首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The Dabie Mountain is the collisional orogenic belt between the North China Block and the Yangtze Block. As the eastern segment of the central-China orogenic belt, its tectonic framework is corresponding to the Qinling orogenic belt as a whole[1]. The NHB in northern part of Dabie Orogen is regarded as the joint belt between the Yangtze Block and the North China Block, and roughly corresponds to the north Qinling belt of the Qinling orogenic belt, which separated the Tongbai-Dabie hig…  相似文献   

2.
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium.  相似文献   

3.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

4.
Protolith ages and Indosinian deformation mechanism of metamorphic rocks in the Zhangbaling uplift segment of the Tan-Lu Fault Zone are important, unsolved problems. Our LA-ICP-MS zircon dating work indicates that protolith ages of the greenschist-facies Zhangbaling Group are 754–753 Ma, and those of the amphibolite-facies Feidong Complex are 800–745 Ma. These rocks belong to the earliest cover of the Yangtze Plate. Their ages and metamorphic features suggest that the rocks did not come from the Dabie Orogen. The Indosinian structures in the Zhangbaling Group and lower Sinian strata formed in a flatlying ductile detachment zone with a shear sense of top-to-the-SSW whereas those in the underlying Feidong Complex are characterized by ENE-WSW inclined folds developed under a ductile regime. It is suggested therefore that the sinistral Tan-Lu Fault Zone of the Indosinian period is buried under the Hefei Basin west of the Zhangbaling uplift segment and the uplift segment is a displaced block neighboring the fault zone. Detachment deformation between the upper rigid and lower ductile crust during displacement of the Zhangbaling uplift segment resulted in the formation of the flat-lying ductile detachment zone and its underlying drag fold zone of a ductile regime. The protolith ages and deformation mechanism in the Zhangbaling uplift segment further prove sinistral origination of the Tan-Lu Fault Zone during the continent-continent collision of the North China and Yangtze plates and support the indentation model for the two-plate collision that considers the Tan-Lu Fault Zone as an oblique convergence boundary.  相似文献   

5.
Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by thein situSHRIMP U-Pb method. The results show that the trondhjemitic magma emplaced at 2947-2903 Ma. Concordant age of as old as 3.3 Ga is present in the detrital zircons from the clastic metasedimentary rocks. Together with the depleted mantle Nd model age (TDM =3.2-3.3 Ga) of the clastic metasedimentary rocks, this documents the presence of Paleoarchean continental crust in the Yangtze craton.  相似文献   

6.
Single zircons from two trondhjemitic gneisses and two clastic metasedimentary rocks without Eu anomaly of the Kongling high-grade metamorphic terrain are dated by the in situ SHRIMP U-Pb method. The results show that the trondhjemitic magma emplaced at 2947-2903 Ma. Concordant age of as old as 3.3 Ga is present in the detrital zircons from the clastic metasedimentary rocks. Together with the depleted mantle Nd model age (TDM =3.2-3.3 Ga) of the clastic metasedimentary rocks, this documents the presence of Paleoarchean continental crust in the Yangtze craton.  相似文献   

7.
Abstract The Ogcheon fold belt and the Ryeongnam massif in the Korean Peninsula are made up of Precambrian igneous and sedimentary rocks that have been metamorphosed, tectonically deformed and extensively intruded by mafic to felsic plutonic rocks of Permian to Jurassic age. In the present study, we report seven new U–Pb zircon ages and Sr‐Nd‐Pb isotopic data for Permian to Jurassic plutons in the Ogcheon belt and the Ryeongnam massif. In the Ogcheon belt, these are: the Cheongsan porphyritic granite (217 ± 3.1 My), the Baegrog foliated granodiorite (206.4 ± 3.6 My), the Sani granite (178.8 ± 2.9 My) and the Yeonggwang foliated granite (173.0 ± 1.7 My). For the Ryeongnam massif, we report on the Yeongdeog foliated granodiorite (252.2 ± 2.9 My), the Sancheong gabbro (203.8 ± 3.3 My) and the Baegseogri foliated granodiorite (177.8 ± 2.4 My). All of these ages are lower concordia intercepts; the upper concordia intercepts indicate derivation from a Precambrian protolith. Sr, Nd and Pb isotopes also reveal that much of the Permian–Jurassic (252–173 Ma) plutonism in Korea was generated by recycling of Precambrian rocks. These new ages, together with other published zircon ages indicate that the plutonism in the Ogcheon fold belt is coeval with that in the Ryeongnam massif, but based on the Sr‐Nd‐Pb isotopic evidence, they are not cogenetic. In addition, zircon ages provide information on the movement along the Honam shear zone, which cuts across the whole Korean Peninsula and along most of its length provides the boundary between the Ogcheon fold belt and the Ryeongnam massif. It has a prolonged history of movement and deformation and appears to have been active from the Precambrian through to the Mesozoic, from before 1924 Ma to at least 180 Ma. The Permian–Jurassic igneous and tectonic activity in Korea is a manifestation of the more extensive orogenic activities that affected the East Asian continent at that time. In China, ultra high‐pressure rocks of the Qinling–Dabie belt formed between 210 and 230 Ma as result of the collision between the South China block and the North China block. In central Japan, corresponding plutonic activity is dated as 175 to 231 Ma. The absence of ultra high‐pressure rocks in Korea and Japan precludes a simple extension of the Qinling–Dabie belt eastwards; however, the effects of the continental collision eastwards are apparent from the igneous and tectonic activity.  相似文献   

8.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

9.
The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200–360 Ma. This indicates that the Paleogene alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380–450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northern Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation.  相似文献   

10.
The Sanchazi mafic-ultramafic complex in Mianlue tectonic zone, South Qinling can be subdivided into two blocks, i.e. Sanchazi paleo-magmatic arc and Zhuangkegou paleo-oceanic crust fragment (ophiolite). The Sanchazi paleo-magmatic arc is mainly composed of andesite, basaltic and basalt-andesitic gabbro (or diorite), andesitic dyke, plagiogranite and minor ultramafic rocks, which have typical geochemical features of island arc volcanic rocks, such as high field strength element (e.g. Nb, Ti) depletions and lower Cr, Ni contents. The Light rare earth element (LREE) and K enrichments of these rocks and zircon xenocrystals of 900 Ma from plagiogranite suggest that this magmatic arc was developed on the South active continental margin of the South Qinling micro-continent. The U-Pb age of (300 ± 61)Ma for zircons from plagiogranite indicates that the Mianlue paleo-oceanic crust was probably subducted underneath the South Qinling micro-continent in Carboniferous. This is consistent with the formation time (309Ma) of the Huwan eclogite originating from oceanic subduction in Dabie Mountains, suggesting that the Mianlue paleo-ocean probably extended eastward to the Dabie Mountains in Carboniferous. The high-Mg adakitic rocks in Sanchazi paleo-magmatic arc suggest that the subducted oceanic crust was relatively young (<25Ma) and hot.  相似文献   

11.
This paper reports the geochemical and zircon U-Pb dating data of the Sinian to Cambrian low-grade metamorphic rocks in the Miaoer Mountain area, Guangxi Province and the Jinjiling area, Hunan Province. Petrographic and geochemical features indicate that protoliths of these metamorphic rocks are clastic sedimentary rocks with medium weathering, which were formed in the passive continental margin. Geochemistry and zircon U-Pb ages indicate that the Sinian and Cambrian sedimentary rocks in the Jinjiling area have similar detritus components, which are characterized by abundant Grenvillian detrital zircons, suggesting a close affinity with the Cathaysia Block. The Cambrian sedimentary rocks in the Miaoer Mountain area have similar geochemistry and zircon geochronology to those in the Jinjiling area, showing an affinity with the Cathaysia Block. However, the Sinian sedimentary rocks in the Miaoer Mountain area show different geochemical features from the Cambrian sedimentary rocks and those in the Jinjiling area, and are characterized by abundant 840-700 Ma detrital zircons and less ~2.0 Ga ones, showing a close affinity with the Yangtze Block. These variations suggest that the Jinjiling area continuously accepted the fragments from the Cathaysia from the Sinian to the Cambrian, whereas the provenance of the Miaoer Mountain sedimentary basin changed from the Yangtze Block to the Cathaysia Block during this interval. This change implies a tectonic movement, which caused the further sinking of the basin in the Miaoer Mountain area and northwestward transferring of the basin center before the Middle Cambrian, so that the Miaoer Mountain basin received the detritus from the Cathaysia Block in the Middle Cambrian. This fact also proves that the Yangtze and Cathaysia blocks have converged at least in Middle Cambrian, and the southwestern boundary between them is located between the Miaoer Mountain and Jinjiling areas.  相似文献   

12.
A new U–Pb zircon geochronological study for the Hida metamorphic and plutonic rocks from the Tateyama area in the Hida Mountains of north central Japan is presented. The U–Pb ages of metamorphic zircon grains with inherited/detrital cores in paragneisses suggest that a metamorphic event took place at around 235–250 Ma; the cores yield ages around 275 Ma, 300 Ma, 330 Ma, 1 850 Ma, and 2 650 Ma. New age data, together with geochronological and geological context of the Hida Belt, indicate that a sedimentary protolith of the paragneisses is younger than 275 Ma and was crystallized at around 235–250 Ma. Detrital ages support a model that the Hida Belt was located in the eastern margin of the North China Craton, which provided zircon grains from Paleoproterozoic to Paleozoic rocks and also from Archean and rare Neoproterozoic rocks. Triassic regional metamorphism possibly reflects collision between the North and South China Cratons.  相似文献   

13.
We report precise 207Pb/206Pb single zircon evaporation ages for low-grade felsic metavolcanic rocks within the Onverwacht and Fig Tree Groups of the Barberton Greenstone Belt (BGB), South Africa, and from granitoid plutons bordering the belt. Dacitic tuffs of the Hooggenoeg Formation in the upper part of the Onverwacht Group yield ages between 3445 +/- 3 and 3416 +/- 5 Ma and contain older crustal components represented by a 3504 +/- 4 Ma old zircon xenocryst. Fig Tree dacitic tuffs and agglomerates have euhedral zircons between 3259 +/- 5 and 3225 +/- 3 Ma in age which we interpret to reflect the time of crystallization. A surprisingly complex xenocryst population in one sample documents ages from 3323 +/- 4 to 3522 +/- 4 Ma. We suspect that these xenocrysts were inherited, during the passage of the felsic melts to the surface, from various sources such as greenstones and granitoid rocks now exposed in the form of tonalite-trondhjemite plutons along the southern and western margins of the BGB, and units predating any of the exposed greenstone or intrusive rocks. Several of the granitoids along the southern margin of the belt have zircon populations with ages between 3490 and 3440 Ma. coeval with or slightly older than Onverwacht felsic volcanism, while the Kaap Valley pluton along the northwestern margin of the belt is coeval with Fig Tree dacitic volcanism. These results emphasize the comagmatic relationships between greenstone felsic volcanic units and the surrounding plutonic suites. Some of the volcanic plutonic units contain zircon xenocrysts older than any exposed rocks. These indicate the existence of still older units, possibly stratigraphically lower and older portions of the greenstone sequence itself, older granitoid intrusive rocks, or bodies of older, unrelated crustal material. Our data show that the Onverwacht and Fig Tree felsic units have distinctly different ages and therefore do not represent a single, tectonically repeated unit as proposed by others. Unlike the late Archaean Abitibi greenstone belt in Canada, which formed over about 30 Ma. exposed rocks in the BGB formed over a period of at least 220 Ma. The complex zircon populations encountered in this study imply that conventional multigrain zircon dating may not accurately identify the time of felsic volcanic activity in ancient greenstones. A surprising similarity in rock types, tectonic evolution, and ages of the BGB in the Kaapvaal craton of southern Africa and greenstones in the Pilbara Block of Western Australia suggests that these two terrains may have been part of a larger crustal unit in early Archaean times.  相似文献   

14.
AlthoughthereareseveralmetallogeniceventsthroughthegeologicalhistoryintheNorthChinacratonandadjacentareas,includingtheArcheanBIFtypeirondepositsandtheProterozoicSEDEXtypePb-ZnandCudeposits,thelarge-scalepolymetallicmineralizationmainlyoccurredinMesozoic.H…  相似文献   

15.
Abstract K–Ar age determinations were carried out on phengite separates from pelitic schists collected systematically from the Sanbagawa southern marginal belt and the associated area. The petrography and phengite chemistry by electron probe micro-analyzer (EPMA) revealed the existence of detrital white micas in the schist that have an extremely older age (108 Ma) in comparison with the neighboring schists (88 Ma) without any detrital mica. The ages become gradually older from the north ( ca 78 Ma) to the south ( ca 90 Ma) except for some samples that contain detrital micas and/or have been reactivated thermally by intrusives. The age is interpreted as an exhumation-cooling age that has been controlled by the ductile deformation of the host rocks that have never experienced a culmination temperature higher than 350°C which corresponds to the closure temperature of the K–Ar phengite system. The southward aging of the recorded ages in the extensive chlorite zone of the central Shikoku, from the Dozan river area of the north ( ca 65 Ma) to the study area of the south ( ca 85 Ma) through the Asemi river area ( ca 75 Ma), is explained in terms of increasing exhumation/cooling rates of the host rocks from north to south. The phengite K–Ar ages in the pelitic schists from the Kyomizu tectonic zone, which is classically considered as a remarkable thrusting shear zone, have no significant difference in comparison with that of the neighboring schists. This fact suggests that the latest stage of brittle deformation during exhumation/uplift has not significantly affected the ages of phengite in the schists.  相似文献   

16.
U–Pb ages of detrital zircons and white mica K–Ar ages are obtained from two psammitic schists from the western and eastern units of the Sanbagawa Metamorphic Belt located in the Sakuma–Tenryu area. The detrital zircons in the sample from the western unit (T1) show an age cluster around 95 Ma, and the youngest age in the detrital zircons is 94.0 ± 0.6 Ma. The detrital zircons in the sample from the eastern unit (T5) show a main age cluster in the Late Cretaceous with some older ages, and the youngest age in the detrital zircons is 72.8 ± 0.9 Ma. The youngest zircon ages restrict the older limit of the depositional ages of each sample. White mica K–Ar ages of T1 and T5 are 69.8 ± 1.5 Ma and 56.1 ± 1.2 Ma, respectively, which indicate the age of exhumation and restrict the younger limit on the depositional age of each sample. The results show that the western and eastern units were different in their depositional and exhumation ages, suggesting the episodic subduction and exhumation of the Sanbagawa Belt in the Sakuma–Tenryu area. These results also suggest simultaneous existence of subduction and exhumation paths of metamorphic rocks in the high‐P/T Sanbagawa Metamorphic Belt.  相似文献   

17.
Integrated zircon U-Pb dating and whole rock geochemical analyses have been carried out for two typical S-and I-type granitoids in the north Qinling. Zircon dating by SIMS of the Piaochi S-type grani- toids yields an emplacement age of 495±6 Ma. The granitoids show whole-rock εNd(t)=-8.2--8.8, zircon εHf(t)=-6―-39. The Huichizi I-type granitoids have emplacement ages of 421±27 Ma and 434±7 Ma es- tablished by LA-ICP-MS and SIMS methods, respectively. Their whole-rock εNd(t)=-0.9-0.9 and zircon εHf(t)=-11-8....  相似文献   

18.
Based on the summary of the highly precise datings of the metal deposits and related granitic rocks in North China craton and adjacent areas, such as the molybdenite Re-Os datings,40Ar-39Ar datings of mica, K-feldspar and quartz, some Rb-Sr isochrons, and the SHRIMP zircon U-Pb dating and single grain zircon U-Pb dating, we suggest that the large-scale mineralization in North China craton and adjacent areas take place in three periods of 200-160Ma, 140Ma±, and 130-110Ma. Their corresponding geodynamic settings are proposed to be the collision orogenic process, transformation of the tectonic regime, and delamination of the lithosphere, respectively, in light of analyzing the Mesozoic geodynamic evolution in the North China craton.  相似文献   

19.
By dating detrital zircon U-Pb ages of deposition sequence in foreland basins, we can analyze the provenance of these zircons and further infer the tectonic history of the mountain belts. This is a new direction of the zircon U-Pb chronology. The precondition of using this method is that we have to have all-around understanding to the U-Pb ages of the rocks of the orogenic belts, while the varied topography, high altitude of the zircon U-Pb ages of the orogenic belts are very rare and uneven. This restricts the application of this method. Modern river deposits contain abundant geologic information of their provenances, so we can probe the zircon U-Pb ages of the geological bodies in the provenances by dating the detrital zircon U-Pb ages of modern rivers' deposits. We collected modern river deposits of 14 main rivers draining from Pamir, South Tian Shan and their convergence zone and conducted detrital zircon U-Pb dating. Combining with the massive bed rock zircon U-Pb ages of the magmatic rocks and the detrital zircon U-Pb ages of the modern fluvial deposit of other authors, we obtained the distribution characteristics of zircon U-Pb ages of different tectonic blocks of Pamir and South Tian Shan. Overlaying on the regional geological map, we pointed out the specific provenance geological bodies of different U-Pb age populations and speculated the existence of some new geological bodies. The results show that different tectonic blocks have different age peaks. The main age peaks of South Tian Shan are 270~289Ma and 428~449Ma, that of North Pamir are 205~224Ma and 448~477Ma, Central Pamir 36~40Ma, and South Pamir 80~82Ma and 102~106Ma. The Pamir syntaxis locates at the west end of the India-Eurasia collision zone. The northern boundary of the Pamir is the Main Pamir Thrust(MPT)and the Pamir Front Thrust(PFT). In the Cenozoic, because of the squeezing action of the India Plate, the Pamir thrust a lot toward the north and the internal terranes of the Pamir strongly uplifted. For the far-field effect of the India-Eurasia collision, the Tian Shan on the north margin of the Tarim Basin also uplifted intensely during this period. Extensive exhumation went along with these upliftings. The material of the exhumation was transported to the foreland basin by rivers, which formed the very thick Cenozoic deposition sequence. These age peaks can be used as characteristic ages to recognize these tectonic blocks. These results lay a solid foundation for tracing the convergence process of Pamir and South Tian Shan in Cenozoic with the help of detrital zircon U-Pb ages of sediments in the foreland basin.  相似文献   

20.
Ion probe UPb age determinations on zircons from two samples of metasediment belonging to the Malene supracrustals of southern West Greenland closely constrain the age of sedimentation, between the youngest age obtained from detrital material and the age of metamorphic overgrowth. For both samples, older and younger limits of ca. 2900 Ma and ca. 2650 Ma, respectively, are indicated. Some of the detrital zircons are best interpreted as derived from their source rock after the regional high-grade metamorphism at ca. 2800 Ma: if so, the older limit of the age of sedimentation is younger than 2800 Ma. The hypothesis that all Malene supracrustal rocks pre-date the middle to late Archaean Nuˆk gneisses is no longer valid. This has major implications for interpretations of the late Archaean crustal evolution of western Greenland: the period between 2800 and 2500 Ma was characterised by major tectonic activity and metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号