首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
In the twenty‐first century, fluvial geomorphologists are ideally placed to use their science in an applied manner, and provide guidance on environmental issues of concern. Understanding the impact of floods and droughts, land use and climate change, water use, etc. on river forms, processes and evolution requires that we understand interactions between water, sediment and vegetation, and how climate and anthropogenic impacts shape those interactions. More frequently, fluvial geomorphologists are asked to provide answers to a range of river issues, make forecasts about how systems might adjust in the future, and work with managers to implement strategies on‐the‐ground. To some, the field of fluvial geomorphology is underprepared for this task as several principles of landscape form, process and evolution are yet to be fully explored. Others however, see that geomorphologists have a suite of principles and tools at their disposal, and sufficient understanding to make forecasts about future river adjustments with some level of confidence. One concept that has been lost in recent years, but should lie at the heart of such analyses is that of river sensitivity. In this paper I draw on foundation literature to review the concept of river sensitivity. I provide examples that demonstrate how this concept could be reshaped and used for analyses at landform, reach and catchment scales. At the landform scale, morphological sensitivity is a function of textural and geometric sensitivity. At the reach scale, analyses consider inherent behavioural and change sensitivity. At the catchment scale river response and recovery are a function of locational, transmission and filter sensitivity. I then discuss how some temporal concepts can be used to consider how sensitivity in itself adjusts over time. Finally, I discuss future challenges for analysis of river sensitivity and consider how it could be used to improve geomorphological forecasting for use in river management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In situ measurement of grain‐scale fluvial morphology is important for studies on grain roughness, sediment transport and the interactions between animals and the geomorphology, topics relevant to many river practitioners. Close‐range digital photogrammetry (CRDP) and terrestrial laser scanning (TLS) are the two most common techniques to obtain high‐resolution digital elevation models (DEMs) from fluvial surfaces. However, field application of topography remote sensing at the grain scale is presently hindered mainly by the tedious workflow challenges that one needs to overcome to obtain high‐accuracy elevation data. A recommended approach for CRDP to collect high‐resolution and high‐accuracy DEMs has been developed for gravel‐bed flume studies. The present paper investigates the deployment of the laboratory technique on three exposed gravel bars in a natural river environment. In contrast to other approaches, having the calibration carried out in the laboratory removes the need for independently surveyed ground‐control targets, and makes for an efficient and effective data collection in the field. Optimization of the gravel‐bed imagery helps DEM collection, without being impacted by variable lighting conditions. The benefit of a light‐weight three‐dimensional printed gravel‐bed model for DEM quality assessment is shown, and confirms the reliability of grain roughness data measured with CRDP. Imagery and DEM analysis evidences sedimentological contrasts between gravel bars within the reach. The analysis of the surface elevations shows the effect variable grain‐size and sediment sorting have on the surface roughness. By plotting the two‐dimensional structure functions and surface slopes and aspects we identify different grain arrangements and surface structures. The calculation of the inclination index allows determining the surface‐forming flow direction(s). We show that progress in topography remote sensing is important to extend our knowledge on fluvial morphology processes at the grain scale, and how a technique customized for use by fluvial geomorphologists in the field benefits this progress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper reviews some of the challenges and objectives in the application of fluvial geomorphology to improved river management in the U.K. It describes the mechanisms by which geomorphology can be applied to solve problems, including the development of design guidance, policy, management approaches, procedures and training. While it is true that geomorphology is being used increasingly, there remain a number of challenges, such as the need to promote a more professional image and to develop appropriate standards. The scientific basis on which decisions relating to the water environment are made needs to be developed further. Perhaps some of the most significant challenges for fluvial geomorphology in U.K. river management during the next decade will concern river and floodplain restoration.  相似文献   

4.
Three hundred and twenty‐eight geomorphology articles published in the last quarter of the 20th century were cited 20 or more times in Institute for Scientific Information (ISI) indices, as of 15 May 2001. At the close of the 20th century, well‐cited geomorphology is highly multidisciplinary and interdisciplinary with the most dominant fields being in biological, civil engineering, earth science, geography, geological, and soils disciplines. The very strong English‐language bias of well‐cited journal articles creates a geographical bias in study site selection, which may in turn bias geomorphic theory. Water‐based research (fluvial processes and landforms, riparian, drainage basin) dominates well‐cited papers, with the ‘hottest’ subfield in the 1990s being riparian research with a biological emphasis. Over 90 journals publish well‐cited papers, but Earth Surface Processes and Landforms hosts the largest number of well‐cited papers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Geomorphological processes are an integral part of ecosystem functioning and ecosystem functioning affects geomorphological processes. Increasingly widespread acknowledgement of this simple idea is manifest in a vigorous research community engaged with questions that address the two‐way interaction between biota and geomorphology, at a range of scales and in a variety of terrestrial and aquatic environments. Geomorphological disturbances are a core element of biogeomorphological interest, and although the disciplines of geomorphology and ecology have each developed languages and theories that help to explore, model and understand disturbance events, little attempt has been made to draw together these approaches. Following a brief review of these issues, we introduce thirteen papers that investigate the interactions and feedbacks between geomorphological disturbance regimes and ecosystem functions. These papers reveal the singularity of wildfire impacts, the importance of landsliding for carbon budgeting and of vegetation accumulation for landsliding, the zoogeomorphic role of iconic and ‘Cinderella’ animals in fluvial geomorphology, biophysical interactions in aeolian, fluvial and torrential environments and the utility of living ecosystems as archives of geomorphic events. Most of these papers were first presented in a conference session at the European Geoscience Union General Assembly in 2010 and several others are from recent volumes of Earth Surface Processes and Landforms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Quantifying the topography of rivers and their associated bedforms has been a fundamental concern of fluvial geomorphology for decades. Such data, acquired at high temporal and spatial resolutions, are increasingly in demand for process‐oriented investigations of flow hydraulics, sediment dynamics and in‐stream habitat. In these riverine environments, the most challenging region for topographic measurement is the wetted, submerged channel. Generally, dry bed topography and submerged bathymetry are measured using different methods and technology. This adds to the costs, logistical challenges and data processing requirements of comprehensive river surveys. However, some technologies are capable of measuring the submerged topography. Through‐water photogrammetry and bathymetric LiDAR are capable of reasonably accurate measurements of channel beds in clear water. While the cost of bathymetric LiDAR remains high and its resolution relatively coarse, the recent developments in photogrammetry using Structure from Motion (SfM) algorithms promise a fundamental shift in the accessibility of topographic data for a wide range of settings. Here we present results demonstrating the potential of so called SfM‐photogrammetry for quantifying both exposed and submerged fluvial topography at the mesohabitat scale. We show that imagery acquired from a rotary‐winged Unmanned Aerial System (UAS) can be processed in order to produce digital elevation models (DEMs) with hyperspatial resolutions (c. 0.02 m) for two different river systems over channel lengths of 50–100 m. Errors in submerged areas range from 0.016 m to 0.089 m, which can be reduced to between 0.008 m and 0.053 m with the application of a simple refraction correction. This work therefore demonstrates the potential of UAS platforms and SfM‐photogrammetry as a single technique for surveying fluvial topography at the mesoscale (defined as lengths of channel from c.10 m to a few hundred metres). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Plants as river system engineers   总被引:1,自引:0,他引:1       下载免费PDF全文
Plants growing within river corridors both affect and respond to fluvial processes. Their above‐ground biomass modifies the flow field and retains sediment, whereas their below‐ground biomass affects the hydraulic and mechanical properties of the substrate and consequently the moisture regime and erosion susceptibility of the land surface. This paper reviews research that dates back to the 1950s on the geomorphological influence of vegetation within fluvial systems. During the late twentieth century this research was largely pursued through field observations, but during the early years of the twenty‐first century, complementary field, flume and theoretical/modelling investigations have contributed to major advances in understanding the influence of plants on fluvial systems. Flume experiments have demonstrated the fundamental role of vegetation in determining river planform, particularly transitions from multi‐ to single‐thread forms, and have provided insights into flow–vegetation–sediment feedbacks and landform building, including processes such as channel blockage and avulsion. At the same time, modellers have incorporated factors such as moisture‐dependent plant growth, canopy and root architecture and their influence on flow resistance and sediment/bank reinforcement into morphodynamic models. Meanwhile, field investigations have revealed that vegetation has a far more important and complex influence on fluvial systems than previously realized. It is now apparent that the influence of plants on river systems is significant across space scales from individual plants to entire forested river corridors. Small plant‐scale phenomena structure patch‐scale geomorphological forms and processes, and interactions between patches are almost certainly crucial to larger‐scale and longer‐term geomorphological phenomena. The influence of plants also varies continuously through time as above‐ and below‐ground biomass change within the annual growth cycle, over longer‐term growth trajectories, and in response to external drivers of change such as climatic, hydrological and fluvial fluctuations and extremes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Ice streams are integral components of an ice sheet's mass balance and directly impact on sea level. Their flow is governed by processes at the ice‐bed interface which create landforms that, in turn, modulate ice stream dynamics through their influence on bed topography and basal shear stresses. Thus, ice stream geomorphology is critical to understanding and modelling ice streams and ice sheet dynamics. This paper reviews developments in our understanding of ice stream geomorphology from a historical perspective, with a focus on the extent to which studies of modern and palaeo‐ice streams have converged to take us from a position of near‐complete ignorance to a detailed understanding of their bed morphology. During the 1970s and 1980s, our knowledge was limited and largely gleaned from geophysical investigations of modern ice stream beds in Antarctica. Very few palaeo‐ice streams had been identified with any confidence. During the 1990s, however, glacial geomorphologists began to recognise their distinctive geomorphology, which included distinct patterns of highly elongated mega‐scale glacial lineations, ice stream shear margin moraines, and major sedimentary depocentres. However, studying relict features could say little about the time‐scales over which this geomorphology evolved and under what glaciological conditions. This began to be addressed in the early 2000s, through continued efforts to scrutinise modern ice stream beds at higher resolution, but our current understanding of how landforms relate to processes remains subject to large uncertainties, particularly in relation to the mechanisms and time‐scales of sediment erosion, transport and deposition, and how these lead to the growth and decay of subglacial bedforms. This represents the next key challenge and will require even closer cooperation between glaciology, glacial geomorphology, sedimentology, and numerical modelling, together with more sophisticated methods to quantify and analyse the anticipated growth of geomorphological data from beneath active ice streams. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
The impact of changing catchment vegetation type on mean annual runoff has been known for some time, however, the impact on the variability of annual runoff has been established only recently. Differences in annual actual evapotranspiration between vegetation types and the potential effect of changing vegetation type on mean annual runoff and the variability of annual runoff are briefly reviewed. The magnitude of any change in the variability of annual runoff owing to a change in catchment vegetation type is related to the pre‐ and post‐change vegetation types and the seasonality of precipitation, assuming that the variability of annual precipitation remains constant throughout. Significant implications of the relationship between vegetation type and the variability of annual runoff are presented and discussed for water resource management, stream ecology and fluvial geomorphology. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
This commentary uses Google Books N‐grams to briefly explore the changing use of the word geomorphology in books published in British English and American English. Both show a decline in the use of the term geomorphology in recent years. A singular feature of the British data is a very sharp rise and fall in the use of term geomorphology in books published since 1980. The steep falling limb (post 1993) of this curve is of particular concern and several possible explanations are put forward including, since 1986, the influence exerted by Research Assessment Exercises on publication practice in UK universities. The N‐gram trends pose important questions for all geomorphologists and we should monitor them to gain a better understanding of where we need to be most visible to ensure the long‐term health of our discipline. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Dynamics and functions of large wood have become integral considerations in the science and management of river systems. Study of large wood in rivers took place as monitoring of fish response to wooden structures placed in rivers in the central United States in the early 20th century, but did not begin in earnest until the 1970s. Research has increased in intensity and thematic scope ever since. A wide range of factors has prompted these research efforts, including basic understanding of stream systems, protection and restoration of aquatic ecosystems, and environmental hazards in mountain environments. Research and management have adopted perspectives from ecology, geomorphology, and engineering, using observational, experimental, and modelling approaches. Important advances have been made where practical information needs converge with institutional and science leadership capacities to undertake multi-pronged research programmes. Case studies include ecosystem research to inform regulations for forest management; storage and transport of large wood as a component in global carbon dynamics; and the role of wood transport in environmental hazards in mountain regions, including areas affected by severe landscape disturbances, such as volcanic eruptions. As the field of research has advanced, influences of large wood on river structures and processes have been merged with understanding of streamflow and sediment regimes, so river form and function are now viewed as involving the tripartite system of water, sediment, and wood. A growing community of researchers and river managers is extending understanding of large wood in rivers to climatic, forest, landform, and social contexts not previously investigated. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Research into fluvial dunes spans disciplines, studies at grain to reach scales, and methodological approaches that include theoretical, experimental, numerical and field investigations. Despite significant research efforts to date, it remains difficult to provide definitive answers to some fundamental questions regarding dunes. This paper reviews three notable challenges that remain regarding fluvial dunes, namely scale‐consistent linking of bed morphologies with turbulent flow fields, the intriguing question of what causes trains of highly‐ordered sediment waves to form in beds of river sediments, and how to define the important characteristics of a dune‐covered bed, including lengths, shapes, and their statistical nature. In each case, the particular challenge is discussed and then recent research and ways forward are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High‐resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process‐based river management and restoration. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
An extensive survey and topographic analysis of five watersheds draining the Luquillo Mountains in north‐eastern Puerto Rico was conducted to decouple the relative influences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that exert a localized lithologic influence on the stream channels. However, the stream channels also experience strong hydraulic forcing due to high unit discharge in the humid rainforest environment. GIS‐based topographic analysis was used to examine channel profiles, and survey data were used to analyze downstream changes in channel geometry, grain sizes, stream power, and shear stresses. Results indicate that the longitudinal profiles are generally well graded but have concavities that reflect the influence of multiple rock types and colluvial‐alluvial transitions. Non‐fluvial processes, such as landslides, deliver coarse boulder‐sized sediment to the channels and may locally determine channel gradient and geometry. Median grain size is strongly related to drainage area and slope, and coarsens in the headwaters before fining in the downstream reaches; a pattern associated with a mid‐basin transition between colluvial and fluvial processes. Downstream hydraulic geometry relationships between discharge, width and velocity (although not depth) are well developed for all watersheds. Stream power displays a mid‐basin maximum in all basins, although the ratio of stream power to coarse grain size (indicative of hydraulic forcing) increases downstream. Excess dimensionless shear stress at bankfull flow wavers around the threshold for sediment mobility of the median grain size, and does not vary systematically with bankfull discharge; a common characteristic in self‐forming ‘threshold’ alluvial channels. The results suggest that although there is apparent bedrock and lithologic control on local reach‐scale channel morphology, strong fluvial forces acting over time have been sufficient to override boundary resistance and give rise to systematic basin‐scale patterns. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

15.
Floodplain vegetation is fundamental in fluvial systems, controlling river corridor geomorphology and ecology through a series of hydraulic, sedimentological, and biological processes. Changes caused by introduced plant species can thus result in shifts in river regime, succession trajectories and nutrient availability, affecting native biodiversity. The exotic bigleaf or marsh lupine Lupinus polyphyllus, introduced in Patagonia in the last decades, is aggressively invading fluvial corridors. It fills unoccupied ecological niches in southern Chilean rivers, due to its capacity for nitrogen fixation, its perennial habit, and high shoot density and leaf surface area.We investigated the effects of L. polyphyllus on vertical accretion of fine sediment, and soil carbon and nitrogen content, on gravel bars of the Paloma river, Chilean Patagonia, where lupine is believed to have been introduced in 1994. We sampled plot pairs with and without lupine, with each pair located at the same elevation above river stage, and plots distributed over the reach scale. We measured the thickness of the fine soil horizon, grain size distribution, and soil carbon and nitrogen content. We also compared aerial photographs to evaluate changes in spatial coverage of lupine along the study reach.Presence of lupine was strongly correlated with a thicker layer of finer sediment, in turn characterized by higher organic carbon, carbon to nitrogen ratio, and inorganic carbon content. Contrary to our expectations, we did not find any significant differences in total nitrogen. Aerial photographs did not reveal important differences in coverage between 2007 and 2010, but plant density appears to have increased between the two dates, and invaded gravel bars also appear to be more stable. Lupine dominance of otherwise sparsely vegetated gravel bars in Patagonian rivers appears to have greatest consequences on bar physical structure (increased rates of accretion of fines) and secondary repercussions on soil quality (increase in recalcitrant organic matter), with potential transient effects on nutrient availability (possible increased soil metabolism, followed by carbon mineralization and loss of lupine nitrogen subsidy).  相似文献   

16.
Earth scientists have traditionally conceptualized rivers and streams as geomorphic machines, whose role is to transfer sediment and to sculpt the landscape. Steady‐state relationships between sediment supply and transport capacity have traditionally been considered normative in fluvial systems. Rivers are hydrological entities, however, whose function is to redistribute excess moisture on land. The geomorphic work of the river – erosion, transport, deposition, etc. – is a byproduct of the hydrological job of the river. There is therefore no reason to expect any particular relationship between sediment supply and transport capacity to develop as a normative condition in fluvial systems. The apparent steady‐state equilibrium slope adjustments of rivers are a byproduct of four basic phenomena: (1) hydraulic selection, which favors channels and branching networks over other flux patterns; (2) water flows along the available path of least resistance; (3) energy dissipation; and (4) finite relaxation times. Recognizing converging trends of stream power or slope and sediment supply as common (but far from inevitable) side effects rather than self‐regulation has important implications for interpreting and predicting fluvial systems, and for river management and restoration. Such trends are variable, transient, contingent, and far from universal. Where they occur, they are an emergent byproduct of fundamental physical mechanisms, not a goal function or attractor state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Stream power can be an extremely useful index of fluvial sediment transport, channel pattern, river channel erosion and riparian habitat development. However, most previous studies of downstream changes in stream power have relied on field measurements at selected cross‐sections, which are time consuming, and typically based on limited data, which cannot fully represent important spatial variations in stream power. We present here, therefore, a novel methodology we call CAFES (combined automated flood, elevation and stream power), to quantify downstream change in river flood power, based on integrating in a GIS framework Flood Estimation Handbook systems with the 5 m grid NEXTMap Britain digital elevation model derived from IFSAR (interferometric synthetic aperture radar). This provides a useful modelling platform to quantify at unprecedented resolution longitudinal distributions of flood discharge, elevation, floodplain slope and flood power at reach and basin scales. Values can be resolved to a 50 m grid. CAFES approaches have distinct advantages over current methodologies for reach‐ and basin‐scale stream power assessments and therefore for the interpretation and prediction of fluvial processes. The methodology has significant international applicability for understanding basin‐scale hydraulics, sediment transport, erosion and sedimentation processes and river basin management. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
An important and highly active research agenda has developed at the interface of fluvial geomorphology and ecology that addresses the capacity for vegetation and animals to act as ecosystem engineers within fluvial systems. This paper briefly introduces this research domain and describes the 15 papers that contribute to the special issue on 'Dynamic riverine landscapes: the role of ecosystem engineers'. The papers illustrate the breadth of research activity at this interface, investigating the influence of a range of ecosystem engineering organisms through a combination of field study, laboratory experiments, numerical simulation and analysis of remotely sensed data. Together, the papers address a series of key themes: conceptual frameworks for feedbacks between aquatic biota, hydraulics, sediment dynamics and nutrient dynamics and their quantification through experimental and field research; the potential contribution of ecosystem engineering species to assist river recovery and restoration; and the contribution of riparian vegetation to bank stability and morphodynamics across a range of spatio‐temporal scales. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Foraging by benthivorous fish can affect bed material mobility and sediment flux. This paper collates evidence of benthic feeding effects at local scales and evaluates the possibility that large numbers of foraging fish, each of which accomplishes a small amount of geomorphic work when feeding, may have a cumulative effect across river systems. A first synthesis of research from several disciplines provides a deeper understanding of how fish disturb and condition bed materials with implications for sediment mobility. To evaluate the spatial extent of benthic feeding and therefore the potential for it to have a large-scale effect, the distribution of benthivorous fish is established across a large river network. After quality control, the dataset yields a comprehensive set of fish community information based on over 61 000 individuals and 30 species at 176 sites. The factors that are likely to mediate foraging and its geomorphological effectiveness are considered. A novel scoring system that incorporates three key controls (fish feeding behaviour, fish abundance and fish body size) is then applied across the river network to predict where geomorphologically effective benthic feeding is feasible and its possible relative magnitude. Our results demonstrate, for the first time, that the potential for zoogeomorphic impacts is widespread but variable in space as a function of community composition and the abundance of key benthivores. An initial calibration against measured field impacts suggests that benthic feeding may cause measurable geomorphological disturbance at more than 90% of sites in this large network. Together, previous work and this unique analysis suggest that benthic feeding is sufficiently effective and extensive to warrant additional research. Investigating the role of benthivorous fish in fluvial geomorphology is important because it may yield results that challenge the assumption that biota are irrelevant sources of energy in geomorphological systems. Key research questions and a roadmap to facilitate progress are identified. © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Assumptions about fluvial processes and process–form relations are made in general models and in many site-specific applications. Many standard assumptions about reach-scale flow resistance, bed-material entrainment thresholds and transport rates, and downstream hydraulic geometry involve one or other of two types of scale invariance: a parameter (e.g. critical Shields number) has the same value in all rivers, or doubling one variable causes a fixed proportional change in another variable in all circumstances (e.g. power-law hydraulic geometry). However, rivers vary greatly in size, gradient, and bed material, and many geomorphologists regard particular types of river as distinctive. This review examines the tension between universal scaling assumptions and perceived distinctions between different types of river. It identifies limits to scale invariance and departures from simple scaling, and illustrates them using large data sets spanning a wide range of conditions. Scaling considerations and data analysis support the commonly made distinction between coarse-bed and fine-bed reaches, whose different transport regimes can be traced to the different settling-velocity scalings for coarse and fine grains. They also help identify two end-member sub-types: steep shallow coarse-bed ‘torrents’ with distinctive flow-resistance scaling and increased entrainment threshold, and very large, low-gradient ‘mega rivers’ with predominantly suspended load, subdued secondary circulation, and extensive backwater conditions. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号