首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
近20年青海湖湖水面积变化遥感   总被引:11,自引:6,他引:5  
刘瑞霞  刘玉洁 《湖泊科学》2008,20(1):135-138
采用NOAA/AVHRR资料,对青海湖湖面进行水体判识,并利用线性混合模式对混合象元进行处理,定量估算了近20年青海湖湖水面积并分析了变化趋势,表明近20年青海湖湖水面积在不断减小,每年减少约4km2,并且青海湖干涸部分主要在其北部.进一步采用主成分分析和回归分析方法对青海湖地区降水、气温和蒸发量做了初步气候分析,表明青海湖地区降水减少、气温升高、蒸发量增加是青海湖湖水面积逐年减少的主要原因.  相似文献   

2.
北半球环状模周期变化和突变研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用NOAA提供的1871-2008年月平均海平面气压场、雪盖、海冰等再分析资料、NASA提供的地表温度场资料、太平洋年代际振荡(PDO)指数,采用小波分析、带通滤波和凝聚谱分析等方法,研究了北半球环状模(NAM)周期变化及其影响因子.研究结果表明NAM在20世纪60年代前后发生了显著的年代际尺度周期突变,NAM在1895-1955年存在显著的准35年周期振荡,而在1971-2008年则主要以准15年周期振荡为主.NAM年代际尺度周期突变与外强迫源振荡周期变化有关,但突变前后与NAM周期振荡密切相关的外强迫因子并不尽相同.在1960年代之前,PDO、ATM、北美雪盖以及南极海冰涛动等外源强迫因子与NAM在准35年尺度上关系密切;而在1960年之后,NAM准15年振荡则与ATM和欧洲雪盖、南极海冰涛动等因素有关.  相似文献   

3.
区域红外亮温背景场建立方法及初步应用   总被引:1,自引:0,他引:1  
本文主要利用NOAA/AVHRR热红外亮温图像建立活动构造区域亮温背景场的方法,对背景场建立过程中NOAA图像的几何精校正、云和干扰噪点、噪线的去除等关键问题进行了分析,并提出相应的解决方法。在此基础上,利用多年的NOAA卫星资料,建立了首都圈地区(38°~42°N,112°~118°E)的旬、月、年不同时间尺度上的亮温背景场,并进行了分析。结果表明,首都圈地区的亮温背景场变化主要受季节和地形因素的影响,时间维上整体表现为夏高冬低的年变特征,符合季节变化规律;空间维上总体表现为东南部华北平原区亮温高,西北部随海拔高程的增加而亮温逐渐降低为特征。  相似文献   

4.
中国降水年际和年代际变率对空间尺度的敏感性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用中国740站45年降水资料按5种分辨率分气候区计算了降水年际和年代际变率. 降水年际和年代际变率对空间尺度的敏感性分析表明,中国各气候区降水年际变率对空间尺度的敏感性都随空间尺度的增加而逐渐减小,且存在明显的季节变化,而年代际变率对空间尺度的敏感性却随空间尺度的增加而增大,但不存在季节变化;由于中国各气候区降水的特殊性,各气候区降水年际和年代际变率对空间尺度的敏感程度存在不可忽视的差异.在年际和年代际尺度上,西南地区降水变率对空间尺度都是最敏感的,因而该区域降水年际和年代际变率信号的检测最困难.而华南地区在年际尺度上比较敏感,年代际尺度却不敏感,但华南地区在年际和年代际尺度上区域内降水分布的非均匀程度对空间尺度的敏感性都最大.  相似文献   

5.
基于互补相关理论,通过20cm蒸发皿气象观测数据分析了中国区域1980~2000年地表热力时空变化和分布.结果显示:四川盆地为中心的长江中上游流域和黑龙江北部地区热力作用显著异常增强;新疆和云南部分区域热力作用显著减少.上述区域内低云覆盖率也同步发生显著的异常变化.通过西太平洋副热带高压波动数据和热带风暴频率资料证实,天气系统是造成地表热力异常分布的主要原因,并合理地解释了中国大部分区域年降水周期性和准周期性波动的成因.同时利用NOAA—AVHRR卫星遥感数据,分析了下垫面性质变化对地表热力异常分布的影响.在地表植被增加区域,地表热力作用下降;在地表植被减少强度最大的城市化周边地区,热力作用显著增强,而更大范围的热力增强却与天气系统引发的低云异常减少有关.  相似文献   

6.
本文研究了中国南方春季降水在1979~2004年期间的年代际变化特征,结果表明无论在年际还是在年代际时间尺度上,中国南方东南和西南地区降水都具有反相变化的特征,并分别呈现出显著的减少趋势和增加趋势.中国南方春季降水在20世纪80年代末出现了一次明显的年代际气候转型.东南地区的春季降水明显减少,降水量在80年代末以后比80年代末之前减少了30%;而西南地区的春季降水则明显增加,80年代末之后的降水量是80年代末之前的两倍.伴随着这次年代际转型,欧亚大陆西伯利亚上空对流层中低层位势高度增强,对流层低层中国东部北风增强,造成中国东部西南风减弱,使得降水在东南地区减少,西南地区增多.中国南方春季降水在20世纪80年代末出现的年代际气候转型与欧亚大陆春季积雪的年代际转型有密切联系.从20世纪80年代末开始欧亚大陆春季积雪明显减少,与欧亚大陆春季积雪变化所伴随的大气环流变化,是造成春季我国东南地区降水减少和西南地区降水增多的一个重要原因.  相似文献   

7.
昆仑山地震前长波辐射异常特征分析   总被引:3,自引:1,他引:3  
应用NOAA、AVHRR资料反演的地气长波辐射值OLR对2001年11月14日昆仑山口西8.1级地震进行了追踪研究。结果表明:2001年10月起OLR出现明显的异常带,随时间的变化,异常区域不断向未来的震源聚拢,并且在未来地震震中区持续存在小的OLR高值闭合区,10月开始OLR出现突出的反常升势。  相似文献   

8.
雷达卫星SAR与防卫气象卫星SSM/I对渤海海冰的观测研究   总被引:11,自引:1,他引:11  
用雷达卫星(RADARSAT)合成孔径雷达(SAR)和防卫气象卫星(DMSP)特别微波成像辐射计(SSM/I)在1999年1月23日同一天对中国渤海区域海冰的观测数据,进行了主动SAR与被动SSM/I的组合研究.用一层海冰电磁散射辐射的建模与数值模拟,分析了中纬度渤海沿岸海冰的特征性变化,提出用SSM/I辐射亮度温度的散射指数、极化指数、极化比率来识别渤海海冰;用RADARSAT高分辨率SAR数据(水平极化后向散射系数)对渤海海冰物理特征进行识别与分类.这些特征指数在时间与空间尺度上的相关变化可有效地应用于渤海海冰的监察.  相似文献   

9.
本文研究发展利用GMS 5/VISSR每小时卫星观测资料反演地表温度的方法,首先利用时空判断法进行云检测寻找晴空像元,然后从辐射传输方程出发,由实时探空资料求取大气上行、下行辐射率及大气透过率,根据由AVHRR NDVI导出的地表比辐射率,用单时相双光谱分裂窗法反演得到地表温度.比较反演结果与54511站及其他中国基准站2000年地面0cm地表温度实测值,相对于国际上其他经验公式而言,本文算法在精度上有所提高.敏感性分析试验着重于大气衰减的影响.基于本文算法,给出了内蒙中东部地区地表温度连续4天的变化实例以及东亚部分陆地“纯晴天”地表温度图.  相似文献   

10.
欧洲遥感卫星(ERS)和美国防卫气象卫星计划(DMSP)空对地微波遥感是当今研究全球大气地表微波散射辐射和反演地球物理与水文参数的主要数据来源.本文研究了ERS-1散射计和SSM/I多通道辐射计在中国海域观测到的后向散射和热辐射数据,论证了同一地区同一时间段内ERS主动散射计和SSM/I被动辐射计观测数据的相关性.用海域主、被动遥感数据的比较,阐述了主、被动联合多通道分析方法有利于监视和分析复杂地表和海面在时间和空间尺度上的变化.用带泡沫散射层的双尺度随机粗糙面的复合模型计算后向散射和热发射,用以数值模拟ERS和SSM/I数据.并讨论了后向散射与热辐射数值模拟结果的相关性,以及与星载微波遥感器实际观测结果的比较.  相似文献   

11.
The spatial and temporal distribution of snow cover extent (SCE) and snow water equivalent (SWE) play vital roles in the hydrology of northern watersheds. We apply remotely sensed Special Sensor Microwave Imager (SSM/I) data from 1988 to 2007 to explore the relationships between snow distribution and the hydroclimatology of the Mackenzie River Basin (MRB) of Canada and its major sub-basins. The Environment Canada (EC) algorithm is adopted to retrieve the SWE from SSM/I data. Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow cover extent products (MOD10A2) are used to estimate the different thresholds of retrieved SWE from SSM/I to classify the land cover as snow or no snow for various sub-basins in the MRB. The sub-basins have varying topography and hence different thresholds that range from 10 mm to 30 mm SWE. The accuracy of snow cover mapping based on the combination of several thresholds for the different sub-basins reaches ≈ 90%. The northern basins are found to have stronger linear relationships between the date on which snow cover fraction (SCF) reaches 50% or when SWE reaches 50% and mean air temperatures, than the southern basins. Correlation coefficients between SCF, SWE, and hydroclimatological variables show the new SCF products from SSM/I perform better than SWE from SSM/I to analyze the relationships with the regional hydroclimatology. Statistical models relating SCF and SWE to runoff indicate that the SCF and SWE from EC algorithms are able to predict the discharge in the early snow ablation seasons in northern watersheds.  相似文献   

12.
Abstract

This paper presents the relationship between Indian summer monsoon total rainfall and two parameters from Eurasian snow cover, one being the winter snow cover extent and the other the area of spring snowmelt. Satellite-derived Eurasian snow cover extent and Indian monsoon rainfall data were obtained from the NOAA/NESDIS and the India Meteorological Department (IMD) for the period 1966–1985. Seasonal cyclic variations of snow cover showed a higher swing in both the winter and the spring seasons of the cycle as compared to the remaining seasons of the year in the lower region of the cycle. The established inverse relation between winter snow cover and monsoon rainfall during June to September is further extended. Winter snow cover is very strongly correlated with spring snowmelt over Eurasia. Spring snowmelt area is obtained by subtracting the May snow cover extent from that of the previous February. The variations of spring snowmelt were also compared with Indian total monsoon rainfall. The detected correlation is stronger between snowmelt and monsoon rainfall than between the winter snow cover and the monsoon rainfall. There is also a significant multiple correlation among winter snow cover, spring snowmelt and monsoon rainfall. Lastly, a significant multiple correlation suggested a multiple regression equation which might improve the climatic prediction of monsoon rainfall over India.  相似文献   

13.
We show how the studies of ice and snow cover of continental water bodies can benefit from the synergy of more than 15 years-long simultaneous active (radar altimeter) and passive (radiometer) observations from radar altimetric satellites (TOPEX/Poseidon, Jason-1, ENVISAT and Geosat Follow-On) and how this approach can be complemented by SSM/I passive microwave data to improve spatial and temporal coverage. Five largest Eurasian continental water bodies—Caspian and Aral seas, Baikal, Ladoga and Onega lakes are selected as examples. First we provide an overview of ice regime and history of ice studies for these seas and lakes. Then a summary of the existing state of the art of ice discrimination methodology from altimetric observations and SSM/I is given. The drawbacks and benefits of each type of sensor and particularities of radiometric properties for each of the chosen water bodies are discussed. Influence of sensor footprint size, ice roughness and snow cover on satellite measurements is also addressed. A step-by-step ice discrimination approach based on a combined use of the data from the four altimetric missions and SSM/I is presented, as well as validation of this approach using in situ and independent satellite data in the visible range. The potential for measurement of snow depth on ice from passive microwave observations using both altimeters and SSM/I is addressed and a qualitative comparison of in situ snow depth observations and satellite-derived estimates is made.  相似文献   

14.
The temporal and spatial continuity of spatially distributed estimates of snow‐covered area (SCA) are limited by the availability of cloud‐free satellite imagery; this also affects spatial estimates of snow water equivalent (SWE), as SCA can be used to define the extent of snow telemetry (SNOTEL) point SWE interpolation. In order to extend the continuity of these estimates in time and space to areas beneath the cloud cover, gridded temperature data were used to define the spatial domain of SWE interpolation in the Salt–Verde watershed of Arizona. Gridded positive accumulated degree‐days (ADD) and binary SCA (derived from the Advanced Very High Resolution Radiometer (AVHRR)) were used to define a threshold ADD to define the area of snow cover. The optimized threshold ADD increased during snow accumulation periods, reaching a peak at maximum snow extent. The threshold then decreased dramatically during the first time period after peak snow extent owing to the low amount of energy required to melt the thin snow cover at lower elevations. The area having snow cover at this later time was then used to define the area for which SWE interpolation was done. The area simulated to have snow was compared with observed SCA from AVHRR to assess the simulated snow map accuracy. During periods without precipitation, the average commission and omission errors of the optimal technique were 7% and 11% respectively, with a map accuracy of 82%. Average map accuracy decreased to 75% during storm periods, with commission and omission errors equal to 11% and 12% respectively. The analysis shows that temperature data can be used to help estimate the snow extent beneath clouds and therefore improve the spatial and temporal continuity of SCA and SWE products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
积雪是西北干旱地区河流的主要补给源,是绿洲的生命线.积雪的时空变化是全球变化的区域响应敏感因子之一,同时也是影响西北干旱地区地表水资源变化的主要因子之一.本研究利用MODIS雪盖产品、地表温度、SSM/I雪深、DEM等数据,通过GIS空间分析及地统计分析功能,系统分析了博斯腾湖流域雪盖、雪深的时空变化规律及其与影响因素之间的关系.研究表明,研究区雪深和雪盖多年月平均值从8月份到1月份达到最大值,到7月份降到最低值.但月最大雪深却出现在3月份.雪盖、雪深与地温相关系数分别达到-0.878、-0.853,与分布高程均值相关系数分别达到-0.626和-0.791.雪深最大值受海拔影响有明显的陡坎效应.从12月到8月份随着时间的推移雪的深度在降低,陡坎向高海拔方向移动.9-11月份雪深在加深,陡坎向低海拔方向移动.同一高程段雪深的变幅反应坡向对雪深的影响,变幅越宽坡向影响越大.并且变幅也有先从低海拔到高海拔移动,然后再回到低海拔的特点.本研究对了解该研究区积雪特性的研究有很大作用,可为在该地区开展融雪径流模拟等研究提供重要的参考信息.  相似文献   

16.
Snow cover depletion curves are required for several water management applications of snow hydrology and are often difficult to obtain automatically using optical remote sensing data owing to both frequent cloud cover and temporary snow cover. This study develops a methodology to produce accurate snow cover depletion curves automatically using high temporal resolution optical remote sensing data (e.g. Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS or National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)) by snow cover change trajectory analysis. The method consists of four major steps. The first is to reclassify both cloud‐obscured land and snow into more distinct subclasses and to determine their snow cover status (seasonal snow cover or not) based on the snow cover change trajectories over the whole snowmelt season. The second step is to derive rules based on the analysis of snow cover change trajectories. These rules are subsequently used to determine for a given date, the snow cover status of a pixel based on snow cover maps from the beginning of the snowmelt season to that given date. The third step is to apply a decision‐tree‐like processing flow based on these rules to determine the snow cover status of a pixel for a given date and to create daily seasonal snow cover maps. The final step is to produce snow cover depletion curves using these maps. A case study using this method based on Terra MODIS snow cover map products (MOD10A1) was conducted in the lower and middle reaches of the Kaidu River Watershed (19 000 km2) in the Chinese Tien Shan, Xinjiang Uygur Autonomous Region, China. High resolution remote sensing data (charge coupled device (CCD) camera data with 19·5 m resolution of the China and Brazil Environmental and Resources Satellite (CBERS) data (19·5 m resolution), and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 15 m resolution of the Terra) were used to validate the results. The study shows that the seasonal snow cover classification was consistent with that determined using a high spatial resolution dataset, with an accuracy of 87–91%. The snow cover depletion curves clearly reflected the impact of the variation of temperature and the appearance of temporary snow cover on seasonal snow cover. The findings from this case study suggest that the approach is successful in generating accurate snow cover depletion curves automatically under conditions of frequent cloud cover and temporary snow cover using high temporal resolution optical remote sensing data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The Euphrates and Tigris rivers serve as the most important water resources in the Middle East. Precipitation in this region falls mostly in the form of snow over the higher elevations of the Euphrates Basin and remains on the ground for nearly half of the year. This snow‐covered area (SCA) is a key element of the hydrological cycle, and monitoring the SCA is crucial for making accurate forecasts of snowmelt discharge, especially for energy production, flood control, irrigation, and reservoir‐operation optimization in the Upper Euphrates (Karasu) Basin. Remote sensing allows the detection of the spatio‐temporal patterns of snow cover across large areas in inaccessible terrain, such as the eastern part of Turkey, which is highly mountainous. In this study, a seasonal evaluation of the snow cover from 2000 to 2009 was performed using 8‐day snow‐cover products (MOD10C2) and the daily snow‐water equivalent (SWE) product. The values of SWE products were obtained using an assimilation process based on the Helsinki University of Technology model using equal area Special Sensor Microwave Imager (SSM/I) Earth‐gridded advanced microwave scanning radiometer—EOS daily brightness‐temperature values. In the Karasu Basin, the SCA percentage for the winter period is 80–90%. The relationship between the SCA and the runoff during the spring period is analysed for the period from 2004 to 2009. An inverse linear relationship between the normalized SCA and the normalized runoff values was obtained (r = 0·74). On the basis of the monthly mean temperature, total precipitation and snow depth observed at meteorological stations in the basin, the decrease in the peak discharges, and early occurrences of the peak discharges in 2008 and 2009 are due to the increase in the mean temperature and the decrease in the precipitation in April. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The existence and development of the quasi-2-day oscillations in the plasma frequency variations of the F region at northern middle latitudes are investigated. A new approach to study the quasi-2-day oscillations is presented, using a methodology that allows us to do such a study at fixed heights. The hourly values of plasma frequency at fixed heights, from 170 km to 220 km at 10 km step, obtained at the Observatori de lEbre station (40.8°N, 0.5°E) during 1995 are used for analysis. It is found that quasi-2-day oscillations exist and persisted in the ionospheric plasma frequency variations over the entire year 1995 for all altitudes investigated. The dominant period of oscillation ranges from 42 to 56 h. The amplitude of oscillation is from 0.1 MHz to 1 MHz. The activity of the quasi-2-day oscillation is better expressed during the summer half year when several enhancements, about 15–30 days in duration, were observed. The largest enhancements of the oscillation occurred during early June, July and early August; i. e., near and after the summer solstice when the 2-day wave in the middle neutral atmosphere typically displays its largest activity in the Northern Hemisphere. The results obtained may help us understand better the possible influencing mechanisms between the 2-day wave in the middle neutral atmosphere and the ionospheric quasi-2-day oscillations.  相似文献   

19.
Time series of fractional snow covered area (SCA) estimates from Landsat Enhanced Thematic Mapper (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer (AVHRR) data were combined with a spatially distributed snowmelt model to reconstruct snow water equivalent (SWE) in the Rio Grande headwaters (3419 km2). In this reconstruction approach, modeled snowmelt over each pixel is integrated during the period of satellite-observed snow cover to estimate SWE. Due to underestimates in snow cover detection, maximum basin-wide mean SWE using MODIS and AVHRR were, respectively, 45% and 68% lower than SWE estimates obtained using ETM+ data. The mean absolute error (MAE) of SWE estimated at 100-m resolution using ETM+ data was 23% relative to observed SWE from intensive field campaigns. Model performance deteriorated when MODIS (MAE = 50%) and AVHRR (MAE = 89%) SCA data were used. Relative to differences in the SCA products, model output was less sensitive to spatial resolution (MAE = 39% and 73% for ETM+ and MODIS simulations run at 1 km resolution, respectively), indicating that SWE reconstructions at the scale of MODIS acquisitions may be tractable provided the SCA product is improved. When considering tradeoffs between spatial and temporal resolution of different sensors, our results indicate that higher spatial resolution products such as ETM+ remain more accurate despite the lower frequency of acquisition. This motivates continued efforts to improve MODIS snow cover products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号