首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, Oreganum onites L. stalks in natural and chemically modified with HNO3 and H3PO4 used as adsorbent for removal of both acidic and basic dyes from waters. The adsorption was studied as a function of pH and contact time by batch method. All tested biosorbents were characterized by FT‐IR, scanning electron microscopy, and measuring the pH dependence of the zeta potential. The adsorption isotherms were fitted to Langmuir isotherm. The maximum adsorption capacity of dyes was 280.73 mg g?1 for Basic Red 18, 147.06 mg g?1 for methylene blue and 112.36 for Acid Red 111, which is comparable to that of other lignocellulosic materials. The modification process was considerably increased the biosorption capacity of lignocellulosic material, resulting in a 56–63% increase in the biosorption capacity of basic dyes and a 125% increase in the biosorption capacity of acidic dye. The present study illustrated that the most effective factors in the adsorption of basic dye were surface charge and acidic groups on lignocellulosic biosorbents, while non‐electrostatic forces as well as electrostatic forces were also effective in the adsorption of acidic dye. In conclusion, Oreganum stalks can be considered as a very prospective adsorbent for the removal of tested basic and acidic dyes.  相似文献   

2.
Ulmus carpinifolia tree leaves were successfully used to remove Tl(I) from aqueous solution in a batch system. In order to improve the uptake capacity of sorbent, it was modified by various chemical agents such as NaOH, HNO3, NH3, NaCl, NaHCO3, and CaCl2. Among the modifiers, NaCl was the best. Equilibrium behavior of sorbent with Tl(I) was examined by the several isotherms. Considering modified U. carpinifolia equilibrium data fitted well to the Langmuir model with maximum capacity of 54.6 mg/g. The other isotherms such as: Freundlich and Dubinin‐Redushkevich (D‐R) models were also examined. The central composite design (CCD) was successfully employed for optimization of biosorption process. An empirical model was given through using response surface methodology. Also its validation was recognized by using relevant statistical tests such as ANOVA. The optimum conditions of biosorption: pH, m (amount of sorbent) and C (initial concentration) were found to be 7.9, 11.4 g/L, and 8.8 mg/L, respectively. On the other hand thermodynamic parameters: ΔG, ΔH, and ΔS were evaluated: the obtained results show that biosorption process was spontaneous and exothermic. Eventually, FT‐IR analysis confirmed that the main functional groups of sorbent have been involved through the biosorption process.  相似文献   

3.
Adsorption of reactive black 5 (RB5) from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Adsorption data obtained from different batch experiments were modeled using both pseudo first‐ and second‐order kinetic equations. The equilibrium adsorption data were fitted to the Freundlich, Tempkin, and Langmuir isotherms over a dye concentration range of 45–100 µmol/L. The best results were achieved with the pseudo second‐order kinetic and Langmuir isotherm equilibrium models, respectively. The equilibrium adsorption capacity (qe) was increased with increasing the initial dye concentration and solution temperature, and decreasing solution pH. The chitosan flakes for the adsorption of the dye was regenerated efficiently through the alkaline solution and was then reused for dye removal. The activation energy (Ea) of sorption kinetics was estimated to be 13.88 kJ/mol. Thermodynamic parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were evaluated by applying the van't Hoff equation. The thermodynamics of reactive dye adsorption by chitosan indicates its spontaneous and endothermic nature.  相似文献   

4.
Batch biosorption experiments were carried out for the removal of Congo red from aqueous solution using native and pretreated mycelial pellets/biomass of Trametes versicolor. The effect of process parameters such as contact time, dye concentration, and pH on the extent of Congo red biosorption has been investigated. Higher dye concentrations resulted in lower biosorption. Increases in biomass dosage led to increases in the levels of biosorption. Biosorption kinetics and equilibrium data are essential basic requirements to develop an effective and accurate design model for the removal of the dye. A kinetic study showed that the biosorption of the dye on fungal biomass was a gradual process. Pseudo‐first‐order, pseudo‐second‐order, and Bangham's model were used to fit the experimental data. The results of the kinetic studies showed that the second‐order kinetic model fitted well for the present experimental data. Equilibrium isotherms were analyzed by Langmuir, Freundlich, Dubnin‐Radushkevich, and Temkin isotherms. The biosorption equilibrium data obeyed the Langmuir and Temkin isotherms well. Acidic pH was favorable for the biosorption of the dye. Studies on the pH effect and desorption show that chemisorption seems to play a major role in the biosorption process. Among the native and pretreated biomass studied, autoclaved biomass showed a better biosorption capacity.  相似文献   

5.
This study concentrates on the possible application of the spent cottonseed husk substrate (SCHS), an agricultural waste used after the cultivation of white rot fungus Flammulina velutipes, to adsorb methylene blue (MB) from aqueous solutions. Batch studies were carried out with variable initial solution pH, adsorbent amount, reaction time, temperature, and initial MB concentration. MB uptake was favorable at pH ranging from 4.0 to 12.0, and the equilibrium adsorption capacity of 143.5 mg g?1 can be reached promptly within about 240 min. The combination analysis of FTIR and BET techniques revealed that the massive functional groups on the biosorbent surface, such as hydroxyl and carboxyl, were responsible for the biosorption of MB. It was found that adsorption data matched the pseudo‐second order kinetic and Langmuir isotherm models. Thermodynamic parameters of free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°), obtained from biosorption MB ranging from 293 to 313 K, showed that the sorption experiment was a spontaneous and endothermic process. The study highlighted a new pathway to develop a new potential utilization of SCHS as a low‐cost sorbent for the removal of MB pollutants from wastewater.  相似文献   

6.
For the first time ever, Enteromorpha compressa macroalgae (ECM), which is commonly found in Turkey, has been used as biosorbent by us. This study aims to investigate the biosorption of Cd2+ from aqueous solutions in a batch system by using an alga of ECM in different concentrations, pH levels, agitation rates (90–150 rpm), and contact periods. The maximum biosorption capacity of the ECM was found to be 9.50 mg/g at pH 6, Cd2+ initial concentration of 10 mg/L and agitation rate 150 rpm. Cadmium removal efficiency was about 95%. The experimental isotherm data were analyzed using the Langmuir and Freundlich equations. Isotherm parameters for both equations were determined and discussed. The stated biosorption mechanism is explained by the Freundlich isotherm (r2 = 0.998) theory. Two simplified kinetic models including a pseudo‐first‐ and second‐order equation were selected to follow the biosorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the biosorption of cadmium onto ECM could be described by the pseudo‐second‐order equation (r2 > 0.99).  相似文献   

7.
In this study, the adsorption of reactive red 120 (RR 120) on pistachio husk, and the modeling of the adsorption was investigated. Characterization of the pistachio husk was confirmed by Fourier transform infrared spectroscopy. The pHzpc of pistachio husk was found to be pH 8.5. Increasing the initial pH value decreased (p < 0.01) the amount of dye adsorbed. However, increasing the initial dye concentration from 50 to 900 mg/L at pH 1 increased (p < 0.01) the equilibrium dye uptake from 20.83 to 182.10 mg/g. Results indicated that this adsorbent had great potential for the removal of RR 120 dye. The logistic model was found to be the most suitable of the kinetic and equilibrium models tested to describe the adsorption of the dye. The parameters determined from the logistic model were well correlated with the initial dye concentration, and were seen to increase with the increasing initial dye concentration, but this was not observed from pseudo‐second order kinetics.  相似文献   

8.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

9.
Xanthoceras sorbifolia seed coat (XSSC), a bioenergy forest waste, was used for the adsorption of methylene blue (MB) from aqueous solutions. The effects of adsorbent dosage, pH, adsorbate concentration and contact time on MB biosorption were studied. The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherm models. The results indicated that the Langmuir model provided the best correlation with the experimental data. The adsorption capacity of XSSC for MB was determined with the Langmuir model and was found to be 178.6 mg/g at 298 K. The adsorption kinetic data was modeled using the pseudo‐first order, pseudo‐second order, and intraparticle diffusion kinetic equations. It was seen that the pseudo‐second order equation could describe the adsorption kinetics, and intraparticle diffusion was not the sole rate controlling factor. Thermodynamic parameters were also evaluated. Standard Gibbs free energy was spontaneous for all interactions, and the biosorption process exhibited exothermic standard enthalpy values. The results indicated that XSSC is an attractive alternative for removing cationic dyes from wastewater.  相似文献   

10.
Solar photocatalytic decolorization and detoxification of batik dye wastewater using titanium dioxide (TiO2) immobilized on poly‐3‐hydroxybutyrate (P(3HB)) film was studied. The effects of initial dye concentration, catalyst concentration, P(3HB) film thickness, and fabrication methods of the nanocomposite films were evaluated against methylene blue, a standard organic dye. It was observed that 0.4 g of P(3HB)‐40 wt% TiO2 removed 96% of the color under solar irradiation. P(3HB) and TiO2, mixed concurrently in chloroform followed by stirring for 24 h showed a more even distribution of the photocatalyst on the polymer surface and yielded almost 100% color removal. The photocatalytic films were able to completely decolorize real industrial batik dye wastewater in 3 h and induced a chemical oxygen demand (COD) reduction of 80%. Reusability of the 0.4 g P(3HB)‐40 wt% TiO2 film in decolorizing the batik dye wastewater was also possible as it gave a high consistent value of decolorization percentage (>80%) even after the sixth repeated usage. Recovery step of the photocatalysts was also not required in this simple treatment system. The decolorized batik dye wastewater had less/no toxic effects on mosquito larvae, Aedes aegypti, and microalgae, Scenedesmus quadricauda indicating simultaneous detoxification process along with the decolorization process.  相似文献   

11.
This paper discusses the possibility of immobilization of TiO2 nanoparticles onto recycled wool‐based nonwoven material, which can be utilized for removal of dyes from wastewater. The photocatalytic activity of TiO2 nanoparticles deposited on the nonwoven material was evaluated in the aqueous solution of direct dye C.I. Direct Blue 78 under the UV illumination. Nonwoven material modified with TiO2 nanoparticles provides complete removal of dye from the solution already after 4–6 h of UV illumination. However, photodegradation of the dye adsorbed on the nonwoven material was obtained within 24 h of UV illumination. The rate of dye adsorption and photodegradation depends on the amount of deposited TiO2 nanoparticles. The increase of initial dye concentration induced decrease in photocatalytic efficiency of immobilized TiO2 nanoparticles. The highest photodegradation rate was achieved in acidic conditions. Elevated temperatures positively affected the removal of dye from solution. Photocatalytic activity of TiO2 nanoparticles deposited on nonwoven material was preserved after three photodegradation cycles.  相似文献   

12.
Batch sorption technique was carried out for the removal of anionic dye Congo red (CR) from aqueous solution using raw rectorite (R‐REC) and organified rectorite (CTA+‐REC) modified by cetyltrimethylammonium bromide (CTAB) as adsorbents. The effects of organification degree of CTA+‐REC as well as the process parameters including the pH of dye solution, sorption time, and initial dye concentration on adsorption capacity for CR were investigated and the sorption kinetics was also evaluated. The results showed that the sorption behaviors of R‐REC and CTA+‐REC for CR followed pseudo‐second‐order kinetic model and the sorption equilibrium data perfectly obeyed the Langmuir isotherm. The thermodynamic parameters including entropy of sorption (ΔS0), enthalpy of sorption (ΔH0), and Gibbs free energy of sorption (ΔG0) were obtained and analyzed. Fourier transform infrared study revealed that a chemisorption process occurred between CR and CTA+‐REC. REC modified by cationic surfactants showed the higher adsorption capacities for CR compared to R‐REC and in theory would be used as an efficient and promising adsorbent for the removal of anionic dyes in wastewater treatment.  相似文献   

13.
The Cercis siliquastrum tree leaves are introduced as a low cost biosorbent for removal of Ag(I) from aqueous solution in a batch system. FT‐IR, XRD analysis, and potentiometric titration illustrate that the adsorption took place and the acidic functional group (carboxyl) of the sorbent was involved in the biosorption process. In addition, it was observed that the pH beyond pHpzc 4.4 is favorable for the removal procedure. The effect of operating variables such as initial pH, temperature, initial metal ion concentration, and sorbent mass on the Ag(I) biosorption was analyzed using response surface methodology (RSM). The proposed quadratic model resulting from the central composite design approach (CCD) fitted very well to the experimental data. The optimum condition obtained with RSM was an initial concentration of Ag(I) of 85 mg L?1, pH = 6.3 and sorbent mass 0.19 g. The applicability of different kinetic and isotherm models for current biosorption process was evaluated. The isotherm, kinetic, and thermodynamic studies showed the details of sorbate‐sorbent behavior. The competitive effect of alkaline and alkaline earth metal ions during the loading of Ag(I) was also considered.  相似文献   

14.
This study presents the degradation of phenanthrene using immobilized Mycoplana sp. MVMB2 isolated from contaminated soil. Papaya stem pretreated by two stage processes, treating with acid or alkali and drying, was used for the immobilization of Mycoplana sp. Alkali pretreated papaya stem was found to be most effective in cell uptake compared to acid treated one. The maximum immobilization capacity at various physiochemical conditions for the alkali pretreated papaya stem was found to be at 320 min time, pH 6.5, 30°C temperature, and 18.6 × 106 cells/mL initial concentrations. The adsorption mechanism of Mycoplana sp. MVMB2 on pretreated papaya stem was assessed using various kinetic and isotherm models. The immobilization of Mycoplana sp. MVMB2 on to pretreated papaya stem was corroborated by scanning electron microscopy and Fourier transformed IR spectroscopy analysis. The performance of immobilized cells in batch reactor showed more than 95% phenanthrene degradation within 72 h, whereas, free cells were found to require 120 h. The immobilized cells also showed better degradation performance in the packed column study.  相似文献   

15.
Nymphaea rubra stem was used as a low cost and easily available biosorbent for the removal of Reactive Red 2 dye from an aqueous solution. Initially, the effects of biosorbent dosage (0.2–1.0 g L–1), pH (1–6), and dye concentration (30–110 mg L–1) on dye removal were studied. Batch experiments were carried out for biosorption kinetics and isotherm studies. The results showed that dye uptake capacity was found to increase with a decrease in biosorbent dosage. Equilibrium uptake capacity was found to be greatest at a pH value of 2.0, when compared to all other pH values studied. The equilibrium biosorption isotherms were analyzed by the Freundlich and Langmuir models. The equilibrium data was found to fit very well with the Freundlich isotherm model when compared to the Langmuir isotherm model. The kinetic data was analyzed using pseudo-first order and pseudo-second order kinetic models. From the results, it was observed that the kinetic data was found to fit the pseudo-second order kinetic model very well. The surface morphology of the stem of the N. rubra biosorbent was exemplified by scanning electron microscopy. Fourier transform infrared analysis was employed to confirm the existence of an amine group in the stem of N. rubra.  相似文献   

16.
The present work investigated the biosorption of nickel from synthetic and electroplating industrial effluents using a green marine algae Ulva reticulata. Preliminary batch results imply that pH 4.5 was optimum for nickel uptake and the isotherm experiments conducted at this pH condition indicated that U. reticulata can biosorb 62.3 mg g–1 nickel ions from synthetic solutions, according to the Langmuir model. Desorption was effective and practical using 0.1 M CaCl2 (pH 2.5, HCl) and the biomass was regenerated and reused for three cycles. Continuous biosorption experiments were performed in an upflow packed column (2 cm I.D and 35 cm height). Among the two electroplating effluents used, effluent‐1 is characterized by excess co‐ions and high nickel ion content. This influenced the column nickel uptake with U. reticulata exhibiting 52.1 mg g–1 in the case of effluent‐1 compared to 56.5 mg g–1 in the case of synthetic solution. On the other hand U. reticulata performed well in effluent‐2 with uptakes of 53.3 and 54.3 mg g–1 for effluent‐2 and synthetic solution, respectively. Mathematical modeling of column experimental data was performed using nonlinear forms of the Thomas‐ and modified dose‐response models, with the latter able to simulate breakthrough curves with high correlation coefficients.  相似文献   

17.
In the present study, activated carbons were prepared from sisal fiber (Agave sisalana sp.) and pomegranate peel (Punica granatum sp.) using phosphoric acid as the activating agent. Both sisal fiber activated carbon (SFAC) and pomegranate peel activated carbon (PPAC) were characterized using methylene blue number, iodine number, BET surface area, SEM, and FTIR. The BET surface area of the SFAC and PPAC were 885 and 686 m2/g, respectively. The adsorption studies using C.I. Reactive Orange 4 dye on the SFAC and PPAC were carried out. The effects of time, initial adsorbate concentration, pH, and temperature on the adsorption were studied. The isotherm studies were carried and it was found that the Langmuir and Freundlich isotherms fit well for the adsorption of RO 4 on SFAC, while adsorption of RO 4 on PPAC is better represented by the Langmuir and Temkin isotherms. Adsorption kinetics of adsorption was determined using pseudo first order, pseudo second order, Elovich and intraparticle diffusion models and it was found that the adsorption process follows pseudo second order model. Thermodynamics parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were determined by using van't Hoff equation. The positive ΔH value indicates that RO 4 dye adsorption on SFAC and PPAC is endothermic in nature.  相似文献   

18.
19.
Four bacterial isolates (two resistant and two sensitive to chromium) were isolated from soil contaminated with tannery effluents at Jajmau (Kanpur), India, and were identified by 16S rDNA gene sequencing as Stenotrophomonas maltophilia, Exiguobacterium sp., Pantoea sp., and Aeromonas sp. Biosorption of chromium by dried and living biomasses was determined in the resistant and sensitive isolates. The effect of pH, initial metal concentration, and contact time on biosorption was studied. At pH 2.5 the living biomass of chromium resistant isolate Exiguobacterium sp. ZM‐2 biosorbed maximum amount of Cr6+ (29.8 mg/g) whereas the dried biomass of this isolate biosorbed 20.1 mg/g at an initial concentration of 100 mg/L. In case of chromate sensitive isolates, much difference was not observed in biosorption capacities between their dried and living biomasses. The maximum biosorption of Cr3+ was observed at pH 4.5. However, biosorption was identical in resistant and sensitive isolates. The data on chromium biosorption were analyzed using Langmuir and Freundlich isotherm model. The biosorption data of Cr6+ and Cr3+ from aqueous solution were better fitted in Langmuir isotherm model compared to Freundlich isotherm model. Metal recovery through desorption was observed better with dried biomasses compared to the living biomasses for both types of chromium ions. Bioaccumulation of chromate was found higher in chromate resistant isolates compared to the chromate sensitive isolates. Transmission electron microscopy confirmed the accumulation of chromium in cytoplasm in the resistant isolates.  相似文献   

20.
By‐products of various industrial fermentations can be good adsorbents for removing hazardous dyes from wastewater. However, after biosorption, regeneration of biomass is essential to minimize the solid waste generation or else the dye laden biomass should be suitably disposed off. In the present work, experiments were conducted on the Acid Navy Blue and Methylene Blue dyes which were biosorbed to the fungal biomass (strain closely related to Aspergillus lentulus) produced on corncob as the substrate through solid state fermentation. In order to dispose the dye laden biomass, it was vermicomposted along with cow dung (CD) employing Eisenia fetida. Results indicated that the dye laden biomass was not lethal toward the earthworms as no mortality was observed. However, as compared with control experiments (where dye laden biomass was absent), the reproductive potential of the earthworms was affected. Nevertheless, further investigations on optimization of biomass and CD ratios can facilitate vermicomposting as a potential route for disposing dye laden biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号