首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Wind characteristics and aeolian transport were measured on a naturally evolving beach and dune and a nearby site where the beach is raked and sand‐trapping fences are deployed. The beaches were composed of moderately well sorted to very well sorted fine to medium sand. The backshore at the raked site was wider and the foredune was more densely vegetated and about 1 m higher than at the unraked site. Wind speeds were monitored using anemometers placed at 1 m elevation and sand transport was monitored using vertical traps during oblique onshore, alongshore and offshore winds occurring in March and April 2009. Inundation of the low backshore through isolated swash channels prevented formation of a continuously decreasing cross‐shore moisture gradient. The surface of the berm crest was dryer than the backshore, making the berm crest the greatest source of offshore losses during offshore winds. The lack of storm wrack on the raked beach reduced the potential for sediment accumulation seaward of the dune crest during onshore winds, and the higher dune crest reduced wind speeds and sediment transport from the dune to the backshore during offshore winds. Accretion at wrack seaward of the dune toe on the unraked beach resulted in a wider dune field and higher, narrower backshore. Although fresh wrack is an effective local trap for aeolian transport, wrack that becomes buried appears to have little effect as a barrier and can supply dry sand for subsequent transport. Aeolian transport rates were greater on the narrower but dryer backshore of the unraked site. Vegetation growth may be necessary to trap sand within zones of buried wrack in order to allow new incipient foredunes to evolve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Studies of sediment transport on developed coasts provide perspective on how human adjustments alter natural processes. Deployment of sand‐trapping fences is a common adjustment that changes the characteristics of the dune ramp and its role in linking sediment transfers from the backshore to the foredune. Fence effects were evaluated in the field using anemometer arrays and vertical sediment traps placed across a beach and dune at Seaside Park, New Jersey, USA during onshore and longshore winds. The foredune is 18 m wide and 4.5 m above the backshore. The mean speed of onshore winds at 0.5 m elevation decreased by 17% from the berm crest to the upper ramp and 36% in the lee of a fence there. Sediment transport during mean wind speeds up to 8.0 m s?1 at 0.5 m elevation was < 0.06 kg m?1 h?1 on the berm crest and backshore where fetch distances were < 45 m and surface sediment was relatively coarse (0.74–0.85 mm) but increased to 5.63 kg m?1 h?1 on the upper ramp aided by the longer fetch distances (up to 82 m) and finer grain size of the source sediment there (0.52 mm). Sediment transport along the berm crest and backshore during longshore winds, where fetch distances were > 200 m, was up to 58.69 kg m?1 h?1, about three orders of magnitude greater than during the onshore winds. Fences can displace the toe of the ramp farther seaward than would occur under natural conditions. They can create a gentler slope and change the shape of the ramp to a more convex form. A fence on the ramp can cut off a portion of sediment supply to the upper slope. Decisions about fence placement thus should consider these morphologic changes in addition to the effects on dune volume. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Sediment transport and short‐term morphologic change were evaluated at a site where sand fences are deployed and the beach is raked (Managed Site) and a site where these human adjustments are not practiced (Unmanaged Site). Data were gathered across the seaward portion of a low foredune when winds blew nearly shore‐normal at mean speeds 8.9 to 9.3 m s‐1. Data from traps revealed sediment transport rates at unvegetated portions of the foredune crest (40.2 to 43.5 kg m‐1 h‐1) were greater than on the backshore (4.9 to 11.2 kg m‐1 h‐1) due to onshore decreases in surface moisture and speed‐up of the wind passing over the foredune. Data from erosion pins indicate sediment input to the dune was 1.48 m3 m‐1 alongshore at the Managed Site and 1.25 m3 m‐1 at the Unmanaged Site. The Unmanaged Site had deposition at the dune toe, erosion at mid‐slope, and deposition at the crest. Deposition occurred at mid‐slope on the Managed Site near a partially buried (0.58 m high) fence with a porosity of about 65%. Deposition at partially buried wrack on the upper backshore and dune toe at the Unmanaged Site was about twice as great as deposition in this zone at the Managed Site. Results indicate that: (1) the seaward slope of the foredune can be a more important source of sand to the lee of the crest than the beach; (2) wrack near the toe can decrease transport into the foredune; (3) a scour zone can occur on the foredune slope above the wrack line; (4) a fence placed in this location can promote deposition and offset scour, but fences can restrict delivery of sediment farther inland. Evaluation of alternative configurations of fences and strategies for managing wrack is required to better determine the ways that humans modify foredunes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Wind flow and sand transport intensity were measured on the seaward slope of a vegetated foredune during a 16 h storm using an array of sonic anemometers and Wenglor laser particle counters. The foredune had a compound seaward slope with a wave‐cut scarp about 0.5 m high separating the upper vegetated portion from the lower dune ramp, which was bare of vegetation. Wind direction veered from obliquely offshore at the start of the event to obliquely onshore during the storm peak and finally to directly onshore during the final 2 h as wind speed dropped to below threshold. Sand transport was initially inhibited by a brief period of rain at the start of the event but as the surface dried and wind speed increased sand transport was initiated over the entire seaward slope. Transport intensity was quite variable both temporally and spatially on the upper slope as a result of fluctuating wind speed and direction, but overall magnitudes were similar over the whole length. Ten‐minute average transport intensity correlates strongly with mean wind speed measured at the dune crest, and there is also strong correlation between instantaneous wind speed and transport intensity measured at the same locations when the data are smoothed with a 10 s running mean. Transport on the beach for onshore winds is decoupled from that on the seaward slope above the small scarp when the wind angle is highly oblique, but for wind angles <45° from shore perpendicular some sand is transported onto the lower slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Spatial backshore processes were investigated through field observations of topography and median sand grain size at a sandy beach facing the Pacific Ocean in Japan. A comparison of the backshore profile and cross‐shore distribution of the median sand grain size in 1999 and 2004 revealed an unusual sedimentary process in which sand was coarsened in a depositional area in the 5‐year period, although sediment is generally coarsened in erosional areas. In support of these observations, monthly spatial field analyses carried out in 2004 demonstrated a remarkable backshore coarsening process triggered by sedimentation in the seaward part of the backshore during a storm event. In order to elucidate mechanisms involved in the backshore coarsening process, thresholds of movable sand grain size under wave and wind actions (a uniform parameter for both these cases) in the onshore and offshore directions were estimated using wave, tide, and wind data. The cross‐shore distributions of the estimated thresholds provided reasonable values and demonstrated a coarsening mechanism involving the intermediate zone around the shoreline under alternating wave and wind actions as a result of which coarse sand was transported toward the seaward part of the backshore by large waves during storms and then toward the landward part by strong onshore winds. The 5‐year backshore coarsening is most certainly explained by repetition of short‐term coarsening mechanisms caused by wave‐induced sand transport occurring from the nearshore to the intermediate zone. Copyright © 2010 John Wiley & Sons, Ltd  相似文献   

8.
Monitoring surface change on a Namib linear dune   总被引:1,自引:0,他引:1  
In tackling the apparently intractable problem of linear dune initiation and maintenance there has been a move away from large-scale deductive models to smaller-scale field studies of individual dunes. This paper reports a study of surface change on a large, complex linear dune in the Namib Desert, southern Africa. The dune surface responds to a markedly seasonal wind regime. In summer westerly winds erode sand from the west flank of the dune and deposit it on the easterly lee side of the dune crest. In winter this pattern is reversed. Easterly winds erode sand from the east slope and deposit it on the west slope. The crest therefore moves back and forth some 15 m each year returning at the end of a year's cycle to its position at the beginning. The position of the base of the dune appears to remain fixed, even though sand is moving throughout the dune system. The dune does extend northward along some resultant of the westerly and easterly winds. Despite relatively high levels of activity, especially at the dune crest, there is no evidence of the breakdown of the linear dune form. The conclusion must therefore be that linear dunes can be maintained in bimodal wind regimes and are not necessarily related to unidirectional parallel regimes as others have suggested.  相似文献   

9.
Sediment budget data from an 18‐month topographic survey were analysed with data from brief experiments on wind parameters, beach moisture contents, bedforms and sand mobilization in order to monitor conditions and patterns of embryo dune development over a flat 150–1000 m wide accreting upper beach. The surface conditions over the upper beach locally affect aeolian transport, but net dune development over time depends on sustained strong winds and their orientation. Incoming marine sand supplied by storms and onshore winds is reorganized by the dominant offshore to longshore winds into elongated embryo dunes over this upper beach, imprinting a regional morphology of long‐term longshore dune ridge development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, crescentic dune shape change (deformation) with migration at White Sands was explored in a time series of five LiDAR‐derived digital elevation models (DEMs) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 to June 2010, 244 sand‐transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of crest‐normal migration to the NE, but also along‐crest migration of dune sinuosity and stoss superimposed dunes to the SE. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along‐crest migration of dune sinuosity and stoss bedforms, as well as SE migration of NE‐trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. The dunes deform with migration because of differences in dune‐segment size, and differences in the lee‐face deposition rate as a function of the incidence angle between the wind direction and the local brinkline orientation. Each wind event deforms dune shape, this new shape then serves as the boundary condition for the next wind event. Shared incidence‐angle control on dune deformation and lee‐face stratification types allows for an idealized model for White Sands dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
More than 4000 hourly wind profiles measured on three topographically different foredunes are analysed and discussed. Wind flow over the foredunes is studied by means of the relative wind speed: the ratio between wind speed at a certain location and the reference wind speed at the same height. Relative wind speeds appear to be independent of general wind speed but dependent on wind direction. For perpendicular onshore winds the flow over the foredune is accelerated due to topographic changes and decelerated due to changes in surface roughness. Accelerations dominate over decelerations on the seaward slope. The pattern of acceleration and deceleration in relation to wind direction is more or less comparable for different foredunes, but the magnitudes differ. An increase in foredune height from 6 to 10m leads to an increase in speed-up near the top of the seaward slope from 110 to 150 per cent during onshore wind, but further increase of foredune height from 10 to 23m appears to have little effect, due to increased roughness and deflection of flow. Topography also influences the direction of the flow. Between beach and top, the flow deflects in the direction of the normal during onshore winds. During offshore winds the flow is deflected to the parallel. Near the dunefoot, deflection is always in the direction of the parallel, and increases with steeper topography. The maximum deflection near the dunefoot was 90°, over a 23 m high dune, observed during offshore winds. Patterns of erosion and sedimentation resulting from winds from different directions can be explained by the observed accelerations and decelerations. Owing to speed-up on the seaward front of the foredune, sand transport capacity of the wind increases, which results in erosion if vegetation is absent. During strong onshore wind, sand is lifted near the dunefoot and moves over the foredune in suspension. During weaker winds, vertical wind velocities do not exceed fall velocities of the sand grains, and most of the sand is deposited near the dunefoot.  相似文献   

12.
Topographic changes in two blowouts located in Island Beach State Park, New Jersey, USA were monitored over the winter of 1981-1982. Elevation changes were measured with erosion pins, and sediment traps placed at comparable locations in each blowout monitored the amount of sand moved by the wind. Discrete wind events were identified from regional data, and morphological data for the intervals with the highest onshore and offshore wind speeds are examined in detail. Vegetation is the primary influence on the development of the two blowouts. Blowout A is characterized by eroding sidewalls, a stable base, and an accreting blowout rim. High rates of sediment transport occur through the blowout throat which results in accretion on the vegetated rim. This blowout is an active sediment transfer system. Vegetation causes a large amount of deposition in the throat of blowout B. As vegetation was buried over the winter, the area of deposition migrated inland. Sidewall erosion also occurred in blowout B. Little change was recorded on the blowout rim. Blowout B is a recovering system where sediment is delivered to the blowout floor from the beach by onshore winds and from the blowout rim by offshore winds where it is stabilized by vegetation. The development of foredune blowouts is governed largely by vegetation cover on the dune crest and by sidewall erosion during offshore and onshore winds. Blowout recovery depends on vegetation growth and sediment deposition in the throat, and on the role of the sidewalls as sources of sediment which is deposited elsewhere within the system. Foredune blowouts are dynamic systems in which positive feedbacks in sediment availability and vegetation growth lead to a cycle of development and closure.  相似文献   

13.
The behaviour of offshore‐directed winds over coastal dune and beach morphology was examined using a combination of modelling (3‐D computational fluid dynamics (CFD)) and field measurement. Both model simulations and field measurements showed reversal of offshore flows at the back beach and creation of an onshore sediment transport potential. The influence of flow reversals on the beach‐dune transport system and foredune growth patterns has previously received little attention. Detailed wind flow measurements were made using an extensive array of mast‐mounted, 3‐D ultrasonic anemometers (50 Hz), arranged parallel to the dominant incident wind direction. Large eddy simulation (LES) of the offshore wind flow over the dune was conducted using the open‐source CFD tool openFOAM. The computational domain included a terrain model obtained by airborne LiDAR and detailed ground DGPS measurements. The computational grid (~22 million cells) included localized mesh refinement near the complex foredune terrain to capture finer details of the dune morphology that might affect wind flows on the adjacent beach. Measured and simulated wind flow are presented and discussed. The CFD simulations offer new insights into the flow mechanics associated with offshore winds and how the terrain steering of wind flow impacts on the geomorphological behaviour of the dune system. Simulation of 3‐D wind flows over complex terrain such as dune systems, presents a valuable new tool for geomorphological research, as it enables new insights into the relationship between the wind field and the underlying topography. The results show that offshore and obliquely offshore winds result in flow reversal and onshore directed winds at distances of up to 20 m from the embryo dune toe. The potential geomorphological significance of the findings are discussed and simple calculations show that incoming offshore and obliquely offshore winds with mean velocities over 13 m s?1 and 7 m s?1, respectively, have the potential to create onshore‐directed winds at the back beach with mean velocities above 3.3 m s?1. These are above the threshold of movement for dry sand and support previous conclusions about the significance of offshore winds in dune and beach budget calculations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Near‐surface airflow over a morphologically simple, vegetated, 8 m high foredune with a small wave‐cut scarp was measured for onshore to oblique‐onshore conditions during a low‐moderate (5–6 m s‐1 ) wind event and a high velocity (11–18 m s‐1) sand‐transporting gale event. Flow across the foredune was characterized by significant flow compression and acceleration up and across the foredune during both events. During the gale, a pronounced jet (speed bulge) developed at the foredune crest, which increased in magnitude with increasing wind speed. The vertical (W) velocity component of the 3D flow field was positive (upwards) across the stoss slope under low wind conditions but negative (downwards) during gale wind conditions, with upslope acceleration. During the low velocity event, there was speed‐down within the vegetation canopy, as would be expected for a porous roughness cover. During the strong wind event there was speed‐up in the lower portion of the vegetation canopy, and this was found up the entire stoss slope. Sediment transport during the gale force event was substantial across the beach and foredune despite the moderate vegetation cover and minimum fetch. Aeolian suspension was evident in the lee of the dune crest. The observations presented herein show that strong storm winds are an effective mechanism for translating sediment landwards across a high vegetated foredune, contributing sediment to the stoss slope, crest and leeward slopes of the foredune and backing dunes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The longitudinal dunes of the Simpson Desert, in the vicinity of Birdsville, have been reworked largely during the Holocene from dunes deposited up to 80000 years ago or earlier. The widespread asymmetry of these roughly northward-trending dunes, with steeper eastern faces and more gentle western faces, supports wind-rose data showing sand-transporting winds from the southwest obliquely intersecting the dunes. While this suggests a change in the wind pattern since the dune field was oriented, it does not indicate that the dunes are necessarily shifting leeward (eastward) as a consequence. It is hypothesized that the direction of migration is controlled by the extent to which the dunes are vegetated. Relatively well-vegetated dunes can accrete sand on their gentle stoss slopes and erode on their lee slopes causing them to shift westward and hence obliquely into the wind, a condition that probably prevails in wetter regions and during episodes of relatively humid climate. In contrast, in very dry areas or during arid phases, sand can move unimpeded up a sparsely vegetated stoss face and over the crest to form an avalanche or slip face on the lee side, thereby causing the dunes to shift eastward. Despite evidence that longitudinal dune crests can shift laterally to some extent, the dunes in the western part of the Simpson Desert have not migrated, either westward or eastward, more than 100m or so from their Pleistocene cores. Aeolian transport and partial or complete removal of iron cutans from around quartz grains results in dunes of widely varying colour yet of similar age.  相似文献   

16.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Evidence from a field study on wind flow and sediment transport across a beach–dune system under onshore and offshore conditions (including oblique approach angles) indicates that sediment transport response on the back‐beach and stoss slope of the foredune can be exceedingly complex. The upper‐air flow – measured by a sonic anemometer at the top of a 3·5 m tower located on the dune crest – is similar to regional wind records obtained from a nearby meteorological station, but quite different from the near‐surface flow field measured locally across the beach–dune profile by sonic anemometers positioned 20 cm above the sand surface. Flow–form interaction at macro and micro scales leads to strong modulation of the near‐surface wind vectors, including wind speed reductions (due to surface roughness drag and adverse pressure effects induced by the dune) and wind speed increases (due to flow compression toward the top of the dune) as well as pronounced topographic steering during oblique wind approach angles. A conceptual model is proposed, building on the ideas of Sweet and Kocurek (Sedimentology 37 : 1023–1038, 1990), Walker and Nickling (Earth Surface Processes and Landforms 28 : 111–1124, 2002), and Lynch et al. (Earth Surface Processes and Landforms 33 : 991–1005, 2008, Geomorphology 105 : 139–146, 2010), which shows how near‐surface wind vectors are altered for four regional wind conditions: (a) onshore, detached; (b) onshore‐oblique, attached and deflected; (c) offshore, detached; and (d) offshore‐oblique, attached and deflected. High‐frequency measurements of sediment transport intensity during these different events demonstrate that predictions of sediment flux using standard equations driven by regional wind statistics would by unreliable and misleading. It is recommended that field studies routinely implement experimental designs that treat the near‐surface wind field as comprising true vector quantities (with speed and direction) in order that a more robust linkage between the regional (upper air) wind field and the sediment transport response across the beach–dune profile be established. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
GPR provides high resolution images of aeolian strata in frozen sand in the McMurdo Dry Valleys of Antarctica. The results have positive implications for potential GPR surveys of aeolian strata on Mars. Within the Lower Victoria Valley, seasonal changes in climate and a topographically-constrained wind regime result in significant wind reversals. As a consequence, dunes show reversing crest-lines and flattened dune crests. Ground-penetrating radar (GPR) surveys of the dunes reveal sets of cross-strata and low-angle bounding surfaces produced by reversing winds. Summer sand transport appears to be dominant and this is attributed to the seasonal increase in solar radiation. Solar radiation which heats the valley floor melts ice cements making sand available for transport. At the same time, solar heating of the valley floor generates easterly winds that transport the sand, contributing to the resultant westward dune migration. The location of the dune field along the northern edge of the Lower Victoria Valley provides some shelter from the powerful föehn and katabatic winds that sweep down the valley. Topographic steering of the winds along the valley and drag against the valley wall has probably aided the formation, migration and preservation of the dune field. Optically-stimulated luminescence (OSL) ages from dune deposits range from 0 to 1.3 kyr showing that the dune field has been present for at least 1000 yr. The OSL ages are used to calculate end-point migration rates of 0.05 to 1.3 m/yr, which are lower than migration rates reported from recent surveys of the Packard dunes and lower than similar-sized dunes in low-latitude deserts. The relatively low rates of migration are attributed to a combination of dune crest reversal under a bimodal wind regime and ice cement that reduces dune deflation and restricts sand entrainment.  相似文献   

19.
Large asymmetric bedforms known as dunes commonly dominate the bed of sand rivers. Due to the turbulence generation over their stoss and lee sides, dunes are of central importance in predicting hydraulic roughness and water levels. During floods in steep alluvial rivers, dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This transition of dunes to upper stage plane bed is associated with high transport of bed sediment in suspension and large decrease in bedform roughness. In the present study, we aim to improve the prediction of dune development and dune transition to upper stage plane bed by introducing the transport of suspended sediment in an existing dune evolution model. In addition, flume experiments are carried out to investigate dune development under bed load and suspended load dominated transport regimes, and to get insight in the time scales related to the transition of dunes to upper stage plane bed. Simulations with the extended model including the transport of suspended sediment show significant improvement in the prediction of equilibrium dune parameters (e.g. dune height, dune length, dune steepness, dune migration rate, dune lee side slope) both under bed load dominant and suspended load dominant transport regimes. The chosen modeling approach also allows us to model the transition of dunes to upper stage plane bed which was not possible with the original dune evolution model. The extended model predicts change in the dune shapes as was observed in the flume experiments with decreasing dune heights and dune lee slopes. Furthermore, the time scale of dune transition to upper stage plane bed was quite well predicted by the extended model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Berm formation and morphological development of the beach face have been observed during a neap–neap tidal cycle on the gently sloping and accreting beach at Vejers, Denmark. During the field campaign, an intertidal bar migrated onshore and stabilized as a berm on the foreshore. A new intertidal bar occurred on the lower beach face, migrated onshore on the rising tide and finally merged with the pre‐existing berm. As the tide continued to rise, the new berm translated further onshore as an intertidal bar to the uppermost part of the foreshore. The sediment transport during the berm transition was onshore directed in the upper swash and offshore directed in the lower swash. This berm development can be described through both the neap‐berm, ridge‐and‐runnel and berm‐ridge development concepts proposed by Hine (Sedimentology 1979; 26: 333–351), and all three stages were observed during only three tidal cycles. The main factors controlling this fast transformation were the gentle slope of the cross‐shore profile, rapid water level translation rates, substantial swash overtopping of the berm, and low infiltration rates. Despite the onshore migration of intertidal bars and berm formation, no net foreshore accretion took place during the field campaign. This was largely due to the formation of rip channels with strong rip currents cutting through the intertidal bars and the berm, which acted as a sediment drain in the profile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号