首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A two‐dimensional numerical model for determining the effects of the presence of an ice cover on the dynamic behaviour of large gravity dams is presented. Analytical predictions are compared to results obtained during a series of extensive dynamic tests on a large gravity dam. Data were obtained during summer and severe winter conditions to investigate the dynamic interactions between the dam, foundation, reservoir and the ice cover. The analysis includes ice‐reservoir interaction as well as the effects of water compressibility, flexible foundation and reservoir bottom absorption. Good agreement with the experimental findings is obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A two‐dimensional (2D) finite‐difference shallow water model based on a second‐order hybrid type of total variation diminishing (TVD) approximate solver with a MUSCL limiter function was developed to model flooding and inundation problems where the evolution of the drying and wetting interface is numerically challenging. Both a minimum positive depth (MPD) scheme and a non‐MPD scheme were employed to handle the advancement of drying and wetting fronts. We used several model problems to verify the model, including a dam break in a slope channel, a dam break flooding over a triangular obstacle, an idealized circular dam‐break, and a tide flow over a mound. Computed results agreed well with the experiment data and other numerical results available. The model was then applied to simulate the dam breaking and flooding of Hsindien Creek, Taiwan, with the detailed river basin topography. Computed flooding scenarios show reasonable flow characteristics. Though the average speed of flooding is 6–7 m s?1, which corresponds to the subcritical flow condition (Fr < 1), the local maximum speed of flooding is 14·12 m s?1, which corresponds to the supercritical flow condition (Fr ≈ 1·31). It is necessary to conduct some kind of comparison of the numerical results with measurements/experiments in further studies. Nevertheless, the model exhibits its capability to capture the essential features of dam‐break flows with drying and wetting fronts. It also exhibits the potential to provide the basis for computationally efficient flood routing and warning information. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A number of previous studies have identified changes in the climate occurring on decadal to multi‐decadal time‐scales. Recent studies also have revealed multi‐decadal variability in the modulation of the magnitude of El Niño–Southern Oscillation (ENSO) impacts on rainfall and stream flow in Australia and other areas. This study investigates multi‐decadal variability of drought risk by analysing the performance of a water storage reservoir in New South Wales, Australia, during different climate epochs defined using the Inter‐decadal Pacific Oscillation (IPO) index. The performance of the reservoir is also analysed under three adaptive management techniques and these are compared with the reservoir performance using the current ‘reactive’ management practices. The results indicate that IPO modulation of both the magnitude and frequency of ENSO events has the effect of reducing and elevating drought risk on multi‐decadal time‐scales. The results also confirm that adaptive reservoir management techniques, based on ENSO forecasts, can improve drought security and become significantly more important during dry climate epochs. These results have marked implications for improving drought security for water storage reservoirs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A. O. Pektas 《水文科学杂志》2017,62(10):1694-1703
Suspended sediment modelling is a quite significant issue in hydrology. The prediction of suspended sediment has taken the attention of several scientists in water resources. With extrapolation, the forecasting ability of the employed forecasting model beyond the calibration range is investigated. In the present study, different smoothing parameters are used to differentiate the kurtosis of the local critical points (local minima and maxima). The two models used are an artificial neural network (ANN) model and a multiple linear regression (MLR) model for prediction in order to examine the model extrapolation ability. The ANN model provides closer estimations to the observed peaks, being higher than the corresponding MLR ones. For the local minima, the ANN predictions are higher than the MLR predictions. As there are limited local points, all the remaining ANN predictions are lower than the MLR ones except for one point.  相似文献   

5.
The need for full‐scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam–reservoir–foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced‐vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one‐year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three‐dimensional finite element model for the dam–reservoir–foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
The seismic response of the intake–outlet towers has been widely analyzed in recent years. The usual models consider the hydrodynamic effects produced by the surrounding water and the interior water, characterizing the dynamic response of the tower–water–foundation–soil system. As a result of these works, simplified added mass models have been developed. However, in all previous models, the surrounding water is assumed to be of uniform depth and to have infinite extension. Consequently, the considered added mass is associated with only the pressures created by the displacements of the tower itself. For a real system, the intake tower is usually located in proximity to the dam and the dam pressures may influence the equivalent added mass. The objective of this paper is to investigate how the response of the tower is affected by the presence of the dam. A coupled three‐dimensional boundary element‐finite element model in the frequency domain is employed to analyze the tower–dam–reservoir interaction problem. In all cases, the system response is assumed to be linear, and the effect of the internal fluid and the soil–structure interaction effects are not considered. The results suggest that unexpected resonance amplifications can occur due to changes in the added mass for the tower as a result of the tower–dam–reservoir interaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Z. X. Xu  J. Y. Li 《水文研究》2002,16(12):2423-2439
The primary objective of this study is to investigate the possibility of including more temporal and spatial information on short‐term inflow forecasting, which is not easily attained in the traditional time‐series models or conceptual hydrological models. In order to achieve this objective, an artificial neural network (ANN) model for short‐term inflow forecasting is developed and several issues associated with the use of an ANN model are examined in this study. The formulated ANN model is used to forecast 1‐ to 7‐h ahead inflows into a hydropower reservoir. The root‐mean‐squared error (RMSE), the Nash–Sutcliffe coefficient (NSC), the A information criterion (AIC), B information criterion (BIC) of the 1‐ to 7‐h ahead forecasts, and the cross‐correlation coefficient between the forecast and observed inflows are estimated. Model performance is analysed and some quantitative analysis is presented. The results obtained are satisfactory. Perceived strengths of the ANN model are the capability for representing complex and non‐linear relationships as well as being able to include more information in the model easily. Although the results obtained may not be universal, they are expected to reveal some possible problems in ANN models and provide some helpful insights in the development and application of ANN models in the field of hydrology and water resources. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Özgür Kişi 《水文研究》2008,22(20):4142-4152
This paper proposes the application of a neuro‐wavelet technique for modelling monthly stream flows. The neuro‐wavelet model is improved by combining two methods, discrete wavelet transform and multi‐layer perceptron, for one‐month‐ahead stream flow forecasting and results are compared with those of the single multi‐layer perceptron (MLP), multi‐linear regression (MLR) and auto‐regressive (AR) models. Monthly flow data from two stations, Gerdelli Station on Canakdere River and Isakoy Station on Goksudere River, in the Eastern Black Sea region of Turkey are used in the study. The comparison results revealed that the suggested model could increase the forecast accuracy and perform better than the MLP, MLR and AR models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A. O. Pektas 《水文科学杂志》2017,62(14):2415-2425
This study examines the employment of two methods, multiple linear regression (MLR) and an artificial neural network (ANN), for multistep ahead forecasting of suspended sediment. The autoregressive integrated moving average (ARIMA) model is considered for one-step ahead forecasting of sediment series in order to provide a comparison with the MLR and ANN methods. For one- and two-step ahead forecasting, the ANN model performance is superior to that of the MLR model. For longer ranges, MLR models provide better accuracy, but there is an important assumption violation. The Durbin-Watson statistics of the MLR models show a noticeable decrease from 1.3 to 0.5, indicating that the residuals are not dependent over time. The scatterplots of the three methods (MLR, ARIMA and ANN) for one-step ahead forecasting for the validation period illustrate close fits with the regression line, with the ANN configuration having a slightly higher R2 value.  相似文献   

10.
Reservoir sedimentation resulting fromwater erosion is an important environmental issue inmany countries where storage of water is crucial for economic and agricultural development.Therefore,this paper reports results from analysis of the soil hydrological response,i.e.soil water erosion,to simulated rainfall resulting in sediment accumulation at the reservoir of Ekbatan Dam(Hamedan province,Iran).Also,another objective of this study was to simulate the future trends in reservoir sedimentation(soil loss rate;SLR)from indoor rainfall simulator data by multiple linear regression(MLR)and Artificial Neural Networks(ANNs).For this research,three sampling points with different types of soils were chosen including clayey sand soil(SC-SM),silty soil(ML),and clayey soil(CL).The input parameters were slope gradient(sin θ),soil type(St),water content(w),dry density(γd),shear strength(τ),unconfined compressive strength(qu),permeability(k),and California bearing ratio(CBR).Using MLR and ANN methods,7 models were developed with 2 constant predictors(i.e.sin θ and St)and 6 free predictors which were added in each step one by one.Among MLR models,model 5 with St,sin θ,γd,τ,w,and qu as input parameters was statistically significant.Among ANN models,model 4 with St,sin θ,?d,τ,and w as input parameters,9 nodes,and 1 hidden layer was statistically significant.The root mean square error(RMSE),mean error(ME),and correlation coefficient(R)values were 1.433 kg/m^2 h,0.0195 kg/m^2 h,and 0.698 for the MLRmodel and 0.38 kg/m^2 h,0.151 kg/m^2 h,and 0.98 for the ANN model,respectively.These results show that the ANN model could better predict the SLR in comparison to the MLR model.The results also demonstrate that shear strength,among the strength parameters,had a greater impact on the SLR than compressive strengths(qu and CBR).Last but not the least,the reservoir sedimentationwas estimated for all methods and compared with the observed data.The results indicate that the ANN model is more appropriate for forecasting/simulating the sediment yield for a small watershed.  相似文献   

11.
A direct finite element method for nonlinear earthquake analysis of 2‐dimensional dam–water–foundation rock systems has recently been presented. The analysis procedure uses standard viscous‐damper absorbing boundaries to model the semi‐unbounded foundation‐rock and fluid domains and specifies the seismic input as effective earthquake forces at these boundaries. Presented in this paper is a generalization of the direct finite element method with viscous‐damper boundaries to 3‐dimensional dam–water–foundation rock systems. Step‐by‐step procedures for determining the effective earthquake forces starting from a ground motion specified at a control point on the foundation‐rock surface is developed, and several numerical examples are computed and compared with independent benchmark solutions to demonstrate the effectiveness of the analysis procedure for modeling 3‐dimensional systems.  相似文献   

12.
Two models, one linear and one non‐linear, were employed for the prediction of flow discharge hydrographs at sites receiving significant lateral inflow. The linear model is based on a rating curve and permits a quick estimation of flow at a downstream site. The non‐linear model is based on a multilayer feed‐forward back propagation (FFBP) artificial neural network (ANN) and uses flow‐stage data measured at the upstream and downstream stations. ANN predicted the real‐time storm hydrographs satisfactorily and better than did the linear model. The results of sensitivity analysis indicated that when the lateral inflow contribution to the channel reach was insignificant, ANN, using only the flow‐stage data at the upstream station, satisfactorily predicted the hydrograph at the downstream station. The prediction error of ANN increases exponentially with the difference between the peak discharge used in training and that used in testing. ANN was also employed for flood forecasting and was compared with the modified Muskingum model (MMM). For a 4‐h lead time, MMM forecasts the floods reliably but could not be applied to reaches for lead times greater than the wave travel time. Although ANN and MMM had comparable performances for an 8‐h lead time, ANN is capable of forecasting floods with lead times longer than the wave travel time. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Mario Lefebvre 《水文研究》2002,16(7):1373-1381
Let X(t) be the flow of a certain river at time t. A geometric Brownian motion process is used as a model for X(t) and is found to give very good forecasts of future flows. The forecasted values generated by this one‐dimensional model are compared with those provided by a deterministic model that requires the evaluation of 18 entries. Based on two important criteria, the stochastic model is superior, on average, to the deterministic model for forecasts up to 4 days ahead. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Conventional seismic analysis of gravity dams assumes that the behaviour of the dam–water–soil system can be represented using a 2‐D model since dam vertical contraction joints between blocks allow them to vibrate independently from each other. The 2‐D model assumes the reservoir to be infinite and of constant width, which is not true for certain types of reservoirs. In this paper, a boundary element method (BEM) model in the frequency domain is used to investigate the influence of the reservoir geometry on the hydrodynamic dam response. Important conceptual conclusions about the dam–reservoir system behaviour are obtained using this model. The results show that the reservoir shape influences the seismic response of the dam, making it necessary to account for 3‐D effects in order to obtain accurate results. In particular, the 3‐D pressure and displacement responses can be substantially larger than those computed with the 2‐D model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
EXPERIMENTAL STUDY ON DENSITY CURRENT WITH HYPERCONCENTRATION OF SEDIMENT   总被引:3,自引:0,他引:3  
1. INTRODUCTIONSince 1960's, density curent with hyperconcentration of sediment have been observed andrecorded at over 10 reservoirs of the Heisonlin, Hengsban, Hongshan, Bajiazui, etc.Data from prototype observation and measurements were analysed. It is found that thecharacteristics of density current with hyperconcentrahon of sediment are quite different fromthat with low sediment concentration as had been described in available literatures. Densitycurrent with hyperconccntrahon of sed…  相似文献   

16.
Proper estimation of the spatial distribution of water-table depth is highly important in most groundwater studies. Groundwater depth is measured at specific and limited points and it is estimated for other parts using spatial estimation methods. In this study, two multivariate methods, artificial neural network (ANN) and multiple linear regression (MLR), are examined to estimate water-table depth in an unconfined aquifer located in Shibkooh, Iran. The different ancillary data, including spatial coordinates, digital elevation model (DEM), aquifer bed elevation, specific resistivity and aquifer thickness were used to improve estimates based on these methods. It was proved that performance of the ANN surpasses that of the MLR method. Using the spatial coordinates, the aquifer bed elevation and aquifer thickness resulted in the optimum spatial estimation of the water-table depth. These parameters, directly or indirectly, affect the water-table depth estimation through techniques such as ANN capable of modelling of nonlinear relationships.  相似文献   

17.
An analysis procedure in the frequency domain is developed for determining the earthquake response of two-dimensional concrete gravity and embankment dams including hydrodynamic effects; responses of the elastic dams and compressible water are assumed linear. The dam and fluid domain are treated as substructures and modelled with finite elements. The only geometric restriction is that an infinite fluid domain must maintain a constant depth beyond some point in the upstream direction. For such an infinite uniform region, a finite element discretization over the depth is combined with a continuum representation in the upstream direction. The fluid domain model approximately accounts for interaction between the fluid and underlying foundation medium through a damping boundary condition applied along the reservoir bottom, while the dam foundation is assumed rigid. Several examples are presented to demonstrate the accuracy of the fluid domain model and to illustrate dam responses obtained from the analysis procedure.  相似文献   

18.
This paper discusses critical and potentially controversial issues related to the seismic safety of tall concrete dams. These include the seismic input at a dam site, the effective treatment of the damage-rupture process, and the consideration of compressibility of reservoir water for hydrodynamic pressure. Major challenges to currently popular but questionable treatments of these critical problems are presented. Insights and additional research on these critical challenges are emphasized and explained based on prior published works of the author. More reasonable alternatives to dealing with these potentially controversial problems are provided in light of engineering practice in China. First, the design seismic input at depth as deconvoluted from an arbitrarily selected recorded accelerogram at a control point of an artificially developed free-field surface with the elevation of the dam crest is difficult for engineering projects to accept as appropriate. It may be more reasonable to use the design seismic incident motions as half of the ground surface motions from seismic safety analyses obtained from deterministic or probability approaches conducted by seismologists according to approved standards or guidelines. Second, since seismic damage to the dam must be estimated separately following uniaxial tensile and compressive experimental damage evolution rules, a simplified and realistic nonlinear elastic model is proposed as an alternative to the plastic-damage coupling model, which is very complex and includes assumptions based on a number of uncertainties. Finally, the effect of the reflection coefficient for compressibility of reservoir water on hydrodynamic pressures is very sensitive. The notion that the applied unified reflection coefficient at the reservoir bottom could be frequency-dependent and exhibit a significant variability in space as confirmed by field tests is questionable. To neglect the compressibility of reservoir water it may be closer to engineering practice at present.  相似文献   

19.
Simulation approaches employed in suspended sediment processes are important in the areas of water resources and environmental engineering. In the current study, neuro‐fuzzy (NF), a combination of wavelet transform and neuro‐fuzzy (WNF), multi linear regression (MLR), and the conventional sediment rating curve (SRC) models were considered for suspended sediment load (S) modeling in a gauging station in the USA. In the proposed WNF model, the discrete wavelet analysis was linked to a NF approach. To achieve this aim, the observed time series of river flow discharge (Q) and S were decomposed to sub time series at different scales by discrete wavelet transform. Afterwards, the effective sub time series were added together to obtain a useful Q and S time series for prediction. Eventually, the obtained total time series were imposed as inputs to the NF method for daily S prediction. The results illustrated that the predicted values by the proposed WNF model were in good agreement with the observed S values and gave better results than other models. Furthermore, the WNF model satisfactorily estimated the cumulative suspended sediment load and produced relatively reasonable predictions for extreme values of S, while NF, MLR, and SRC models provided unacceptable predictions.  相似文献   

20.
Repeatability of seismic data plays a crucial role in time‐lapse seismic analysis. There are several factors that can decrease the repeatability, such as positioning errors, varying tide, source variations, velocity changes in the water layer (marine data) and undesired effects of various processing steps. In this work, the complexity of overburden structure, as an inherent parameter that can affect the repeatability, is studied. A multi‐azimuth three‐dimensional vertical‐seismic‐profiling data set with 10 000 shots is used to study the relationship between overburden structure and repeatability of seismic data. In most repeatability studies, two data sets are compared, but here a single data set has been used because a significant proportion of the 10 000 shots are so close to each other that a repeatability versus positioning error is possible. We find that the repeatability decreases by a factor of approximately 2 under an overburden lens. Furthermore, we find that the X‐ and Y‐components have approximately the same sensitivity to positioning errors as the Z‐component (for the same events) in this three‐dimensional vertical‐seismic‐profiling experiment. This indicates that in an area with complex overburden, positioning errors between monitor and base seismic surveys are significantly more critical than outside such an area. This study is based on a three‐dimensional three‐component vertical‐seismic‐profiling data set from a North Sea reservoir and care should be taken when extrapolating these observations into a general four‐dimensional framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号