首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we investigate the correlation between some magnetic parameters and the level of contamination by heavy metals in urban soils from Morelia city, western Mexico. The magnetic study was carried out on 98 urban soils samples belonging to distinct land uses. Most of analyzed samples contain ferrimagnetic minerals as the responsible for magnetization, most probably corresponding to the titanomagnetites/ titanomaghemites solid solutions. This is inferred from the susceptibility vs. temperature measurements and the isothermal remanent magnetization (IRM) experiments. These measurements also indicate that most of samples are almost completely saturated before 300 mT. Additionally, the S-200 values (S-200 = IRM-200/ SIRM, where IRM-200= Back-field of 200 mT after magnetic saturation) are between 0.7 and 1.0, characteristic of low coercivity magnetic minerals. The averaged saturation isothermal remanent magnetization (SIRM) curves can be used as an indicator of pollution level, as these curves show different saturation values according to the level of contamination by heavy metals: Cu, Ni, Cr and Sr. These associations of (titano)magnetite with heavy metals were observed by Scanning Electron Microscope revealing some complex aggregates rather than commonly detected spherules.  相似文献   

2.
Various rock magnetic techniques were applied to characterize magnetically the samples of a soil profile taken from west-central Minnesota. There is a marked change in magnetic properties as a function of depth in the core. X-ray analysis and Curie temperature measurements carried out on the magnetic fractions indicate that magnetite is the dominant iron oxide in both the top soil and the subsoil. The intensity of anhysteretic remanent magnetization (ARM) decreases sharply as the depth increases. In contrast, the stability of ARM was found to be higher for the subsoil. The surface soil sample was capable of acquiring a significant amount of viscous remanent magnetization (VRM). The VRM acquisition coefficient (Sa) of the subsoil (Sa= 3.18 × 10?6emu g?1, 3.18 × 10?6A m2 kg?1) was about ten times weaker than that of the top soil sample (Sa = 3.868 × 10?7emu g?1, 3.868 × 10?7A m2 kg?1). The magnetic domain state indicator, the ratio of coercivity of remanence to coercive force, Hcr/Hc, was 1.5 and 3.85 for the top soil and subsoil, respectively. It appears that the observed variations in magnetic properties down the present soil core is due only to a difference in grain size. We conclude that the magnetic grains in surface soil samples were more single-domain (SD) like whereas the magnetite grains in the subsoil samples were more likely in pseudo-single-domain (PSD) or small multidomain (MD) range. The observed lower stability for the surface soil samples is attributed to the presence of superparamagnetic grains whose presence was confirmed by transmission electron micrographs.  相似文献   

3.
This study presents rock magnetic properties along with magnetic field measurements of different stratigraphic and lithologic basalt units from Reykjanes, the southwestern promontory of the Reykjanes peninsula, where the submarine Reykjanes Ridge passes over into the rift zone of southwestern Iceland. The basaltic fissure eruptions and shield lava of tholeiitic composition (less than 11500 a old) show a high natural remanent magnetization (NRM, Jr) up to 33.6 A/m and high Koenigsberger ratio (Q) up to 52.2 indicating a clear dominance of the NRM compared to the induced part of the magnetization. Pillow basalts and picritic shield lava show distinctly lower Jr values below 10 A/m. Magnetic susceptibility (κ) ranges for all lithologies from 2.5 to 26×10−3 SI.  相似文献   

4.
Intense rainfall following wildfire can cause substantial soil and sediment redistribution. With concern for the increasing magnitude and frequency of wildfire events, research needs to focus on hydrogeomorphological impacts of fire, particularly downstream fluxes of sediment and nutrients. Here, we investigate variation in magnetic enhancement of soil by fire in burnt eucalypt forest slopes to explore its potential as a post‐fire sediment tracer. Low‐frequency magnetic susceptibility values (χlf) of <10 µm material sourced from burnt slopes (c. 8·0–10·4 × 10?6 m3 kg?1) are an order of magnitude greater than those of <10 µm material derived from long‐unburnt areas (0·8 × 10?6 m3 kg?1). Susceptibility of anhysteretic remanent magnetization (χARM) and saturation isothermal remanent magnetization (SIRM) values are similarly enhanced. Signatures are strongly influenced by soil and sediment particle size and storage of previously burnt material in footslope areas. Whilst observations indicate that signatures based on magnetic enhancement show promise for post‐fire sediment tracing, problems arise with the lack of dimensionality in such data. Magnetic grain size indicators χfd%, χARM/SIRM and χfd/χARM offer further discrimination of source material but cannot be included in numerical unmixing models owing to non‐linear additivity. This leads to complications in quantitatively ascribing downstream sediment to source areas of contrasting burn severity since sources represent numerical multiples of each other, indicating the need to involve additional indicators, such as geochemical evidence, to allow a more robust discrimination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Deposition experiments have been carried out to measure the effect of particle size variation on the relationship between detrital remanent magnetization (DRM), anhysteretic remanent magnetization (ARM), and geomagnetic field intensity in sediments.Foraminiferal ooze from a box core taken in the Columbian Basin south of Jamaica was separated into several particle size ranges and redeposited in the laboratory in known magnetic fields. The intensity and alternating field (AF) demagnetization characteristics of the DRM and a subsequently applied ARM were compared for the various particle size ranges.The results show a variation of DRM/ARM ratios with particle size. The DRM intensities and directions indicate that particle sizes greater than 38 μm do not contribute significantly to the DRM of the total sediment. ARM intensities for larger particle sizes and particle size analysis of the whole sediment indicate that the fraction greater than 38 μm does make a significant contribution to the total ARM of a sample. Use of the DRM/ARM ratio in experimental measurements of magnetic paleointensity indicates that the method is unsatisfactory for sediments having a significant fraction of magnetic particles larger than 38 μm. It is also shown that, for sediments having a significant fraction of high-coercivity magnetic grains, the relative orientation of the ARM and DRM will affect ARM intensities, making necessary the use of corrected ARM and DRM intensities for ratio calculations.  相似文献   

6.
Archaeomagnetism in Greece has continuously developed during the last decades. Numerous studies have provided high quality data and accurate secular variation curves for the direction and intensity of the geomagnetic field have been constructed. The Greek Secular Variation Curves (SVCs) cover the last 8 millennia for intensity and 6 millennia for direction. The coverage of the archaeological periods remains uneven, with several gaps, mostly in the directional dataset, with only two results for periods older than 2500 B.C. In the present contribution, the first archaeomagnetic results from Neolithic settlements in northern Greece are presented. For the present study, samples were collected from three different archaeological sites: burnt structures in Avgi (Kastoria) and Vasili (Farsala) and one oven from Sosandra (Aridaia). The natural remanent magnetization (NRM) grouping of all specimens indicated that the majority of the samples were burnt in situ, providing thus a reliable direction of the ancient field. Magnetic cleaning (both alternating-field and thermal) revealed the presence of one stable component of magnetisation. Rock magnetic experiments (acquisition of isothermal remanent magnetization (IRM), thermal demagnetisation of the IRM, thermomagnetic curves) have been performed on pilot samples indicating that low coercivity magnetic minerals such as magnetite or Timagnetite are prevailing. The mean directions (declination D, inclination I and parameters of the Fisherian statistics), which arose from the three sites are as follows: Sosandra: D = 343°, I = 55.6°, ??95 = 4.8°; Avgi: D = 10.1°, I = 53.4°, ??95 = 4.2° and Vasili: D = 357.5°, I = 43.1°, ??95 = 4.1°. The obtained data are in a very good agreement with results from Neolithic Bulgaria. This study represents the beginning of an effort to fill the gaps of the Greek secular variation curves and their extension to the Neolithic period.  相似文献   

7.
Magnetic hysteresis effects have been observed in ferromagnetic resonance (FMR) spectra obtained at 9 and 16 GHz for certain simulated lunar glasses which were reduced by H2 in the melt and rapidly quenched. Transmission electron microscopy has revealed that these samples contained spherical particles in the size range ~0.01–0.5 μm. FMR spectra obtained at 35 GHz (applied field ~ 12.5 kOe) exhibited a line shape characteristic of spherical, single-domain (SD) iron particles with no hysteresis. Computer simulations of the latter spectra confirmed that the average deviation from sphericity must be ?3% and that (2K1/Ms) ≈ + 600 Oe for the precipitated magnetic phases. The principal features of the spectra obtained at all three frequencies have been explained on the basis of a simple theoretical treatment for spherical iron particles which have 2 domains in applied fields ?7 kOe, but become saturated at higher fields. Isothermal remanent magnetization (IRM) of these samples has been studied by both FMR and standard static techniques; the mean coercive force measured by the former (~4 kOe) contrasts with the mean value determined by the latter (~550 Oe). Apparently, FMR singles out and even amplifies the contributions of two-domain particles (which are magnetically hard), while the static measurement is more sensitive to the average of all particles present. The intensity of the FMR hysteresis of typical lunar soils is found to be ~1% of the total FMR intensity. In spite of this seemingly small value, two-domain iron particles may be important carriers of natural remanent magnetization (NMR) in certain lunar rocks.  相似文献   

8.
This paper focuses on the study of the correlation between magnetic parameters with the level of contamination by heavy metals in urban soils. We report a magnetic investigation of urban soil samples from Merida, state of Yucatan, Southern Mexico. It appears that most of our samples contain ferrimagnetic minerals as the magnetic carriers, probably coming from the titanomagnetites/titanomaghemites series. This is inferred by the acquisition of isothermal remanent magnetization, which shows that most of samples are almost completely saturated at about 200 mT. The S−200 value (factor characterizing stability of remanent magnetization) is between 0.8 and 1.0, characteristic of ferrimagnetic minerals. The susceptibility vs. temperature measurements also point to some titanomaghemites and titanomagnetites as probable responsible for magnetization. On the other hand, measurements of magnetic susceptibility at high and low frequencies helped us to determine the high content of superparamagnetic grains in the majority of the samples, although not all of these showed high values of magnetic susceptibility. We found that the most contaminated samples by Pb and Zn showed the higher saturation isothermal remanent magnetization values, whereas the higher values in magnetic susceptibility correspond to samples contaminated by Cr. Finally, we noted that a high level in Sr decreases the magnetic susceptibility.  相似文献   

9.
During revisiting the Upper Pleistocene Pekla loess-soil section located on the Sea of Azov coast of the Taman Peninsula, its lower 6 m were continuously sampled, which led to an increase in the age range from ∼50 to 400 ka. The detailed rock magnetic study of the structure, grain-size, and concentrations of magnetic mineral (natural remanent magnetization (NRM) carrier) in the collected rock samples revealed regular changes in rock magnetic characteristics along the section and their correlation with climatic fluctuations. Magnetite and hematite both deposited during the transport of sedimentary material and formed during pedogenesis, which involved the entire section to a varying extent, represent the main magnetic minerals in the examined rocks. Automorphic paleosoils that were formed during warm and humid periods corresponding to odd stages of the MIS scale are characterized by elevated concentrations of magnetic mineral (NRM, magnetic susceptibility (K lf), saturation isothermal remanent magnetization (SIRM), and anhysteresis (ideal) remanent magnetization (ARM)) parameters and share of superparamagnetic particles (up to 80%, according to elevated values of the frequency-dependent magnetic susceptibility K td) as well as by lowered rigidity parameter (B cr) and grain size (ARM/K parameter). Such changes in the paleosoils may be explained by the occurrence of newly formed fine-grained magnetite particles close in size to its superparamagnetic and single-domain varieties due to the activation of bio/geochemical processes during warm stages. The growth of the above-mentioned rock magnetic parameters in automorphic soils may be considered as serving a quantitative criterion for defining the boundary between warm and cold periods even in poorly developed soils.  相似文献   

10.
The paper is devoted to studying the mineral composition and magnetic properties, mainly at the cryogenic temperatures, of the Middle–Late Devonian basalts from North Timan. The magnetic minerals in these basalts are dominated by intermediate-composition titanomagnetites (TM25–TM30) which demonstrate unusual magnetic properties in a wide temperature range. At room temperature, a low coercive force coexists with relatively high Mrs/Ms ratios. At cryogenic temperatures, the dependences of magnetic susceptibility on the temperature and frequency of the applied field are characteristic of this titanomagnetite composition, whereas the remanent saturation magnetization acquired at 2 K is destroyed at significantly lower temperatures compared to the synthetic analogs. The obtained results again highlight the necessity of studying the low-temperature properties of titanomagnetite samples with a controlled composition and grain size.  相似文献   

11.
Rock magnetic measurements of Nihewan sediments from Xujiayao section demonstrate that magnetite, hematite and maghemite are dominant remanent magnetization carriers. Monitoring the variations of magnetic susceptibility (MS) and saturating isothermal remanent magnetization (SIRM) at low temperature are the attractive ways of detecting the presence of magnetite, maghemitization and superparamagnetic grain sizes. Low-temperature MS investigations suggest that susceptibility enhancement for Xujiayao samples is mainly due to the remarkable presence of SD/MD magnetite to some degree though some magnetite grains have been partially oxidized at some depths. It is tentatively concluded that both SD/MD magnetite and hematite are of detrital origin and carry a characteristic remanent magnetization (ChRM), whereas maghemite can be attributed to be chemical origin, overprinting a reversed polarity component of Matuyama age.  相似文献   

12.
本文对"鲁科一井"(CCSD-LK-Ⅰ)768.9~1112.3m之间的上白垩统沉积岩样品进行了岩石磁学、磁化率各向异性(AMS)以及天然剩磁组分的研究.在此基础上,分析了利用特征剩磁(ChRM)和黏滞剩磁(VRM)方向恢复岩芯原始方位的可行性.三轴等温剩磁热退磁曲线、磁滞回线、反向场退磁曲线、一阶反转曲线等岩石磁学测量结果表明,沉积岩的主要载磁矿物为磁铁矿和赤铁矿.335块样品的AMS测量结果表明磁化率椭球主轴的最大轴K1和中间轴K2与水平面夹角较小,最小轴K3接近垂直于水平面分布,说明沉积岩保留了原始沉积磁组构特征.系统热退磁实验表明,多数样品在25~350℃和500~690℃温度段分别获得VRM和ChRM分量.利用ChRM偏角方向,并考虑构造旋转量校正,对VRM偏角方向进行恢复,Fisher统计得到DVRM=-1.3°,IVRM=59.6°,与当地现代地磁场方向(D=-6.7°,I=53.9°)基本一致.用ChRM偏角方向对磁化率主轴K1偏角方向进行校正,校正的结果为:D_(ch_K1)=349.2°,I_(ch_K1)=-0.7°.本文研究结果对于地质勘探中利用古地磁学方法恢复钻孔岩芯原始方位具有一定参考意义.  相似文献   

13.
North-seeking bacteria (NSB) with 1 μm diameters migrate to the S pole only. They were applied to identify the S pole determination on a polished surface of magnetite-rich pyroxenite whose natural remanent magnetization (NRM) intensity was 5.64 × 10−3 Am2 kg−1. The microscopic observations were performed under dark-field illumination in a controlled magnetic field to 10 μT. The NSB formed clusters on limited areas of magnetite grains and scattered over the whole magnetite grains.

The NRM decreased to 1.02 × 10−5 Am2 kg−1 by alternating field (AF) demagnetization to 60 mT but no clusters appeared, while small populations of the NSB scattered on each grain. These scattered bacteria may gather toward the S pole resulting from magnetic domain walls.

When the sample acquired saturation isothermal remanent magnetization (SIRM) to 1 T, the NSB formed dense clusters at the opposite side to the applied field direction on the many grains as expected. This evidence indicated that the NSB can be useful micro-organisms for the determination of fine magnetic structures. Some grains also had NSB clusters at the edge of the grains toward the field direction or did not exhibit any clusters. The complicated distribution of the clusters (the S poles) may be explained by shape anisotropy of the magnetic grains.  相似文献   


14.
This paper reports on magnetic and magnetomineralogical studies of soils influenced by ironworks activity. Researches were conducted in five areas, of which Ostrowiec Świętokrzyski ironworks area is described in detail. A map of magnetic susceptibility was created based on field measurements and samples taken from soil profile were analyzed in laboratory. Measurements of magnetic susceptibility in two frequency ranges, anhysteretic remanent magnetization, isothermal remanent magnetization thermomagnetic and geochemical analysis were carried out. SEM was used to identify ferromagnetic fractions. As a result the horizontal and vertical extent of heavy metals pollution was established.  相似文献   

15.
We present results of paleomagnetic and sedimentological studies carried out on three cores Lmor1, Lmo98-1, Lmor98-2 from bottom sediments of Lake Moreno (south-western Argentina), and integrate them with data from our previous studies. Measurements of directions (declination D and inclination I) and mass specific intensity of natural remanent magnetization (NRM intensity), magnetic susceptibility (specific, χ and volumetric, κ), isothermal remanent magnetization (IRM), saturation of isothermal remanent magnetization (SIRM), and back field remanent coercivity (B0CR) were performed. The stability of the NRM was investigated using alternating-field demagnetization. The results show that these sediments meet the criteria required to construct a reliable paleomagnetic record. The cores were correlated very well based on magnetic parameters, such as χ and NRM intensity, as well as with lithological features. Tephra layers were identified from the lithological profiles and magnetic susceptibility logs. We obtained the D and I logs of the characteristic remanent magnetization for the cores as a function of shortened depth. The data from the three cores were combined to form a composite record using the Fisher method. A comparison between stacked inclination and declination records of Lake Moreno and those obtained in previous works on Lake Escondido and Lake El Trébol shows good agreement. This agreement made it possible to transform the stacked curves into time series spanning the interval 12–20 kyr. The results obtained improved our knowledge of SV and the behaviour of the geomagnetic field and also allowed us to determine the range of past inclination variations from −70° to −45° for the southern hemisphere, where data are scarce.  相似文献   

16.
边缘海-陆架区是研究海陆交互作用的理想区域,该区沉积物记录了海平面、气候与构造变化的重要信息.渤海作为我国的内海,前人对该区虽然进行了环境磁学方面的研究,但是受复杂的沉积环境影响,渤海沉积物的磁性变化机制十分复杂,因而需要对该区沉积物磁学性质及变化机制进行深入研究.针对这一问题,本文详细研究了渤海BH08孔岩芯沉积物的磁学性质,结果表明:①沉积物中主要载磁矿物是磁铁矿,部分层位含有高矫顽力的矿物;②岩芯整体磁学性质变化复杂,各项磁学参数变化剧烈,其总体波动与S/Cl值、沉积物红度a*和深海底栖有孔虫δ18O相关性较好;③在主要的海陆交替边界层位发现胶黄铁矿,表明是富硫的弱还原环境,而快速变化的沉积环境和较高的沉积速率是胶黄铁矿得以保存的重要因素,因而胶黄铁矿可作为沉积环境发生转变的一种特征矿物.这些新认识为深入开展渤海地区,乃至陆架-边缘海区古环境研究提供了新的思路和方法.  相似文献   

17.
Magnetic signature of different vegetation species in polluted environment   总被引:2,自引:0,他引:2  
Detailed magnetic study on vegetation samples from several strongly polluted and clean sites in Bulgaria is carried out in order to evaluate suitability of different species as passive dust collectors in magnetometry. From each location, available species among lichens, mosses, poplar leaves, dandelion, needles have been sampled. Magnetic susceptibility calculated on mass-specific basis shows wide variability between diamagnetic signal up to 846 × 10−8 m3/kg. Lichens and mosses are found to be the species, showing magnetic signals with the strongest contrast between clean and polluted environment. The main magnetic phase is magnetite-like according to the results from thermomagnetic analysis of susceptibility on magnetic extracts. Scanning electron microscopy (SEM) microphotographs reveal the presence of abundant particulate matter on vegetation surface both with anthropogenic (spherules) and lithogenic origin. Magnetic grain size deduced by the ratio of saturation remanent magnetization (SIRM) and mass-specific magnetic susceptibility (χ) and coercivities (Bc and Bcr) suggest that different species accumulate preferentially small SD-like grains from pollution emissions. Contrasting relationship of the ratio of anhysteretic remanent magnetization (ARM) and χ for polluted vs clean sites deduced by needles and lichens may be related to transformation of the accumulated dust particles within lichens’ tissue. This finding indicates that the exact species used as biological dust collector is of importance when studying spatial grain size distribution of magnetic dust particles. Pilot study on polycyclic aromatic hydrocarbons (PAH) content and its relation to magnetic parameters shows good correspondence between high levels of PAHs and high SIRM values for locations affected by non-ferrous industrial production.  相似文献   

18.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   

19.
Magnetic grains isolated from magnetococcoid bacterial cells were studied by means of transmission electron microscopy, electron diffraction and electron microprobe analysis. Observed in situ the magnetic grains are each surrounded by an organic membrane and are usually found in a random array although “chains” are also seen. Electron diffraction confirms the magnetite mineralogy and provides additional evidence in favor of vacancies in the structure. Electron microprobe analysis shows the magnetite to be slightly titaniferous. Electron microscopy indicates that the grains, rather than being flake shaped, are parallelepiped crystals with a mean length of99.3 ± 8.7nm, a mean width of62.3 ± 6.1nm yielding a width-to-length ratio of 0.63. These data support the contention that the magnetic bacterial grains are single-domain crystals capable of producing a natural remanent magnetization in sediments.  相似文献   

20.
Anisotropy of magnetic susceptibility (AMS) has been used to interpret flow directions in ignimbrites, but no study has demonstrated that the AMS fabric corresponds to the flow fabric. In this paper, we show that the AMS and strain fabric coincide in a high-grade ignimbrite, the Nuraxi Tuff, a Miocene rhyolitic ignimbrite displaying a wide variability of rheomorphic features and a well-defined magnetic fabric. Natural remanent magnetization (NRM) data indicate that the magnetization of the tuff is homogeneous and was acquired at high temperatures by Ti-magnetite crystals. Comparison between the magnetic fabric and the deformation features along a representative section shows that AMS and anisotropy of isothermal remanent magnetization (AIRM) fabric are coaxial with and reproduce the shape of the strain ellipsoid. Magnetic tests and scanning electron microscopy observations indicate that the fabric is due to trails of micrometer-size, pseudo-single domain, magnetically interacting magnetite crystals. Microlites formed along discontinuities such as shard rims and vesicle walls mimicking the petrofabric of the tuff. The fabric was thus acquired after deposition, before late rheomorphic processes, and accurately mimics homogeneous deformation features of the shards during welding processes and mass flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号