首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Glycerol Dialkyl Glycerol Tetraethers(GDGTs)serve as important tools for the quantitative reconstruction of paleoclimate and paleoecology in both continental and marine environments.Previous studies of GDGTs in the terrestrial environments focused primarily on the soils from the relatively warm-humid or cold-dry regions.However,it is still unclear how GDGTs respond to environmental variables in the cold-humid regions.Here,we collected soils along an altitudinal transect of Mountain(Mt.)Changbai,which has a typical cold-humid climate,to investigate the distribution of GDGTs and the response of GDGT-based proxies to changes in climate along the transect.The shift in the distribution of archaeal isoprenoidal GDGTs(iso GDGTs)revealed that the archaeal community varied significantly along the transect,which can affect the relationship between TEX_(86)and mean annual air temperature(MAT).In addition,the increased temperature seasonality at higher altitudes exerted a significant impact on TEX_(86).We proposed a global calibration of TEX_(86)for the growing season temperature reconstruction in the soil environments:T=85.19×TEX_(86)-46.30(R~2=0.84,p0.001).The methylation indices for 5-methyl branched GDGTs(br GDGTs)including MBT′_(5me)and MBT_(5/6),showed correlation with soil water content but no relationship with MAT,indicating that MBT′_(5me)and MBT_(5/6)from cold-humid environments may be not suitable for temperature and altitude reconstruction.In contrast,the recently developed p H proxies,including MBT′_(6me)(the methylation index for 6-methyl br GDGTs),CBT(Cyclisation index of Branched Tetraethers),IR_(IIa’)(Isomer ratio of IIa′)and IR_(IIIa′)(Isomer ratio of IIIa′)exhibited significant correlations with soil p H,suggesting these proxies can still be used for soil p H reconstruction in the coldhumid regions.The combination of MBT′_(5me)and MBT′_(6me)was strongly related to different types of climate(cold-dry,warmhumid,cold-humid,and warm-dry).For example,MBT′_(5me)0.65 and MBT′_(6me)0.55 are diagnostic for the cold-humid climate.Thus,the combination of MBT′_(5me)and MBT′_(6me)has the potential as a tool for the identification of different types of paleoclimate.  相似文献   

2.
卢沛琪  薛刚  郑艳红 《湖泊科学》2024,36(2):467-476
目前,甘油二烷基甘油四醚(GDGTs)组成和分布特征已被成功应用于古气候古环境重建中。然而,越来越多的研究表明除温度和pH值外,GDGTs也受其他环境因素影响,这导致了在同一地区运用多种温度和pH校准公式得到的结果差异较大,特别是在干旱地区尤为显著。因此,有必要开展现代过程GDGTs分布及其影响因素的调查,以提高温度和pH校准公式的适用性。为此,我们以北方察汗淖尔湖泊为中心,分析流域内24个湖泊沉积物和土壤GDGTs组成和分布。结果显示,所有样品GDGTs分布模式相似,其中古菌类异戊二烯GDGTs(简称isoGDGTs)以crenarchaeol为主,GDGT-0次之,crenarchaeol’含量较低,指示GroupⅠ.1b型奇古菌输入较多;细菌支链GDGTs(简称brGDGTs)中五甲基化brGDGTs丰度最高,其次是六甲基化和四甲基化brGDGTs。群落指数(community index,CI)表明,产brGDGTs的细菌群落属于冷簇,且冗余分析显示pH值对brGDGTs分布影响显著,二者可能共同导致了应用多种校准公式计算结果与器测记录之间的差异。通过该项工作我们认为在利用GD...  相似文献   

3.
Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are ubiquitous and abundant in soils, but their sources remain elusive. Recent studies demonstrate that the distributions of bGDGTs are sensitive to various environmental factors. In an effort to understand how and to what extent soil moisture (expressed as soil water content (SWC) or mean annual precipitation (MAP), pH and temperature may impact the distribution of bGDGTs, and to shed more light on the biological sources of bGDGTs in cold and arid regions, we investigated the distribution of bGDGTs as well as bacterial 16S rRNA gene and functional genes involved in the N cycle (including amoA, nirS and nirK) in 41 surface soil samples from around Lake Qinghai and east of Qaidam Basin on the Northeastern Qinghai-Tibetan Plateau. We found that lower soil moisture reduced the fractional concentrations of cyclic bGDGTs and thus the cyclisation ratio of branched tetraethers (CBT) index correlated negatively with SWC and MAP, suggesting that soil moisture is an important factor controlling bGDGT distributions in soils in this arid and semi-arid region. Two subgroups of bGDGTs were assigned on the basis of cluster analysis, and bGDGT indices behaved differently in the two groups, hinting at different biosynthetic mechanisms for bGDGTs under different environmental conditions. Real time PCR results showed that nirS and nirK genes correlated significantly with the concentration of bGDGTs, suggesting that the nirS- or nirK-encoding bacteria involved in denitrification might potentially be an additional biological source for soil bGDGTs (besides Acidobacteria). Moreover, our results also support the application of new indices based on 5-methyl bGDGTs and 6-methyl bGDGTs in reconstructing past temperature and pH variations in this region.  相似文献   

4.
Quantitative paleotemperature records are vital not only for verifying and improving the accuracy of climate model simulations, but also for estimating the amplitude of temperature variability under global warming scenarios. The Tibetan Plateau (TP) affects atmospheric circulation patterns due to its unique geographical location and high elevation, and studies of the mechanisms of climate change on the TP are potentially extremely valuable for understanding the relationship of the region with the global climate system. With the development of biomarker-based proxies, it is possible to use lake sediments to quantitatively reconstruct past temperature variability. The source of Glycerol Dialkyl Glycerol Tetraethers (GDGTs) in lake sediments is complex, and their distribution is controlled by both climatic and environmental factors. In this work, we sampled the surface sediments of 27 lakes on the TP and in addition obtained surface soil samples from six of the lake catchments. We analyzed the factors that influence GDGT distribution in the lake sediments, and established quantitative relationship between GDGTs and Mean Annual Air Temperature (MAAT). Our principal findings are as follows: the majority of GDGTs in the lake sediments are bGDGTs, followed by crenarchaeol and GDGT-0. In most of the lakes there were no significant differences between the GDGT distribution within the lake sediments and the soils in the same catchment, which indicates that the contribution of terrestrial material is important. iGDGTs in lake sediments are mainly influenced by water chemistry parameters (pH and salinity), and that in small lakes on the TP, TEX86 may act as a potential proxy for lake pH; however, in contrast bGDGTs in the lake sediments are mainly controlled by climatic factors. Based on the GDGT distribution in the lake sediments, we used proxies (MBT, CBT) and the fractional abundance of bGDGTs (fabun) to establish calibrations between GDGTs and MAAT, respectively, which potentially provide the basis for paleoclimatic reconstruction on the TP.  相似文献   

5.
The characterization of biochars produced from seven feedstocks(four crop straws: cotton stalks, wheat stalks, rape stalks and corn stalks; three hardwoods: Salix babylonica Linn, Platanus orientalis and Robinia pseudoacacia) grown in three different climate zones(arid,semiarid and humid regions) were investigated for their potential as soil amendments. The results show that ash content, K+, Ca2+, Mg2+, CEC, Cl-, p H, and salinity are generally higher in the straw biochars(STR-BCs) than the hardwood biochars(HW-BCs). However, there is no significant distinction between the two categories of biochars in terms of surface acidity, surface basicity, TC, available phosphorus(A-P) or NH4+-N. The contents of K+, Na+,Ca2+, Mg2+, EC, Cl-of all 21 biochars increase in semiarid and arid regions in comparison to humid regions, while ash content, TC, CEC, p H, surface acidity, surface basicity,A-P and NH4+-N show no correlation to the climate. From the perspective of K+, CEC and the remediation of acidified soils, STR-BCs are preferable over HW-BCs as a soil amendment, while HW-BCs are more suitable than STRBCs in soils with a saline problem. EC, Na+and Clincrease with the water stress of the climatic regions, and the high saline ions of biochar in the arid regions indicate that biochars produced from local biomass, especially from crop residues, are at a high risk of exacerbating soil salinization. The big difference in the critical chemical properties, such as the saline ions, stresses that biochar should be taken on a regional basis as well as a biomass basis, with the general assumption that whether biochar as a soil amendment is good or bad is groundless.  相似文献   

6.
Abstract

Wetting front instability (fingered flow) accelerates solute transport through the unsaturated zone to the groundwater table. Whether fingers widen or dissipate close to the groundwater is unclear. Water flow in a two-dimensional artificial capillary fringe below a dry layer exhibiting fingered flow was investigated. The flow diverged strongly in the wet soil, suggesting that fingers dissipate. Expressions for the finger radius in dry and wet soil were combined and adapted to a soil hydraulic property parameterization popular in numerical modelling. The modified equation provided finger radii for soils in humid and arid climates. The fingers in the arid soil were excessively wide. The finger radii were used to model solute transport, assuming fingers dissipated in the subsoil. Modelling was cumbersome for the arid climate. One shower may often be insufficient to trigger fingering in arid regions with short, heavy showers. In soils with shallow groundwater, the diverging subsoil flow determines solute leaching.  相似文献   

7.
Archaeal and bacterial glycerol dialkyl glycerol tetraethers (GDGTs) play a unique role in discerning the biogeochemical processes and climate change in terrestrial (e.g. soil, peat, stalagmites, lakes, rivers, hot springs) and marine environments. Organic proxies based on GDGTs (e.g. TEX86, MBT/CBT and BIT) have made impressive applications in the open ocean and terrestrial environments. However, the applicability of these proxies in marginal seas has not been thoroughly evaluated, which is necessary given the complexity and dynamics of these systems, such as organic matter (OM) flux, hydrodynamic conditions, and human impact. This review aims to summarize recent studies of GDGTs and GDGT-based proxies in the Chinese marginal seas (CMS), which are characterized by diverse gradient in terrigenous supplies and ocean productivity and hold rich information on climate and sea level changes, ocean current dynamics, sedimentary evolution and biogeochemical processes.  相似文献   

8.
Branched glycerol dialkyl glycerol tetraethers(brGDGTs),likely produced by bacteria in soil and peat,are widely distributed,easily detected,newly adopted biomarker compounds.In this study,brGDGTs were used to explore the relationship between the absolute abundance of brGDGTs and the distribution of oil and gas fields in the Duoshiqiao area of the Jiyang depression.The results showed that the concentrations at the Xiakou fault and in the oil and gas fields were obviously higher than those in the contrast areas.The clear relationship among the concentration of brGDGTs,the distribution of oil and gas fields,and the acidolysis hydrocarbon(ethane)indicates that the concentration effectively responds to hydrocarbon seeps from the oil and gas field below.brGDGTs may become some of the most important indicators in surface geochemical prospecting for oil and gas.  相似文献   

9.
Glycerol dialkyl glycerol tetraethers(GDGTs) in lake sediments are useful biomarkers for the continental paleoclimatic reconstruction. However, the environmental controls on the distribution of these compounds, in particular the 6-methyl isomers of bacterial branched GDGTs(bGDGTs), in the lakes with contrasting pH, are still unknown, hindering their application for paleo-reconstructions. Here, we investigated the environmental impacts on the distribution of GDGTs in 17 alkaline lakes and 1 acid lake in China. It was found that the dissolved oxygen content in water column may have an impact on the distribution of archaeal isoprenoid GDGTs(iGDGTs) by causing the change in archaeal communities. The ratio of GDGT-0/crenarchaeol increases with decreasing oxygen content, indicating that the relative abundance of anaerobic methanogenic archaea or Miscellaneous Crenarchaeotic Group(MCG) vs. aerobic Thaumarchaeota is controlled by the oxygen content dissolved in water of these lakes. Thaumarchaeota are likely to contribute only a small proportion of iGDGTs in the relatively oxygen-depleted lakes, and thus TEX_(86) is not suitable for the reconstruction of the surface temperature of these lakes. The abundance ratio of iGDGTs to bGDGTs(R_(i/b)) appears to show no relationship with water pH in all the lakes, but exhibits a significant positive correlation with the water depth of the acid Lake Qinghai in Tengchong. As expected, the methylation degree of bGDGTs(MBT′) was found to correlate with both mean annual air temperature(MAT) and water pH, and the cyclization degree of bGDGTs(CBT) correlates only with water pH in these lakes. However, the MBT′_(5ME), an index to measure the methylation degree of 5-methyl bGDGTs, exhibits no relationship with MAT, whereas MBT′_(6ME), the methylation degree of 6-methyl bGDGTs, was found to correlate significantly with MAT. This is opposite to the situation observed in the global soils, pointing to a different adaptation of b GDGT-producing bacteria to environmental variables or different microbial sources of bGDGTs in these lakes. The relative abundance of 6- vs. 5-methyl bGDGTs is controlled by pH in these lakes, similar to that observed in worldwide soils. Hence, the isomer ratio(IR) of 6-methyl bGDGTs or CBT′ can be used as a proxy for water pH, although they might be influenced by other environmental factors including temperature in the lakes with a narrow range of pH.  相似文献   

10.
Summary Magnetic susceptibility of more than 160 modern silty soil samples in China was measured to assess the relationship between the magnetic susceptibility and modern climatic parameters. Correlation between magnetic susceptibility and mean annual temperature (MAT) or mean annual precipitation (MAP), shows a complex picture and no single function can be found to fit all the data on the national scale. In East China, where East Asian monsoon plays an important role for the climate conditions, magnetic susceptibility increases with the increase of MAT or MAP in temperate semi-arid regions of the Loess Plateau and surrounding areas. This can be attributed to increasing intensity of pedogenesis which would favor the formation of strongly magnetic minerals and/or reduce depositional rate of eolian dust. Magnetic susceptibility tends to decrease with the increase of temperature and precipitation in the tropical and subtropical warm and humid regions of the vast areas south of the Yangtze River. This may be explained by pedogenic transformation of iron-bearing minerals to weakly magnetic minerals. Between these two different correlation patterns, 15°C of MAT and/or 1200 mm of MAP seem to be the thresholds. In West China, the correlation becomes quite complex in the great mountains and vast sedimentary basins in the north-west. This may be due to the prevailing continental climate in this region and topographic contrast within short distance. The correlation for the Qinghai-Xizang (Tibetan) Plateau is not clear because very few samples were collected. Fluctuations of paleo-temperature and paleo-precipitation at Luochuan for the last 130 ka were estimated using the climofunction obtained from this study.  相似文献   

11.
Micromorphology has important application in earth surface process and landform studies particularly in alluvial settings such as the Indo‐Gangetic Plains (IGP) with different geomorphic surfaces to identify climatic changes and neotectonic events and their influence on pedogenesis. The soils of the IGP extending from arid upland in the west to per humid deltaic plains in the east developed on five geomorphic surfaces namely QIG1 to QIG5 originating during the last 13.5 ka. Four soil‐geomorphic systems across the entire IGP are identified as: (i) the western Yamuna Plains/Uplands, (ii) the Yamuna‐Ganga Interfluve, (iii) the Ganga‐Ghaghara Interfluve, and (iv) the Deltaic Plains. Thin section analysis of the soils across the four soil‐geomorphic systems provides a record of provenance, mineral weathering, pedogenic processes and polygenesis in IGP. The soils over major parts of the IGP dominantly contain muscovite and quartz and small fraction of highly altered feldspar derived from the Himalayas. However, soils in the western and eastern parts of the IGP contain large volumes of fresh to weakly altered plagioclase and smectitic clay derived from the Indian craton. The soils in western Yamuna Plains/Uplands dominated by QIG2–QIG3 geomorphic surfaces and pedogenic carbonate developed in semi‐arid climate prior to 5 ka. However, soils of the central part of the IGP in the Yamuna‐Ganga Interfluve and Ganga‐Ghaghara Interfluve regions with dominance of QIG4–QIG5 surfaces are polygenetic due to climate change over the last 13.5 ka. The clay pedofeatures formed during earlier wet phase (13.5–11 ka) show degradation, loss of preferred orientation, speckled appearance in contrast with the later phase of wet climate (6.5–4 ka). The soils over the deltaic plains with dominance of vertic features along with clay pedofeatures suggest that illuviation of fine clay is an important pedogenic process even in soils with shrink‐swell characteristics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Knowledge of long-term change in vegetation and climate in semi-arid/arid regions is essential for the study of current climate and development of mitigation strategies against severe drought. Here, a fossil pollen record of annually-varved core from Sugan Lake in interior Qaidam Basin was quantitatively analyzed to reconstruct changes in vegetation, floristic diversity and drought frequency. Results of biomization suggested that regional vegetation was desert vegetation with three short-term occupations of temperate steppe/xerophytic shrub during the last 2700 years. Floristic diversity generally increased/decreased with the expansion/degradation of desert vegetation. Moisture fluctuations showed three distinct stages(extremely dry between 742 BC and ~AD500, relatively wet with an increasing trend between ~AD500 and 1200 and relatively wet with frequent fluctuations after AD1200), interrupted by 14 drought events. Spectral analysis and continuous wavelet transform of moisture variation revealed 200-and 120-year cycles. According to cross-wavelet transform analysis, major drought frequency of ~200-year was explicitly correlated to solar activity. It's suggested that the centennial-scale drought frequency was mainly driven by solar activity, through modulation of large-scale atmospheric circulation. Furthermore, the effect of surface temperature–evaporation and uplifting/subsiding air flow should be notable. The climatic drought in interior Qaidam Basin could be intensified under the continuous global warming.  相似文献   

13.
Decoupling the impacts of climate and tectonics on hillslope erosion rates is a challenging problem. Hillslope erosion rates are well known to respond to changes in hillslope boundary conditions (e.g. channel incision rates) through their dependence on soil thickness, and precipitation is an important control on soil formation. Surprisingly though, compilations of hillslope denudation rates suggest little precipitation sensitivity. To isolate the effects of precipitation and boundary condition, we measured rates of soil production from bedrock and described soils on hillslopes along a semi‐arid to hyperarid precipitation gradient in northern Chile. In each climate zone, hillslopes with contrasting boundary conditions (actively incising channels versus non‐eroding landforms) were studied. Channel incision rates, which ultimately drive hillslope erosion, varied with precipitation rather than tectonic setting throughout the study area. These precipitation‐dependent incision rates are mirrored on the hillslopes, where erosion shifts from relatively fast and biologically‐driven to extremely slow and salt‐driven as precipitation decreases. Contrary to studies in humid regions, bedrock erosion rates increase with precipitation following a power law, from ~1 m Ma?1 in the hyperarid region to ~40 m Ma?1 in the semi‐arid region. The effect of boundary condition on soil thickness was observed in all climate zones (thicker soils on hillslopes with stable boundaries compared to hillslopes bounded by active channels), but the difference in bedrock erosion rates between the hillslopes within a climate region (slower erosion rates on hillslopes with stable boundaries) decreased as precipitation decreased. The biotic‐abiotic threshold also marks the precipitation rate below which bedrock erosion rates are no longer a function of soil thickness. Our work shows that hillslope processes become sensitive to precipitation as life disappears and the ability of the landscape to respond to tectonics decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Carbon preference index (CPI) of long-chain n-alkanes preserved in surface soil increases gradually from southeastern China to the north margin of Loess Plateau.Along this latitudinal transect,the CPI value correlates to relative humidity,precipitation,and temperature with a negative linear relationship,respectively,whereas the correlation of CPI to temperature is relatively weak.In the Wuyi,Shennongjia,and Tianshan Mountains,CPI values do not change systemically with altitude increasing (or temperature decreasing).However,mean value of CPI for the individual mountain increases in turn from the humid mountain to the arid.These results jointly suggest that aridity (or humidity) is a dominate climate factor in altering soil CPI value.High CPI values of geological records therefore indicate the arid paleoclimate.Though long-chain n-alkanes in soil are derived mainly from leaf wax of terrestrial vascular plants,the regular latitudinal variations of soil CPI might not be caused by the change of vegetation.We speculate that increased long-chain n-alkanes from microbes and/or enhanced biodegradation in the humid climate lead to the decrease of soil CPI.  相似文献   

15.
Climate change is expected to increase temperatures and lower rainfall in Mediterranean regions; however, there is a great degree of uncertainty as to the amount of change. This limits the prediction capacity of models to quantify impacts on water resources, vegetation productivity and erosion. This work circumvents this problem by analysing the sensitivity of these variables to varying degrees of temperature change (increased by up to 6·4 °C), rainfall (reduced by up to 40%) and atmospheric CO2 concentrations (increased by up to 100%). The SWAT watershed model was applied to 18 large watersheds in two contrasting regions of Portugal, one humid and one semi‐arid; incremental changes to climate variables were simulated using a stochastic weather generator. The main results indicate that water runoff, particularly subsurface runoff, is highly sensitive to these climate change trends (down by 80%). The biomass growth of most species showed a declining trend (wheat down by 40%), due to the negative impacts of increasing temperatures, dampened by higher CO2 concentrations. Mediterranean species, however, showed a positive response to milder degrees of climate change. Changes to erosion depended on the interactions between the decline in surface runoff (driving erosion rates downward) and biomass growth (driving erosion rates upward). For the milder rainfall changes, soil erosion showed a significant increasing trend in wheat fields (up to 150% in the humid watersheds), well above the recovery capacity of the soil. Overall, the results indicate a shift of the humid watersheds to acquire semi‐arid characteristics, such as more irregular river flows and increasingly marginal conditions for agricultural production. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The desert and sandy land are the products of arid climate. The spatial distribution of modern deserts and sandy land in China and their relation to climate show following characteristics: arid and hyper-arid desert zones, at isohyet of less than 200 mm, are dominated by mobile dunes; semi-arid steppe and arid desert steppe with the precipitation between 200-400mm, are dominated by semi-fixed and fixed sand dunes; the precipitation of sub-humid forest grassland and humid forest zones with scattered fixed sand land is higher than 400 mm. With this as reference, in combination with considerable amount of paleoclimatic data in desert regions and adjacent regions, the distributions of desert and sandy land in China during the last interglacial period, the last glacial maximum (LGM), and the Holocene megathermal, were preliminarily reconstructed. The results compared with that of today show that the distribution of desert and sandy land in China was greatly dwindled during last interglacial period, and the mobile dune area was about two-thirds of that of today's, but greatly expanded during LGM. However, the dwindling area of desert and sandy land in the Holocene megathermal was smaller than that in the last interglacial period. The forcing mechanism was mainly related to the changes of East Asian winter and summer monsoon, south-northward swing of the westerlies and the variations of the Qinghai-Tibet Plateau monsoon intensity caused by global climate changes during the cold and warm intervals since the last interglacial period.  相似文献   

17.
The desert and sandy land are the products of arid climate. The spatial distribution of modern deserts and sandy land in China and their relation to climate show following characteristics: arid and hyper-arid desert zones, at isohyet of less than 200 mm, are dominated by mobile dunes; semi-arid steppe and arid desert steppe with the precipitation between 200–400 mm, are dominated by semi-fixed and fixed sand dunes; the precipitation of sub-humid forest grassland and humid forest zones with scattered fixed sand land is higher than 400 mm. With this as reference, in combination with considerable amount of paleoclimatic data in desert regions and adjacent regions, the distributions of desert and sandy land in China during the last interglacial period, the last glacial maximum (LGM), and the Holocene megathermal, were preliminarily reconstructed. The results compared with that of today show that the distribution of desert and sandy land in China was greatly dwindled during last interglacial period, and the mobile dune area was about two-thirds of that of today’s, but greatly expanded during LGM. However, the dwindling area of desert and sandy land in the Holocene megathermal was smaller than that in the last interglacial period. The forcing mechanism was mainly related to the changes of East Asian winter and summer monsoon, south-northward swing of the westerlies and the variations of the Qinghai-Tibet Plateau monsoon intensity caused by global climate changes during the cold and warm intervals since the last interglacial period.  相似文献   

18.
In many parts of the world, watershed management practices have been extremely effective. However, implementation of soil and water conservation technologies in the humid African highlands, while beneficial in the short term, were remarkably unsuccessful in the long term. Insights from community knowledge perspectives have revealed that alternative methods are needed. Although conservation practices are designed to conserve water in semi‐arid areas, safely draining excess water is needed in humid areas. The objective of this paper is to review current watershed management approaches used in humid regions as exemplified by those used in Ethiopian highlands and then based on these findings propose more effective practices. Although current government sponsored practices primarily protect the hillsides, direct run‐off is generated from areas that become saturated on valley bottoms near rivers and on specific parts of the hillsides with degraded soils (or with highly permeable surface soils) and with perched water tables on slowly permeable horizons at shallow depths. In these areas, direct run‐off is increasing with deforestation and the soil degradation, demanding additional drainage ways that evolve in the form of gullies. Therefore, watershed management interventions for erosion control should prioritize revegetation of degraded areas, increasing sustainable infiltration, and rehabilitating gullies situated at saturated bottomlands.  相似文献   

19.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

20.
A map of temporary small water bodies (TSWB) at 1 km resolution was derived for the arid, semi-arid and dry sub-humid regions of sub-Saharan western Africa where the spatio-temporal distribution of actual surface water occurrence exhibits high inter- and intra-annual variability. Water bodies and humid areas have been mapped and characterized by the analysis of 10 daily small water bodies (SWB) maps based on SPOT VEGETATION (VGT) data spanning the period January 1999–September 2007. Further analysis of the SWB time series provided additional information about the seasonal recurrence of water bodies as well as their hydrological function. A map derived from a continuous time series assures the inclusion of temporary features, a clear advantage compared to other datasets, which are based on several single date observations. The method described in this paper targets at a rapid creation of TSWB maps based on the SWB time series for different time intervals and regions.An accuracy assessment has been carried out with a stratified random sampling approach and a one-stage cluster analysis that relies on high-resolution satellite data to verify the detected water bodies. The overall accuracy, considering only the commission error, is 95.4% for the whole study region, with best results in the arid and semi-arid climate zone. The method to map water bodies delivers satisfactory results, particularly for sparsely vegetated areas as well as flat areas of the study region. In more humid, more vegetated areas and in mountainous areas, the possibility of false detections increases due to surface characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号