper reaches of the Minjiang River, an area which is characterized by alpine valleys and has been densely populated over the past several hundreds of years. Discussing the triggering factor of these landslides is of great significance to geological hazard mitigation and prevention in this region. In this paper, we focus on four aspects of regional rainfall, shape features of landslide slopes, the corresponding relationship between landslide area and earthquake magnitude, and the recurring features of the reconstructed palaeoearthquake record at Diexi. Compared with those in Nepal, both mean seasonal rainfall accumulation and mean daily rainfall for the past 30 years are too low to reach the threshold values triggering landslides in the upper reaches of the Minjiang River. Secondly, landslides in the study area are usually absent of inner gorges(canyon topography)on the hillslope toes, which are confirmed in previous studies as typical features of landslides triggered by storms. Thirdly, wide distribution of the landslides in the study area supports our notion of earthquake-triggering because the landslides triggered by storms commonly distribute locally. Fourthly, periodicity analysis of the reconstructed palaeoearthquake record at Diexi provides a few cycles of twenty to thirty years, possibly corresponding to the earthquakes of magnitudes>5.0 or 5.5 which are believed to have caused soft-sediment deformation in the study area. In contrast, like the 2008 MS8.0 Wenchuan earthquake, the average recurrence interval of the large earthquakes in the study area is 2.6ka. They caused tens of thousands of landslides and provided more coarse silt particles for the nearby lake sediments at least in 330 years for each time. This is consistent with exponential increase of earthquake magnitude from large to medium and of the landslide area with the increased earthquake magnitude. To sum up, we suggest that tens of thousands of landslides in the upper reaches of the Minjiang River were most likely triggered by earthquakes instead of storms. This preliminary viewpoint needs further examination in the future.  相似文献   

19.
In recent years, with the increase of traffic construction in mountainous areas in China, road slope traffic accidents have become more and more common. In addition, natural disasters such as landslides, collapses and subgrade settlements caused by rainfall, driving load, seasonal variation and groundwater distribution are frequent. In particular, rainfall is one of the most common factors leading to slope instability (landslide). Therefore, this paper proposes the seep module based on the application software Geo-studio, and analyzes the slope soil parameters and slope stability under five types of rainfall conditions:light rain (10 mm/d), moderate rain (25 mm/d), heavy rain (50 mm/d), rainstorm(100 mm/d), and torrential rain (250 mm/d). The critical safety factor under rainfall intensity is fitted with nonlinear curve by sine function. The results show that the fitting curve of rainfall intensity and safety factor on the upper slope is excellent. The residual points are evenly distributed in the belt area of±0.1, and the data basically conform to the nonlinear sine model, indicating that the curve plays an essential role in slope health diagnosis.  相似文献   

20.
David Dunkerley 《水文研究》2008,22(26):5024-5036
Rainfall is routinely reported as falling in ‘events’ or ‘storms’ whose beginning and end are defined by rainless intervals of a nominated duration (minimum inter‐event time, MIT). Rain events commonly exhibit fluctuations in rain rate as well as periods when rain ceases altogether. Event characteristics such as depth, mean rain rate, and the surface runoff volume generated, are defined in relation to the length of the rain event. These derived properties are dependent upon the value of MIT adopted to define the event, and the literature reveals a wide range of MIT criteria. Surprisingly little attention has been paid to this dependency, which limits the inter‐comparison of results in published work. The diversity in criteria also diminishes the usefulness of historical data on event durations, rain rates, etc., in attempts to document changes in the rainfall climate. This paper reviews the range of approaches used in the recognition of rain events, and a 5 year pluviograph record from an arid location is analysed. Changing MIT from 15 min to 24 h (lying within the range of published criteria) alters the number of rain events from 550 to 118. The mean rain rate declines from 2·04 mm h?1 to 0·94 mm h?1, and the geometric mean event duration rises from 0·66 h to 3·98 h. This wide variation in the properties of rain events indicates that more attention needs to be paid to the selection and reporting of event criteria in studies that adopt event‐based data analysis. The selection of a MIT criterion is shown to involve a compromise between the independence of widely‐spaced events and their increasingly variable intra‐event characteristics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号