首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
The principal ion in the ionosphere of Triton is N+. Energetic electrons of magnetospheric origin are the primary source of ionization, with a smaller contribution due to photoionization. To explain the topside plasma scale height, we postulate that N+ ions escape from Triton. The loss rate is 3.4 x 10(7) cm-2 s-1 or 7.9 x 10(24) ions s-1. Dissociative recombination of N2+ produces neutral exothermic fragments that can escape from Triton. The rate is estimated to be 8.6 x 10(6) N cm-2 s-1 or 2.0 x 10(24) atoms s-1. Implications for the magnetosphere of Neptune and Triton's evolution are discussed.  相似文献   

2.
Dayside near-polar auroral brightenings occur when interplanetary shocks impinge upon the Earth's magnetosphere. The aurora first brightens near local noon and then propagates toward dawn and dusk along the auroral oval. The propagation speed of this wave of auroral light is 10 km s-1 in the ionosphere. This speed is comparable to the solar wind speed along the outer magnetosphere. The fundamental shock-magnetospheric interaction occurs at the magnetopause and its boundary layer. Several physical mechanisms transferring energy from the solar wind directly to the magnetosphere and from the magnetosphere to the ionosphere are reviewed. The same physical processes can occur at other solar system magnetospheres. We use the Haerendel (1994) formulation to estimate the acceleration of energetic electrons to 50 keV in the Jovian magnetosphere/ionosphere. Auroral brightenings by shocks could be used as technique to discover planets in other stellar systems.  相似文献   

3.
Nicolet  M.  Peetermans  W. 《Pure and Applied Geophysics》1973,106(1):1400-1416
The vertical distribution of the methane concentration in the stratosphere is related to its dissociation by two simultaneous daytime reactions with excited oxygen atoms O(1D) and with OH radicals and depends on the stratospheric eddy diffusion coefficient.Dissociation of CH4 in the lower stratosphere leads to the production of CO molecules while in the upper stratosphere thepphotodissociation of CO2 molecules is an additional process to the CO production.In the upper stratosphere (40±10 km) there is an equilibrium between the formation and destruction processes of carbon monoxide which leads to a minimum of its mixing ratio. There is an increase of the CO mixing ratio in the troposphere and mesosphere compared with that of the stratosphere.The vertical distribution of the CO mixing ratio is closely related to the eddy diffusion coefficient in the whole stratosphere but the absolute values of the hydroxyl radical concentration also determine the values of the CO mixing ratio.  相似文献   

4.
基于NOAA/POES卫星观测的磁层相对论电子起源的初探   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用低高度极轨卫星NOAA/POES的观测数据,并结合ACE卫星和Polar卫星的观测结果,研究分析了磁层相对论电子的起源. NOAA/POES卫星对于不同地磁活动时期相对论电子的分布和起源进行了较为详细观测, 分析结果表明(1) 亚暴期间注入磁层的能量电子可以为与磁暴相关的磁层高能电子暴提供种子电子;(2)太阳质子事件期间太阳风中的能量电子也可以为磁层中的相对论电子提供所需要的源.  相似文献   

5.
The problem of the rapid depletion and saturation of the Earth’s outer radiation belt with energetic electrons is one of the central problems in the physics of the magnetosphere. The precipitation into the atmosphere and the escape of electrons from the magnetosphere are competing reasons for the depletion of the radiation belt. Long-term measurements of energetic electron precipitation (EEP) in the atmosphere in the experiment of the Lebedev Physical Institute (LPI) can be used to study the relative role of these phenomena. High fluence values of relativistic electrons in the outer belt is a necessary condition for EEP observation; however, the relation of the EEP rate to the condition of the belt is ambiguous, which is shown by the example of observations in 1994.  相似文献   

6.
电离层人工调制可以激发甚低频(VLF)波,其中向上传播进入磁层的VLF波,不但能够用来研究磁层中的各种物理现象,且具有人工沉降高能粒子,消除辐射带等实际用途.本文使用射线追踪方法,模拟电离层调制激发的VLF波在磁层的传播路径,分析激发纬度和调制频率对传播路径和传播特性的影响;并基于低频波的色散方程和波粒共振条件,分析VLF波传播路径上与磁层高能粒子的最低共振能及其分布.研究表明,VLF波通过在磁层来回反射向更高的L-shell传播,最终稳定在某一L-shell附近.以较低的调制频率或者从较高的纬度激发的VLF波能够传播到更高的L-shell,但是,当激发纬度过高时,低频波也可能不发生磁层反射而直接进入电离层和大气层.低频波在磁层的传播过程中,在较高的纬度或者较低的L-shell能够与较高能量的电子发生共振相互作用,在较高的L-shell并且低纬地区,能够与较低能量的电子发生共振相互作用.共振谐数越高,能发生波粒共振的电子能量越高.  相似文献   

7.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) on board the NASA/GGS POLAR spacecraft has been making observations of ionospheric X-ray emissions from the vantage of space for more than 3 years. A wide variety of observations have been made by PIXIE, which are detailed in this work. These include the local time distribution of the auroral X-ray intensity as well as the dependence of auroral X-rays on geomagnetic activity and solar wind magnetic field conditions. The auroral X-rays are produced as energetic electrons within the magnetosphere precipitate and are stopped in the ionosphere. Comparisons of the X-ray auroral intensity with other instrument observations have been made, which enables us to distinguish between temporal and spatial processes. In addition, several other X-ray features (not of an auroral nature) have been observed by PIXIE, and are described.  相似文献   

8.
The event of March 12–19, 2009, when a moderately high-speed solar wind stream flew around the Earth’s magnetosphere and carried millihertz ultralow-frequency (ULF) waves, has been analyzed. The stream caused a weak magnetic storm (D st min = −28 nT). Since March 13, fluxes of energetic (up to relativistic) electrons started increasing in the magnetosphere. Comparison of the spectra of ULF oscillations observed in the solar wind and magnetosphere and on the Earth’s surface indicated that a stable common spectral peak was present at frequencies of 3–4 mHz. This fact is interpreted as evidence that waves penetrated directly from the solar wind into the magnetosphere. Possible scenarios describing the participation of oscillations in the acceleration of medium-energy (E > 0.6 MeV) and high-energy (E > 2.0 MeV) electrons in the radiation belt are discussed. Based on comparing the event with the moderate magnetic storm of January 21–22, 2005, we concluded that favorable conditions for analyzing the interaction between the solar wind and the magnetosphere are formed during a deep minimum of solar activity.  相似文献   

9.
Situations when localized precipitation of energetic (E > 30 keV) protons and electrons, associated with the development of cyclotron instability in the magnetosphere, is recorded during one satellite pass are identified in the data of particle flux observations on the NOAA-12 low-orbiting satellite. Such events were observed only in the evening sector of the magnetosphere. This precipitation is compared with the data on the cold (E < 10 eV) plasma density obtained on the LANL geostationary satellites. The comparison showed that the precipitation of energetic particles is related to the presence of cold plasma with a density of 20–100 cm?3 in geostationary orbit in the evening sector of the magnetosphere. The conclusion has been made that the localized precipitation of energetic particles is generated at the edges of small-scale structures of cold plasma, forming the so-called “plasmaspheric tail,” i.e., the cold plasma region extending from the evening plasmapause toward the Sun.  相似文献   

10.
The present-day state of the studies of the outer radiation belt relativistic electrons and the boundary of the solar proton penetration into the magnetosphere during magnetic storms is briefly reviewed. The main attention is paid to the results from studying the interrelation between these structural formations and other magnetospheric plasma structures. It has been indicated that the relationship between the position of the maximum of belt of relativistic electrons injected during magnetic storms (L max) and the magnetic storm amplitude (|Dst|max = 2.75 × 104/L max4) can be used to predict the extreme latitudinal position of such magnetospheric plasma formations as a trapped radiation region boundary, the nighttime equatorial boundary of the auroral oval, and westward electrojet center during a storm. Using the examples of still rare studies of the solar proton boundary dynamics in the magnetosphere based on the simultaneous measurements on several polar satellites, it has been demonstrated that a change in the geomagnetic field topology during magnetic storms can be diagnosed.  相似文献   

11.
提出一个剪切Alfven波加速极光粒子的新模式。频率远小于离子回旋频率的Alfven波由磁层向电离层传播会演化成孤波,当场向电流超过离子声不稳定性的临界电流时,激发离子声不稳定性,波与粒子的相互作用产生反常阻尼使Alfven波演化成行波涌浪。它携带一个方向向上的平行电场,加速极光电子形成分立极光。对等离子体密度、电场及其对应的电势进行了数值计算,结果发现满足磁层加速区条件形成Alfvn行波涌浪,提供足够强的加速粒子的电场。  相似文献   

12.
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.  相似文献   

13.
The connection between rapid increases in the intensity of electrons with energies >0.3 MeV and magnetospheric substorms was studied for the first time by measurements of energetic electrons on the low-orbit SERVIS-1 satellite. In addition to the well-known process of radial diffusion detected at the recovery phase, the increases during a period of time no longer than 1.5 h at the main phase of six magnetic storms in a channel of 0.3–1.7 MeV (in three of them, in a channel of 1.7–3.4 MeV) were measured. An analysis of auroral zone magnetograms demonstrated that the increases occurred at the instant of magnetospheric substorm activation. A conclusion is made that the increases are caused by the radial injection of electrons by a pulse electric field induced during substorm activations. Pulse injections are shown to be one of the main mechanisms of electron radiation belt completion in the inner magnetosphere and, in combination with moderate radial diffusion, to be responsible for the appearance of large fluxes of energetic electrons (“killers”) in the magnetosphere after magnetic storms.  相似文献   

14.
Available data on halogenated molecules in the stratosphere will be reviewed. Presently vertical profiles of CFCl3 and CF2Cl2 in the stratosphere exist to 50 km altitude. Only measurements in the lower stratosphere are reported for the other major halocarbons, CCl4 and CH3Cl. Profiles of the product species ClO, Cl, HCl, and HF exist to about 35 km.Comparison with theoretical profiles from 1-D models shows generally good agreement except for ClO where the earliest measured concentrations exceed the calculated ones considerably.  相似文献   

15.
Energetic electrons (e.g., 50 keV) travel along field lines with a high speed of around 20 REs−1. These swift electrons trace out field lines in the magnetosphere in a rather short time, and therefore can provide nearly instantaneous information about the changes in the field configuration in regions of geospace. The energetic electrons in the high latitude boundary regions (including the cusp) have been examined in detail by using Cluster/RAPID data for four consecutive high latitude/cusp crossings between 16 March and 19 March 2001. Energetic electrons with high and stable fluxes were observed in the time interval when the IMF had a predominately positive Bz component. These electrons appeared to be associated with a lower plasma density exhibiting no obvious tailward plasma flow (<20 keV). On the other hand, no electrons or only spike-like electron events have been observed in the cusp region during southward IMF. At that time, the plasma density was as high as that in the magnetosheath and was associated with a clear tailward flow. The fact that no stable energetic electron fluxes were observed during southward IMF indicates that the cusp has an open field line geometry. The observations indicate that both the South and North high latitude magnetospheric boundary regions (including both North and South cusp) can be energetic particle trapping regions. The energetic electron observations provide new ways to investigate the dynamic cusp processes. Finally, trajectory tracing of test particles has been performed using the Tsyganenko 96 model; this demonstrates that energetic particles (both ions and electrons) may be indeed trapped in the high latitude magnetosphere.  相似文献   

16.
等离子体波的空间分布在木星磁层高能电子动力学过程中起着重要的作用.现有大多数对木星磁层哨声波的观测仅限于|λ|≤15°的磁纬范围内,但是最新的JUNO卫星WAVES仪器提供的波动数据使得更高纬度、更广区域范围内的等离子体波动分布研究成为可能.本文通过对JUNO卫星WAVES仪器数据进行分析处理,详细研究了木星磁层哨声波的空间分布特性.观测表明,存在位于高LJ、高磁纬的木星磁层哨声波,它们广泛分布于距木星中心距离35~75个木星半径、磁纬为|λ|≤30°的空间区域.分析研究发现,WAVES仪器观测的木星磁层哨声波幅度一般为几个pT,远小于地球磁层哨声波的强度.木星磁层哨声波幅会随着LJ的增大缓慢增加,也会随着磁纬的减小趋向平缓变化.基于以上观测事实,本文利用指数幂函数分别拟合得到木星磁层哨声波幅随LJ和磁纬变化的经验模型.该模型将有助于精确理解哨声波对木星磁层高能电子动力学过程的重要影响.  相似文献   

17.
1 INTRODUCTION Large amounts of nutrients and contaminants such as trace metals are transported into large lakes frominflow rivers and then absorbed onto or associated with fine-grained sediment particles (Sheng and Lick,1979). The nutrients and contamina…  相似文献   

18.
Enhanced whistler mode waves produced by anisotropic hot plasma-sheet electrons outside the storm-time plasmapause have been suggested as one mechanism for accelerating relativistic outer-belt electrons in the aftermath of geomagnetic storms. Using measurements from the Los Alamos Magnetospheric Plasma Analyzers in geosynchronous orbit, we perform a superposed-epoch study of the storm-time behavior of the inferred plasma-sheet whistler growth parameter. Separate analyses are done for storms that result in strong relativistic electron enhancements and those that do not. The inferred whistler instability is strongest in the midnight-to-dawn sector, where freshly injected plasma-sheet electrons drift into and through the inner magnetosphere. During the main phase of both sets of storms, there is a marked drop in the whistler growth parameter, especially in the prime midnight-to-dawn sector. In the early recovery phase, this parameter is elevated and then returns to more typical values over the next few days. The elevation of the whistler growth parameter persists longer for the electron-enhanced storms than for those that do not produce such enhancements. These results suggest that whistler wave generation is greater during storms yielding enhanced levels of relativistic electrons.  相似文献   

19.
Examples of long period Pc5 magnetic field pulsations near field-aligned current (FAC) regions in the high-latitude magnetosphere, observed by INTERBALL-Auroral satellite during January 11, April 11 and June 28, 1997 are shown. Identification of corresponding magnetosphere regions and subregions is provided by electrons and protons in the energy-range of 0.01–100 keV measured simultaneously onboard the spacecraft. The examined Pc5 pulsations reveal a compressional character. A fairly good correlation is demonstrated between these ULF Pc5 waves and the consecutive injection of magnetosheath low energy protons. The ULF Pc5 wave occurrence is observed in both upward and downward FACs.  相似文献   

20.
The paper presents a three-dimensional quantitative model of Mercury's magnetosphere based on the entire combined set of observational data obtained from the first and third encounters of Mariner 10 with Mercury. The model assumes that the surface magnetic field of the planet Mercury consists of a dipole, a quadrupole and an octupole. The dipole moment of Mercury is 2.4 × 1022 G cm3, tilted 2.3° from the normal to the planetary orbital plane and having the same directional sense as that of the Earth. The intensity of the quadrupole moment is approximately 45% of the dipole, and that of the octupole moment 29% of the dipole. The model meets four critical tests: (1) it produces the smallest residuals among all existing models, (2) it can reproduce the crossing of a tail current sheet by Mariner 10, (3) all planetary field lines are confined inside the model magnetosphere, and (4) the size of the model magnetosphere agrees well with the magnetopause crossings directly observed from Mariner 10. The model can also be used to explain two observational features: (1) the plasma characteristics observed in different regions of the magnetosphere, and (2) the regions of quiet and disturbed signatures directly observed from Mariner 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号