首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
Based on the measuring data and Digital Elevation Data (DEM) in a typical watershed--Hemingguan Watershed, Nanbu County, Sichuan Province of China, a GIS-based distributed soil erosion model was developed particularly for the purple soil type. It takes 20 m × 20 m grid as calculating unit and operates at 10-minute time interval. The required input data to the model include DEM, soil, land use, and time-series of precipitation and evaporation loss. The model enables one to estimate runoff, erosion and sediment yield for each grid cell and route the flow along its flow path to the watershed outlet. Furthermore, the model is capable of calculating the total runoff; erosion and sediment yield for the entire watershed by recursion algorithm. The validation of the model demonstrated that it could quantitatively simulate the spatial distribution of hydrological variables in a watershed, such as runoff, vegetation entrapment, soil erosion, the degree of soil and water loss. Moreover, it can evaluate the effect of land use change on the runoff generation and soil erosion with an accuracy of 80% and 75% respectively. The application of this model to a neighboring watershed with similar conditions indicates that this distributed model could be extended to other similar regions in China.  相似文献   

2.
The cartography of erosion risk is mainly based on the development of models, which evaluate in a qualitative and quantitative manner the physical reproduction of the erosion processes (CORINE, EHU, INRA). These models are mainly semi‐quantitative but can be physically based and spatially distributed (the Pan‐European Soil Erosion Risk Assessment, PESERA). They are characterized by their simplicity and their applicability potential at large temporal and spatial scales. In developing our model SCALES (Spatialisation d'éChelle fine de l'ALéa Erosion des Sols/large‐scale assessment and mapping model of soil erosion hazard), we had in mind several objectives: (1) to map soil erosion at a regional scale with the guarantee of a large accuracy on the local level, (2) to envisage an applicability of the model in European oceanic areas, (3) to focus the erosion hazard estimation on the level of source areas (on‐site erosion), which are the agricultural parcels, (4) to take into account the weight of the temporality of agricultural practices (land‐use concept). Because of these objectives, the nature of variables, which characterize the erosion factors and because of its structure, SCALES differs from other models. Tested in Basse‐Normandie (Calvados 5500 km2) SCALES reveals a strong predisposition of the study area to the soil erosion which should require to be expressed in a wet year. Apart from an internal validation, we tried an intermediate one by comparing our results with those from INRA and PESERA. It appeared that these models under estimate medium erosion levels and differ in the spatial localization of areas with the highest erosion risks. SCALES underlines here the limitations in the use of pedo‐transfer functions and the interpolation of input data with a low resolution. One must not forget however that these models are mainly focused on an interregional comparative approach. Therefore the comparison of SCALES data with those of the INRA and PESERA models cannot result on a convincing validation of our model. For the moment the validation is based on the opinion of local experts, who agree with the qualitative indications delivered by our cartography. An external validation of SCALES is foreseen, which will be based on a thorough inventory of erosion signals in areas with different hazard levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The overarching objective of this research was to provide an improved understanding of the role of land use and associated management practices on long‐term water‐driven soil erosion in small agricultural watersheds by coupling the established, physically based, distributed parameter Water Erosion Prediction Project (WEPP) model with long‐term hydrologic, land use and soil data. A key step towards achieving this objective was the development of a detailed methodology for model calibration using physical ranges of key governing parameters such as effective hydraulic conductivity, critical hydraulic shear stress and rill/inter‐rill erodibilities. The physical ranges for these governing parameters were obtained based on in situ observations within the South Amana Sub‐Watershed (SASW) (~26 km2) of the Clear Creek, IA watershed where detailed documentation of the different land uses was available for a period of nearly 100 years. A quasi validation of the calibrated model was conducted through long‐term field estimates of water and sediment discharge at the outlet of SASW and also by comparing the results with data reported in the literature for other Iowa watersheds exhibiting similar biogeochemical properties. Once WEPP was verified, ‘thought experiments’ were conducted to test our hypothesis that land use and associated management practices may be the major control of long‐term erosion in small agricultural watersheds such as SASW. Those experiments were performed using the dominant 2‐year crop rotations in the SASW, namely, fall till corn–no till bean (FTC‐NTB), no till bean–spring till corn (NTB‐STC) and no till corn–fall till bean (NTC‐FTB), which comprised approximately 90% of the total acreage in SASW. Results of this study showed that for all crop rotations, a strong correspondence existed between soil erosion rates and high‐magnitude precipitation events during the period of mid‐April and late July, as expected. The magnitude of this correspondence, however, was strongly affected by the crop rotation characteristics, such as canopy/residue cover provided by the crop, and the type and associated timing of tillage. Tillage type (i.e. primary and secondary tillages) affected the roughness of the soil surface and resulted in increases of the rill/inter‐rill erodibilities up to 35% and 300%, respectively. Particularly, the NTC‐FTB crop rotation, being the most intense land use in terms of tillage operations, caused the highest average annual erosion rate within the SASW, yielding quadrupled erosion rates comparatively to NTB‐STC. The impacts of tillage operation were further exacerbated by the timing of the operations in relation to precipitation events. Timing of operations affected the ‘life‐time’ of residue cover and as a result, the degree of protection that residue cover offers against the water action on the soil surface. In the case of NTC‐FTB crop rotation, dense corn residue stayed on the ground for only 40 days, whereas for the other two rotations, corn residue provided a protective layer for nearly 7 months, lessening thus the degree of soil erosion. The cumulative effects of tillage type and timing in conjunction with canopy/residue cover led to the conclusion that land management practices can significantly amplify or deamplify the impact of precipitation on long‐term soil erosion in small agricultural watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi‐arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero‐order experimental microcatchments (328–759 m2), representative of an extensive semi‐arid watershed with a high potential erosion risk in the south‐east of Spain, were selected and monitored for 3 years (1991–93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1‐min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m?2 year?1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h?1 was considered as ‘erosive rainfall’ in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore‐size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Ashok Mishra  S. Kar  V. P. Singh 《水文研究》2007,21(22):3035-3045
The Hydrologic Simulation Programme‐Fortran (HSPF), a hydrologic and water quality computer model, was employed for simulating runoff and sediment yield during the monsoon months (June–October) from a small watershed situated in a sub‐humid subtropical region of India. The model was calibrated using measured runoff and sediment yield data for the monsoon months of 1996 and was validated for the monsoon months of 2000 and 2001. During the calibration period, daily‐calibrated runoff had a Nash‐Sutcliffe efficiency (ENS) value of 0·68 and during the validation period it ranged from 0·44 to 0·67. For daily sediment yield ENS was 0·71 for the calibration period and it ranged from 0·68 to 0·90 for the validation period. Sensitivity analysis was performed to assess the impact of important watershed characteristics. The model parameters obtained in this study could serve as reference values for model application in similar climatic regions, with practical implications in watershed planning and management and designing best management practices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Developing models to predict on‐site soil erosion and off‐site sediment transport at the agricultural watershed scale represent an on‐going challenge in research today. This study attempts to simulate the daily discharge and sediment loss using a distributed model that combines surface and sub‐surface runoffs in a small hilly watershed (< 1 km2). The semi‐quantitative model, Predict and Localize Erosion and Runoff (PLER), integrates the Manning–Strickler equation to simulate runoff and the Griffith University Erosion System Template equation to simulate soil detachment, sediment storage and soil loss based on a map resolution of 30 m × 30 m and over a daily time interval. By using a basic input data set and only two calibration coefficients based, respectively, on water velocity and soil detachment, the PLER model is easily applicable to different agricultural scenarios. The results indicate appropriate model performance and a high correlation between measured and predicted data with both Nash–Sutcliffe efficiency (Ef) and correlation coefficient (r2) having values > 0.9. With the simple input data needs, PLER model is a useful tool for daily runoff and soil erosion modeling in small hilly watersheds in humid tropical areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A new, multi‐tracer method is used to track erosion, translocation, and redeposition of sediment in a small watershed, thus allowing for the ?rst time a complete, spatially distributed, sediment balance to be made as a function of landscape position. A 0·68 ha watershed near Coshocton, Ohio, USA was divided into six morphological units, each tagged with one of six rare earth element oxides. Sediment translocation was evaluated by collecting run‐off and by spatially sampling the soil surface. Average measured erosion rate was 6·1 t ha?1, but varied between 40·4 t ha?1 loss from the lower channels to 24·1 t ha?1 gain on the toeslope. With this technique it was possible for the ?rst time to itemize the sediment budget for landscape elements into three components: (1) the soil from the element that left the watershed with run‐off; (2) soil from the element that was redeposited on lower positions, with the spatial distribution of that deposition; and (3) soil originating from the upper positions and deposited on the element, with quanti?cation of relative source areas. The results are incongruous with the current morphology of the watershed, suggesting that diffusion‐type erosion must also play a major role in de?ning the evolution of this landscape. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Planning soil conservation strategies requires predictive techniques at event scale because a large percentage of soil loss over a long‐time period is due to relatively few large storms. Considering runoff is expected to improve soil loss predictions and allows relation of the process‐oriented approach with the empirical one, furthermore, the effects of detachment and transport on soil erosion processes can be distinguished by a runoff component. In this paper, the empirical model USLE‐MB (USLE‐M based), including a rainfall‐runoff erosivity factor in which the event rainfall erosivity index EI30 of the Universal Soil Loss Equation (USLE) multiplies the runoff coefficient QR raised to an exponent b1 > 1 is tested by the measurements carried out for the Masse (10 plots) and Sparacia (22 plots) experimental stations in Italy. For the Masse experimental station, an exponent b1 > 1 was also estimated by tests carried out by a nozzle‐type rainfall simulator. For each experimental site in fallow conditions, the effect of the sample size of the plot soil loss measurements on the estimate of the b1 coefficient was also studied by the extraction of a fixed number N of randomly obtained pairs of the normalized soil loss and runoff coefficient. The analysis showed that the variability of b1 with N is low and that 350 pairs are sufficient to obtain a stable estimate of b1. A total of 1,262 soil loss data were used to parameterize the model both locally and considering the two sites simultaneously. The b1 exponent varied between the two sites (1.298–1.520), but using a common exponent (1.386) was possible. Using a common b1 exponent for the two experimental areas increases the practical interest for the model and allows the estimation of a baseline component of the soil erodibility factor, which is representative of the at‐site soil intrinsic and quasi‐static properties. Development of a single USLE‐MB model appears possible, and sampling other sites is advisable to develop a single USLE‐MB model for general use.  相似文献   

10.
This study investigates critical run‐off and sediment production sources in a forested Kasilian watershed located in northern Iran. The Water Erosion Prediction Project (WEPP) watershed model was set up to simulate the run‐off and sediment yields. WEPP was calibrated and validated against measured rainfall–run‐off–sediment data. Results showed that simulated run‐off and sediment yields of the watershed were in agreement with the measured data for the calibration and validation periods. While low and medium values of run‐off and sediment yields were adequately simulated by the WEPP model, high run‐off and sediment yield values were underestimated. Performance of the model was evaluated as very good and satisfactory during the calibration and validation stages, respectively. Total soil erosion and sediment load of the study watershed during the study period were determined to be 10 108 t yr?1 and 8735 t yr?1, respectively. The northern areas of the watershed with dry farming were identified as the critical erosion prone zones. To prioritize the subwatersheds based on their contribution to the run‐off and sediment production at the watershed's main outlet, unit response approach (URA) was applied. In this regard, subwatersheds close to the main outlet were found to have the highest contribution to sediment yield of the whole watershed. Results indicated that depending on the objective of land and water conservation practices, particularly, for controlling sediment yield at the main outlet, critical areas for implementing the best management practices may be identified through conjunctive application of WEPP and URA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Water runoff and sediment transport from agricultural uplands are substantial threats to water quality and sustained crop production. To improve soil and water resources, farmers, conservationists, and policy‐makers must understand how landforms, soil types, farming practices, and rainfall interact with water runoff and soil erosion processes. To that end, the Iowa Daily Erosion Project (IDEP) was designed and implemented in 2003 to inventory these factors across Iowa in the United States. IDEP utilized the Water Erosion Prediction Project (WEPP) soil erosion model along with radar‐derived precipitation data and government‐provided slope, soil, and management information to produce daily estimates of soil erosion and runoff at the township scale (93 km2 [36 mi2]). Improved national databases and evolving remote sensing technology now permit the derivation of slope, soil, and field‐level management inputs for WEPP. These remotely sensed parameters, along with more detailed meteorological data, now drive daily WEPP hillslope soil erosion and water runoff estimates at the small watershed scale, approximately 90 km2 (35 mi2), across sections of multiple Midwest states. The revisions constitute a substantial improvement as more realistic field conditions are reflected, more detailed weather data are utilized, hill slope sampling density is an order of magnitude greater, and results are aggregated based on surface hydrology enabling further watershed research and analysis. Considering these improvements and the expansion of the project beyond Iowa it was renamed the Daily Erosion Project (DEP). Statistical and comparative evaluations of soil erosion simulations indicate that the sampling density is adequate and the results are defendable. The modeling framework developed is readily adaptable to other regions given suitable inputs. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

13.
Abstract

A relatively simple process-oriented, physically-based distributed (PBD) hydrological model, the distributed runoff and erosion assessment model (DREAM), is described, and a validation study conducted in the semi-forested watershed of Pathri Rao, in the Garhwal Himalayas, India, is reported. DREAM takes account of watershed heterogeneity as reflected by land use, soil type, topography and rainfall, measured in the field or estimated through remote sensing, and generates estimates of runoff and sediment yield in spatial and temporal domains. The model is based on simultaneous solution of flow dynamics, based on kinematic wave theory, followed by solution of soil erosion dynamics. As the storm rainfall proceeds, the process of overland flow generation is dependent on the interception storage and infiltration rates. The components of the soil erosion model have been modified to provide better prediction of sediment flow rates and sediment yields. The validation study conducted to test the performance of the model in simulating soil erosion and sediment yield during different storm events monitored in the study watershed showed that the model outputs are satisfactory. Details of a sensitivity analysis, model calibration and the statistical evaluation of the results obtained are also presented and discussed. It is noteworthy that the distributed nature of the model combined with the use of geographical information system (GIS) techniques permits the computation and representation of the spatial distribution of sediment yield for simulated storm events, and a map of the spatial distribution of sediment yield for a simulated storm event is presented to highlight this capability.

Citation Ramsankaran, R., Kothyari, U.C., Ghosh, S.K., Malcherek, A., and Murugesan, K., 2013. Physically-based distributed soil erosion and sediment yield model (DREAM) for simulating individual storm events. Hydrological Sciences Journal, 58 (4), 872–891.  相似文献   

14.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   

15.
Interpreting rainfall‐runoff erosivity by a process‐oriented scheme allows to conjugate the physical approach to soil loss estimate with the empirical one. Including the effect of runoff in the model permits to distinguish between detachment and transport in the soil erosion process. In this paper, at first, a general definition of the rainfall‐runoff erosivity factor REFe including the power of both event runoff coefficient QR and event rainfall erosivity index EI30 of the Universal Soil Loss Equation (USLE) is proposed. The REFe factor is applicable to all USLE‐based models (USLE, Modified USLE [USLE‐M] and Modified USLE‐M [USLE‐MM]) and it allows to distinguish between purely empirical models (e.g., Modified USLE‐M [USLE‐MM]) and those supported by applying theoretical dimensional analysis and self‐similarity to Wischmeier and Smith scheme. This last model category includes USLE, USLE‐M, and a new model, named USLE‐M based (USLE‐MB), that uses a rainfall‐runoff erosivity factor in which a power of runoff coefficient multiplies EI30. Using the database of Sparacia experimental site, the USLE‐MB is parameterized and a comparison with soil loss data is carried out. The developed analysis shows that USLE‐MB (characterized by a Nash–Sutcliffe Efficiency Index NSEI equal to 0.73 and a root mean square error RMSE = 11.7 Mg ha?1) has very similar soil loss estimate performances as compared with the USLE‐M (NSEI = 0.72 and RMSE = 12.0 Mg ha?1). However, the USLE‐MB yields a maximum discrepancy factor between predicted and measured soil loss values (176) that is much lower than that of USLE‐M (291). In conclusion, the USLE‐MB should be preferred in the context of theoretically supported USLE type models.  相似文献   

16.
Landslide erosion is a dominant hillslope process and the main source of stream sediment in tropical, tectonically active mountain belts. In this study, we quantified landslide erosion triggered by 24 rainfall events from 2001 to 2009 in three mountainous watersheds in Taiwan and investigated relationships between landslide erosion and rainfall variables. The results show positive power‐law relations between landslide erosion and rainfall intensity and cumulative rainfall, with scaling exponents ranging from 2·94 to 5·03. Additionally, landslide erosion caused by Typhoon Morakot is of comparable magnitude to landslide erosion caused by the Chi‐Chi Earthquake (MW = 7·6) or 22–24 years of basin‐averaged erosion. Comparison of the three watersheds indicates that deeper landslides that mobilize soil and bedrock are triggered by long‐duration rainfall, whereas shallow landslides are triggered by short‐duration rainfall. These results suggest that rainfall intensity and watershed characteristics are important controls on rainfall‐triggered landslide erosion and that severe typhoons, like high‐magnitude earthquakes, can generate high rates of landslide erosion in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Fire severity is recognized as a key factor in explaining post‐fire soil erosion. However, the relationship between soil burn severity and soil loss has not been fully established until now. Sediment availability may also affect the extent of post‐fire soil erosion. The objective of this study was to determine whether soil burn severity, estimated by an operational classification system based on visual indicators, can significantly explain soil loss in the first year after wildfire in shrubland and other areas affected by crown fires in northwest (NW) Spain. An additional aim was to establish indicators of sediment availability for use as explanatory variables for post‐fire soil loss. For these purposes, we measured hillslope‐scale sediment production rates and site characteristics during the first year after wildfire in 15 experimental sites using 65 plots. Sediment yields varied from 0.2 Mg ha?1 to 50.1 Mg ha?1 and soil burn severity ranged from low (1.8) to very high (4.5) in the study period. A model that included soil burn severity, annual precipitation and a land use factor (as a surrogate for sediment availability) as explanatory variables reasonably explained the erosion losses measured during the first year after fire. Model validation confirmed the usefulness of this empirical model. The proposed empirical model could be used by forest managers to help evaluate erosion risks and to plan post‐fire stabilization activities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The universal soil loss equation (USLE) is the most frequently applied erosion prediction model and it is also implemented as an official decision‐making instrument for agricultural regulations. The USLE itself has been already validated using different approaches. Additional errors, however, arise from input data and interpolation procedures that become necessary for field‐specific predictions on a national scale for administrative purposes. In this study, predicted event soil loss using the official prediction system in Bavaria (Germany) was validated by comparison with aerial photo erosion classifications of 8100 fields. Values for the USLE factors were mainly taken from the official Bavarian high‐resolution (5 × 5 m2) erosion cadastre. As series of erosion events were examined, the cover and management factor was replaced by the soil loss ratio. The event erosivity factor was calculated from high‐resolution (1 × 1 km2, 5 min), rain gauge‐adjusted radar rain data (RADOLAN). Aerial photo erosion interpretation worked sufficiently well and average erosion predictions and visual classifications correlated closely. This was also true for data broken down to individual factors and different crops. There was no reason to assume a general invalidity of the USLE and the official parametrization procedures. Event predictions mainly suffered from errors in the assumed crop stage period and tillage practices, which do not reflect interannual and farm‐specific variation. In addition, the resolution of radar data (1 km2) did not seem to be sufficient to predict short‐term erosion on individual fields given the strong spatial gradients within individual rains. The quality of the input data clearly determined prediction quality. Differences between USLE predictions and observations are most likely caused by parametrization weaknesses but not by a failure of the model itself. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
A cell‐based long‐term hydrological model (CELTHYM) that can be integrated with a geographical information system (GIS) was developed to predict continuous stream flow from small agricultural watersheds. The CELTHYM uses a cell‐by‐cell soil moisture balance approach. For surface runoff estimation, the curve number technique considering soil moisture on a daily basis was used, and release rate was used to estimate baseflow. Evapotranspiration was computed using the FAO modified Penman equation that considered land‐use‐based crop coefficients, soil moisture and the influence of topography on radiation. A rice paddy field water budget model was also adapted for the specific application of the model to East Asia. Model sensitivity analysis was conducted to obtain operational information about the model calibration parameters. The CELTHYM was calibrated and verified with measured runoff data from the WS#1 and WS#3 watersheds of the Seoul National University, Department of Agricultural Engineering, in Hwaseong County, Kyounggi Province, South Korea. The WS#1 watershed is comprised of about 35·4% rice paddy fields and 42·3% forest, whereas the WS#3 watershed is about 85·0% forest and 11·5% rice paddy fields. The CELTHYM was calibrated for the parameter release rate, K, and soil moisture storage coefficient, STC, and results were compared with the measured runoff data for 1986. The validation results for WS#1 considering all daily stream flow were poor with R2, E2 and RMSE having values of 0·40, ?6·63 and 9·69 (mm), respectively, but validation results for days without rainfall were statistically significant (R2 = 0·66). Results for WS#3 showed good agreement with observed data for all days, and R2, E2 and RMSE were 0·92, 0·91 and 2·23 (mm), respectively, suggesting potential for CELTHYM application to other watersheds. The direct runoff and water balance components for watershed WS#1 with significant areas of paddy fields did not perform well, suggesting that additional study of these components is needed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号