首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
选取广东省东部及福建和江西测震台网的26个固定台站2011年3~9月的地震背景噪声的垂直分量数据,用互相关方法获得瑞利面波的格林函数,再用频时分析方法提取瑞利面波的群速度频散曲线,最后用面波层析成像方法反演得到研究区周期为5~15s的瑞利面波群速度图像.反演结果揭示了广东省东部地区浅部地壳群速度结构存在明显横向不均匀性.短周期群速度异常与研究区内山脉、盆地的分布有较好的对应关系,沉积厚度较大的盆地地区表现为低速异常,而基底埋深较浅的山脉则显示了高速异常;地热分布对面波群速度产生重要影响,地热值较高的区域面波群速度一般表现为低速异常;粤东地区特别是粤东沿海地区地壳中部可能存在低速层.  相似文献   

2.
本文利用福建省数字地震监测台网中8个宽频带台站的速度型脉动记录,计算两两台站之间垂直分量的脉动在相同时间窗(窗长为5分钟)的相关系数,按照移动窗技术得到各个不重叠窗口的相关系数,并对其进行相干叠加,依此计算出两个台站之间瑞利面波的群速度及其在福建地区的空间分布。结果表明,叠加结果的信噪比随叠加次数的增加而增加,不同时间段叠加结果波形相似;峰值到时稳定,台风不会对结果产生明显影响;利用这个方法得到的福建地区周期约为3~5秒的瑞利面波群速度在2.9~3.1km/s之间,这和传统方法得到的瑞利面波的传播速度很接近。  相似文献   

3.
收集辽宁及其周边地区(吉林、河北、山东、内蒙)70个宽频带地震仪2012年连续背景噪声波形数据,基于地震背景噪声层析成像方法,得到研究区面波群速度及相速度图像。利用台站对互相关方法,提取瑞利面波格林函数,采用时频分析法(FTAN)获取2 416条相速度频散曲线,从中筛选1 661条信噪比较高的频散曲线。将研究区以0.25°×0.25°进行网格化,采用Ditmar等提出的层析成像反演方法,得到周期10—40 s的瑞利面波群速度及相速度结构分布图。与群速度结果相比,分辨率更高,研究区大部可达0.5°×0.5°(局部可达0.25°×0.25°)。结果表明,辽宁地区地壳及上地幔面波相速度结构存在显著的横向不均匀性。在周期10—15 s的群速度图中,浅层及中上地壳速度分布与研究区地形地貌及主要地质构造单元具有较好的对应关系,盆地及沉积层低速,山区隆起高速,且在高低速转换带多为地震孕震区;在周期20—30 s相速度结构图中,下地壳至上地幔顶部深度范围内,相速度速度结构主要受地壳厚度及渤海湾内巨厚沉积层的影响,在海城至大连区域内出现的低速异常推测为地下热物质上涌;随着深度的增加,在周期30—40 s的相速度图中,速度分布逐渐受控于莫霍面起伏,明显变化出现在辽东半岛,由高速变为低速。  相似文献   

4.
《地震》2016,(2)
使用了宁夏及邻区90个地震观测台站资料,反演得到了该区高分辨率的瑞利面波层析成像结果。选用2012年1月至2013年12月的垂直分量连续波形数据,通过对台站对间进行波形互相关和叠加运算,得到各台站对间的经验格林函数,使用CPS(Computer Programs in Seismology)软件测量得到了4 005条瑞利面波群速度频散曲线。选取信噪比大于10的经验格林函数对频散曲线进行了筛选,提取了3 182条台站对间的频散曲线,反演得到了研究区周期6~50s,分辨率达0.5°×0.5°的瑞利波群速度分布图像。银川盆地在6~26s为明显的低速异常,且盆地内部的低速异常呈现出不均匀的减弱趋势;关中盆地在6~22s为条状低速异常,呈现出东南部的速度略强于西北部的横向不均匀性;在30~50s呈现出在银川断陷盆地及其以南存在一自北东向西南走向的大区域低速异常区,且表现出山地与盆地之间的主要活动构造带存在明显的地貌界线,即六盘山附近的深大断裂是中国东西两大构造单元的分界线。反演结果与研究区地质构造特征、地层地貌具有较好的相关性,且和银川盆地与穿过盆地的人工地震剖面结果吻合,为该地区活动构造带的动力学和强震发震机理研究提供重要依据。  相似文献   

5.
利用福建及其周边3省(浙江、江西、广东)数字地震监测台网的69个宽频带台站一年的噪声记录,采用互相关技术提取两两台站间的瑞利面波格林函数,反演得到了福建及其周边地区3个周期段(T=4s、T=10s、T=15s)的瑞利面波群速度分布图像。所得结果可为研究该地区的地壳构造、地热分布、地震活动等提供重要依据。  相似文献   

6.
基于福建及邻区108个宽频带地震台站2016年6月到7月两个月垂直和水平分量波形连续记录, 利用相位加权叠加算法提高信噪比, 计算得到108个台站对的高质量经验格林函数。 对所获取的经验格林函数, 采用时频分析的方法在1~20 s频段内量取了大量高质量的Rayleigh波和Love波群速度频散数据。 在此基础上, 采用基于射线追踪的二维层析成像方法反演得到了福建及其邻区1~20 s的Rayleigh波和Love波群速度分布。 分辨率测试结果表明群速度分布的分辨率能达50 km。 成像结果显示1~10 s的群速度分布与地壳中上部地质特征有很好的一致性, 区内的福州盆地和漳州盆地在浅层结构中表现出明显的低速异常。 长周期的群速度则揭示了漳州西北的高地热区内中下地壳低速体, 政和-大埔断裂两侧的速度差异, 表明其可能是一个深大断裂, 并呈现明显的东西差异。  相似文献   

7.
利用地震噪声准实时监测短周期面波波速变化   总被引:8,自引:0,他引:8       下载免费PDF全文
李军  金星  周峥嵘  林树  袁丽文  陈莹 《地震学报》2009,31(6):629-640
依据由噪声信号提取面波格林函数的原理,利用福建省地震台网25个宽频带台站2007年7月2日—8月29日的脉动观测资料,得到了瑞雷波群速度在福建地区的分布,并将该结果作为下一步相对变化动态成像的背景速度分布.分布结果表明,福建地区周期为3—5s的瑞雷波群速度大致在2.9—3.1km/s之间,平均速度为3.0km/s,瑞雷波群速度分布呈北高南低的现象,这与福建地区北部多山、南部多平原盆地的地理环境有很好的吻合.而且,该群速度分布图在漳州盆地地区表现出一个非常明显的低速,这主要是因为受到盆地沉积层的影响.通过滑动窗(窗长为20d,步长1d)技术得到了观测区内周期约为3-5s的瑞雷波波速分布变化的连续图像;再利用扣除背景影响的技术,得到了2007年8月14日—2008年7月1日福建地区瑞雷波波速的相对变化时空动态图像.通过分析相对变化时空动态图像与该时间范围内发生的地震的对应关系,表明福建地区瑞雷波波速在多次网内中等强度的地震或震群(ML>3.0)中均表现出震前波速升高,震后下降恢复的变化趋势.初步分析认为,这可能与震前整个地区受到的应力增大震后应力得到释放所导致的介质变化有关.   相似文献   

8.
华北地区基于噪声的瑞利面波群速度层析成像   总被引:21,自引:7,他引:14       下载免费PDF全文
本文利用华北地震科学台阵2007年1~4月份、190个宽频带和10个甚宽带垂直分量的地震噪声数据,通过互相关方法提取了瑞利面波的经验格林函数,用多重滤波方法测量了瑞利面波的群速度频散曲线.我们将研究区域划分为0.5°×0.5°的网格,利用噪声层析成像方法得到了研究区域7 s、12 s、16 s、23 s的瑞利面波群速度分布图像,所得结果较好地揭示了地壳内部、尤其是浅部地壳的横向速度变化.研究表明,短周期的群速度分布同地表地质结构、地形密切相关;华北地区的地壳结构具有明显的横向不均匀性,华北盆地及山间的沉积盆地显示出低速异常,而基岩广泛出露的太行山和燕山隆起区,呈现高速异常;多数强震(M≥6.0级)都发生在高群速度与低群速度的过渡地带.  相似文献   

9.
利用祁连山地区(36°~42°N,96°~104°E)38个台站2014年8月—2015年12月的垂直分量连续背景噪声记录,获得了台站对之间的互相关函数和瑞利面波相速度频散曲线,采用基于射线追踪的面波频散直接反演方法,得到了观测台站下方5~40 km深度范围内的S波速度分布图像。结果表明:在5 km深度处,速度结构分布特征与地表构造分布存在一定的相关性,松散沉积层厚度影响明显;在18 km深度处,S波速度横向不均匀性明显,呈现为高低速相间不同尺度大小的区域性。同时,5~20 km深度范围内速度随深度增加而逐渐增加,其变化幅度为0.2 km/s;在30 km深度处,祁连和门源地区高低速相间分布明显;在35~40 km深度,随深度增大,祁连山北缘断裂带、托莱山断裂、冷龙岭断裂带以北地区为高速区,以南为低速区。  相似文献   

10.
收集了华北东部地区的190个宽频地震仪记录的自2010年1月至2011年12月共24个月的垂直分量(Z分量)连续噪声数据,采用FTAN(Frequency-Time Analysis)方法从15 700多条台站对路径中提取可用的面波群速度和相速度频散曲线,将研究区域划分为0.2°×0.2°的网格,利用O'ccam方法反演得到研究区内7~40s周期内的面波群速度和相速度分布。然后,使用面波在各个网格节点下方的纯路径频散反演研究区一维S波速度结构,再通过线性插值获取了华北东部地区的三维S波速度结构。结果显示S波速度分布特征与地表地质和构造特征表现出较好的相关性,能清晰地揭示出地壳内部的横向速度变化;在中上地壳(深度25km),拥有较厚沉积层的华北盆地和分布在山间的第四纪沉积盆地表现为低速特征,而基岩广泛出露的太行山和燕山隆起区呈现出大面积的高速异常;随着深度的增加(30km),下地壳上地幔顶部的S波分布特征呈现出与浅部相反的特性,拥有较薄地壳的华北盆地表现为高速,而拥有较厚地壳的太行山及燕山隆起区S波速度相对较低。三维s波速度剖面结果显示:华北平原带的唐山—河间—邢台—磁县一线和渤海湾地下10~20km存在低速异常区。大同地区地下20~30km的S波速度出现低微的速度逆转可能与该区壳一幔的热物质分布相联系。S波速度分布显示,太行山不仅是华北平原与太行山的地形和构造分界带,同时也是1个明显的速度转换带。  相似文献   

11.
This paper uses the 8 broad-band stations' microseism data recorded by the Seismic Monitoring Network of Fujian Province to calculate the vertical correlation coefficient between two stations at intervals of 5 minutes. According to the time intervals technique we obtain the different coefficients and then add the correlative coefficients. Depending on this, we extract the group velocity of Rayleigh waves from the cross correlation of the ambient seismic noise between two seismic stations and figure out the group velocity' spatial distribution. The results show that the signal noise ratio (SNR) increases proportionally to the superposition times, but the results from different days are similar to one another. Synchronously, the arrival-time is also stable and there is no obvious change when coming across typhoons. It is found the velocity of the surface wave is 2.9 - 3.1 km/s in Fujian Province, which is close to the observationally attained value.  相似文献   

12.
华夏地块东南部地壳地震各向异性特征初步研究   总被引:4,自引:5,他引:4       下载免费PDF全文
本研究采用SAM剪切波分裂分析方法,使用福建区域数字地震台网记录到的(1999年01月~2003年12月)的波形资料,挑选符合剪切波窗口条件的记录,得到华夏地块东南部地区23°N~29°N,116°E~120°E)10个台站的剪切波分裂参数. 研究结果表明,该区域快剪切波平均偏振方向为NW109.4°±42.6°,慢剪切波平均时间延迟为2.5±1.5(ms/km),快剪切波平均偏振方向对应该区的水平主压应力方向. 闽东台站NW方向的快剪切波偏振优势方向揭示了NW向的水平主压应力和NW走向断裂的构造意义. 两个闽西台站NE方向的快剪切波偏振优势方向与区域水平主压应力方向不一致,与NE走向的断裂一致,体现了局部构造和局部应力场的复杂性. 本研究证实,位于活动断裂上的台站的快剪切波偏振方向的优势方向与断裂走向一致,位于海边或岛上的台站的快剪切波偏振方向较为离散,主要是受到不规则表面地形和断裂交汇的影响. 慢剪切波延迟时间的空间分布特征,显示沿海地区慢剪切波延迟时间变化较大,而内陆地区则较为平缓.  相似文献   

13.
缅甸弧及邻区的壳幔S波速度结构与动力学过程   总被引:10,自引:4,他引:6       下载免费PDF全文
用适配滤波频时分析技术处理了锡龙(SHIO)、清迈(CHTO)、昆明(KMI)和拉萨LSA)台记录的长周期数字化面波记录,获取了穿过缅甸弧及周边地区的530条路径的Rayleigh波频散,这些频散的周期范围为10.45~105.03 s.在此基础上,以分格频散反演方法从混合路径频散中提取了1°×1°网格内的纯路径频散,并且由网格内的纯路径频散反演出深达200 km的S波速度结构,最后重建了缅甸弧及周边地区的S波速度三维结构.所得结果表明:大致以实皆断裂为分界,其东部地壳波速较低,其西部地壳波速较高.印度-缅甸地区岩石圈厚度为110~130 km,上地幔顶部S波速度为43~4.4 km/s;而缅甸弧东侧的滇缅泰地块下方为一低速地幔柱上涌区,其宽度为150~200 km左右,这里的岩石圈厚度为70~80 km,上地幔顶部S波速度为41~4.2 km/s.另外,S波速度结构还反映出这一构造格局呈南北向的空间展布,并且与该区地震震源分布、断裂走向、火山分布有很好的对应关系.  相似文献   

14.
It is important to detect the fine velocity structures of the crust and uppermost mantle to understand the regional tectonic evolution, earthquake generation processes, and to conduct earthquake risk assessment. The inversion of uppermost mantle velocity and Moho depth are strongly influenced by crustal velocity heterogeneity. In this study, we collected first arrivals of Pg and Pn and secondary arrivals of Pg wave from the seismograms recorded at Fujian provincial seismic network stations. New 3-D P-wave velocities were inverted by multi-phase joint inversion method in Fujian Province. Our results show that the fault zones in Fujian Province have various velocity patterns. The shallow crust is characterized by high velocity that represents mountains, while the mid-lower crust shows low velocities. The anomalous velocities are correlated closely with tectonic faults in Fujian Province. Velocity anomalies mainly show NE-trending distribution, especially in the mid-lower crust and uppermost mantle, which is consistent with the NE-trending of the regional main fault zones. Meanwhile, a part of velocity patterns show NW trending, which is related to the secondary NW-oriented faults. Such velocity distribution also shows a geological structural pattern of "zoning in east-west direction and blocking in north-south direction" in Fujian area. In the crust, a low velocity zone is found along Zhenghe-Dapu fault zone as mentioned by previous study, however our result shows the low velocity exists at depth of 20~30km in mid-lower crust. Compared with previous study, this low velocity zone is larger and deeper both in range and depth. The crustal thickness of 28~35km from our joint inversion is similar to the results from the receiver functions of previous studies. The thinnest crust(28km)is observed at offshore in the north of Quanzhou; while the thickest crust(35km)is located west of Zhangzhou near the Zhenghe-Dapu fault zone. Generally, thinner crustal thickness is found in offshore of Fujian Province, and thicker crustal thickness is in the mainland. However, we also found that crustal thickness becomes thinner along the east side of Yongan-Jinjiang Fault. The values of Pn velocities in the region vary from 7.71 to 8.26km/s. The velocity distribution of the uppermost mantle presents a large inhomogeneity, which is correlated with the distribution of the fault zone. High Pn velocity anomalies are found mainly along the west side of the Zhenghe-Dapu fault zone(F2), and the east side of the Shaowu-Heyuan fault zone(F1), which is strip-shaped throughout the central part of Fujian. Low Pn velocity anomalies are observed along the coast and Taiwan Straits, including the Changle-Zhaoan fault zone, the coastal fault zone, and the Fuzhou Basin. We also found a low Pn velocity anomaly zone, which extends to the coast, in the Shaowu-Heyuan fault zone at the junction of the Fujian, Guangdong and Jiangxi Provinces. In the west of Taiwan Straits, both high and low Pn velocity anomalies are observed. Our results show that the historical strong earthquakes(larger than magnitude 6.0) are mainly distributed between positive and negative anomaly zones at different depth profiles of the crust, and similar anomalies distribution also exists at the uppermost mantle, suggesting that the occurrence of strong earthquakes in the region is not only related to the anomalous crustal velocity structure, but also affected by the velocity anomaly structure from the uppermost mantle.  相似文献   

15.
晋冀鲁豫交界地区震源位置及震源区速度结构的联合反演   总被引:1,自引:0,他引:1  
利用邯郸数字台网记录到的2001—2008年间460次ML≥1.0地震的1861条P波到时数据, 采用震源位置和速度结构联合反演方法确定晋冀鲁豫交界地区(35.0°~38.0°N, 113.0°~116.0°E)地震的震源位置分布和该区域的速度结构。 结果表明: ① 经过重新定位后, P波走时的均方根残差(RMS)由反演前的1.35 s降到反演后的0.45 s。 定位偏差在EW方向上平均为0.031 km, 在NS方向上平均为0.029 km, 在垂直方向上平均为0.060 km。 ② 邢台震区的中小地震明显呈NEE向分布, 深度主要集中分布在7~14 km范围内; 磁县震区中小震分布相对复杂, 具有NEE和NWW两个展布方向, 震源深度主要集中在8~18 km范围内, 总体上晋冀鲁豫交界地区中小地震深度呈现北部浅南部深的趋势。 ③ 反演得到了晋冀鲁豫交界地区的速度结构, 在邢台地震极震区下方7~14 km处存在低速层, 与1966年邢台7.2级地震的震源深度一致;在磁县地震极震区下方13~18 km处也存在低速层与1831年磁县7.5级地震震源深度一致, 且磁县震区下方的速度结构比邢台震区更为复杂。  相似文献   

16.
利用面波和接收函数联合反演滇西地区壳幔速度结构   总被引:26,自引:13,他引:13       下载免费PDF全文
考虑到面波频散对介质S波速度、接收函数对界面深度的各自敏感性优势,综合利用面波和接收函数资料实现联合反演,求取滇西地区壳幔速度结构. 本文利用适配滤波频时分析技术处理覆盖滇西地区的长周期面波资料,获得105~1050s周期范围内的面波群速度频散,进而利用分格反演方法提取研究区内1°×1°网格纯路径频散;基于滇西地区宽频带三分量远震记录,经反褶积后得到台站下方的远震P波接收函数. 联立面波纯路径频散信息和接收函数资料建立系统方程,利用阻尼最小二乘法实现联合反演,从而获得滇西地区壳幔S波速度结构. 结果表明,滇西地区以红河断裂为界,东西两侧壳幔结构存在明显差异,断裂西侧约20km深度处存在一厚度为10km左右的低速层,而东侧并不明显;滇缅泰块体上的畹町、沧源一带属于上地幔低速区,而另一个地幔低速区则位于滇中块体上的康滇古隆起上,两处地幔低速区与大地高热流分布、强震活动具有较好的对应关系.  相似文献   

17.
The Dabie Shan is located on the eastern side of the Qinling-Dabie orogenic belt, which marks a geological boundary between the Sino-Korean and Yangtze cra- ton. Since the 1980s, the discovery of coesite and mi- crodiamond in the Dabie Shan orogen motivates an extensive interest to the ultra-high pressure (UHP)metamorphism and its exhumation[1,2]. Many results about them were published, which deal with different disciplines, including tectonics, petrology and chro- nology[3?8]. Up to now,…  相似文献   

18.
1980—2012年河北省及邻区测震台网地震记录,使用了河北省南部及邻区(34.0°—38.0°N,112.0°—118.0°E)63个固定地震台站和4 540个地震事件,得到27 709条P波到时数据,采用速度结构与地震位置联合反演的方法,获得研究区内地壳P波三维速度结构,重新确定中小地震震源位置。速度结构揭示:研究区域内地壳的P波速度结构存在明显的横向不均匀性,在10—25 km深度上横向不均匀性更加显著;大地震基本发生在速度异常体或高低速交界区域。地震重新定位结果显示:地震P波走时均方根残差(RMS)从1.68 s降到0.82 s;地震呈明显条带状分布,震源深度与地质构造年代具有一定负相关性。  相似文献   

19.
东海陆坡及相邻槽底天然气水合物的稳定域分析   总被引:18,自引:2,他引:18       下载免费PDF全文
利用实测的海底温度和海底热流资料对东海陆坡和冲绳海槽中轴以西的槽底地区的海底温度场和热流场进行了分析. 利用地震声纳浮标和OBS(Ocean Bottom Seismometer)资料将本研究区的地层划分为6层,自上而下地层的速度分别为1.8(1.8~2.2) km/s、2.2(2.0~2.5)km/s、2.8(2.7~3.2)km/s、3.4~3.6km/s、4.2(4.1~4.7)km/s、5.1km/s. 上部的1.8~2.2 km/s的速度层相当于第四纪的地层,2.8 km/s的速度层相当于上新世上部的地层,3.4~4.2 km/s的速度层相当于上新世下部的地层. 天然气水合物稳定域覆盖的面积从水深约500m的陆坡下缘到冲绳海槽的中轴部分约70000km2,相当于整个东海海域面积的十分之一. 稳定带的厚度从400m(研究区中部)到1100m(研究区北部和南部)不等. 适合水合物稳定赋存的地层主要是第四纪(1.8km/s、2.2km/s)和上新世的地层(2.8km/s). 根据热流、构造活动性和稳定带的厚度分析,研究区北部和南部更适合天然气水合物的稳定赋存.  相似文献   

20.
中国大陆及邻区Rayleigh面波相速度分布特征   总被引:13,自引:5,他引:8       下载免费PDF全文
本文根据102个数字化台站记录的长周期垂直向面波资料,利用双台互相关方法测量了538条独立路径的基阶Rayleigh面波相速度频散资料,反演获得了中国大陆及边邻地区(70°E~140°E,18°N~55°N)20~120 s(周期间隔为5 s) 共21个周期的Rayleigh波相速度空间分布图像. 检测板测试结果显示中国大陆中东部地区横向分辨率可达3°,而西部及边邻地区大约5°. 研究表明,中国大陆地区的Rayleigh波相速度分布横向差异显著,大致以104°E为界,可分成具有不同速度结构特征的东、西两部分. 一般较短周期(20~35 s)的相速度分布受地形和地壳厚度的影响较大,总体表现为东部速度高,西部速度低;塔里木盆地、青藏地块及其东缘的松潘-甘孜地块形成整个研究区内最为突出的低速异常体,蒙古西部低速特征也较清晰;东部的四川盆地、扬子地块、华南地块、松辽盆地、日本海及蒙古东部高速特征明显. 随着周期的增大,青藏地块中部的低速异常体横向尺度逐渐缩小,而喜马拉雅冲断带、塔里木盆地相速度不断升高,意味着青藏低速区受到南、西北、东三个方向的高速区夹击,可能导致高原中部软弱的低速物质向东南方向迁移;同时,东部地区由高速逐渐转变为大面积的低速分布,反映东部地区岩石圈较薄而软流圈发育. 随着青藏地块低速特征的减弱,印支地块北部及相邻海域、东海、东北吉林深震区、日本海、中-朝地块至蒙古东部成为120 s周期上突出的低速异常体,而上扬子地块包括四川盆地高速特征依然明显,显示出稳定的古板块特征. 南北地震带始终呈现出相对较低的速度特征,并成为划分中国大陆具有不同岩石圈相速度特征的东部与西部的天然分界.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号