首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Usually, multiple-grain aliquots are used for electron spin resonance (ESR) dating of sediments. However, this approach excludes the ability of detecting insufficient bleaching, as would be the case when measuring several single aliquots or single grains. In this paper, we present preliminary results of single-grain ESR dating experiments on three different sedimentary deposits (fluvial, fluvio-aeolian and desert aeolian), ranging in age between 100 ka and 2 Ma. Titanium-related impurity centres (Ti–Li and Ti–H) were measured in a Q-band ESR spectrometer for estimating equivalent doses (De) of individual quartz grains (0.5–1 mm). Both additive and regenerative dose methods were used. The resulting De plots show a large scatter in De—from 100 Gy to more than 600 Gy—for the fluvial sample, probably reflecting different bleaching histories of the grains. On the contrary, a clear plateau can be observed in De for sands with a strong aeolian component. Preliminary single-grain ESR ages are in relatively good agreement with independent estimates, the best results being obtained for the desert aeolian sample (200 ka). It is concluded that ESR has a promising potential for estimating large naturally accumulated doses of well-bleached sediments. Nevertheless, the method is challenged by several experimental difficulties, such as long measurement times, excessive errors, and presumably a complex interrelationship between Ti–Li and Ti–H components.  相似文献   

2.
Little work has been undertaken on combined dating of sedimentary quartz grains using electron spin resonance (ESR) and optically stimulated luminescence (OSL) techniques in Australia. This study aims to assess the suitability of a combined ESR and OSL dating approach for establishing improved chronologies of Middle-Late Pleistocene deposits within the Naracoorte Cave Complex (NCC), South Australia. Here, we apply ESR and OSL dating in tandem to a series of samples collected from three different NCC sites: Whale Bone, Specimen and Alexandra cave. ESR quartz dating focuses on the multi-centre (MC) approach, which involves comparative evaluations of Al and Ti centre signals, while paired luminescence dating focuses on single-grain OSL analysis and includes examination of multi-grain averaging effects. The comparative ESR-OSL dating results exhibit broad agreement for deposits spanning 50–150 thousand years, with either the Ti–H or Al centre ages overlapping with paired OSL ages at 2σ in nearly all cases. MC ESR evaluations (Al v Ti–Li v Ti–H age assessments) indicate incomplete resetting of the bleachable Al centre signal for a small number of samples. Two-thirds of samples exhibit Ti–Li ages that are significantly older than corresponding Al centre ages, which is unexpected from a bleaching kinetics perspective and may indicate a broader reliability issue for Ti–Li palaeodose evaluation with these particular samples. Our findings: (i) support the applicability of both palaeodosimetric dating methods in this depositional setting; (ii) highlight the merits of applying combined ESR-OSL analyses in tandem, and; (iii) provide one of the first reliable evaluations of quartz ESR MC dating for samples with natural dose ranges as low as only a few tens of Gy. These results show that the Whale Bone, Specimen and Alexandra cave sites are temporally related and can be used to derive multi-site reconstructions of faunal assemblages and palaeoenvironmental history.  相似文献   

3.
Geomorphological investigations in the Russian Altai Mountains provide evidence for the extent and timing of Late Quaternary glaciations and aeolian sediments. Infrared optically stimulated luminescence (IR-OSL) and thermoluminescence (TL) dating of aeolian sediments from the central part of the Russian Altai were carried out on silty and sandy sediments that cover fluvial and glacio-fluvial terraces. Most samples from loess, loess-like sediments and sandy loess taken from different terrace sequences within the Altai Mountains provide IRSL ages suggesting a main aeolian deposition period between 25 and 15 ka. These data are consistent with those from the adjacent Mongolian Altai. Sand and silt layers within moraines yielded IRSL age estimates between 22 and 19 ka and correlate to the ice margins of the Last Glacial Maximum. Aeolian dune sands overlying or neighbouring the loess-like sediments and the fluvial terraces at some places provide evidence for Late Glacial (around 15 ka) and Early Holocene (around 9 ka) aeolian activity. The youngest sand sheets gave deposition ages of about 1.5 ka. These sediments covered graves and are related to overgrazing. They provide evidence for the significant human impact on the environment. Fluvial sediments, including silt and sandy gravel intermingled with charcoal, yielded contradicting radiocarbon and luminescence ages. IRSL age estimates obtained for the silty layers range from 19 to 18 ka and are significantly older than the radiocarbon ages, which gave sub-recent ages between 1170 and 910 BP. These data indicate fluvial sedimentation of debris and mudflows in a period of deforestation and strong soil erosion related to mining activities during the 9th and 10th century.  相似文献   

4.
Multiple-centres electron spin resonance (MC-ESR) dating of quartz grains has been commonly applied to fluvial and lacustrine deposits and can provide a precise chronological framework for depositional histories. However, the reliability of this method for quartz grains obtained from sediments of boreholes, which are usually deposited continuously and record information regarding basin evolution and climate change, has not yet been assessed. In this study, we have initially applied the MC-ESR dating method to borehole sediments from the Zhoulao core (ZLC), located in the depocenter of the Jianghan Basin, middle Yangtze River, China. Dating of quartz grains from the ZLC using MC-ESR yields estimated ages that are generally consistent with the established paleomagnetic chronological framework. For Middle Pleistocene samples (i.e., 0.7–0.3 Ma), the Ti–Li centre provides more accurate ages than those of Al centre, which are overestimated. For Early Pleistocene samples (i.e., 2.3–0.8 Ma), both the Al centre and Ti–Li centre give highly consistent estimate ages, indicating that this is a favorable dating range for MC-ESR. Overall, the Al centre shows promise for dating Pliocene samples, whereas the Ti–Li centre is more suitable for Middle-Early Pleistocene (2.3–0.3 Ma) sediments. In addition, the deposition rate of depth <170 m in the ZLC is greater than those of depth >170 m sediments; however, the specific tectonic, climatic, or geomorphic mechanism for this change in sedimentation rate is still unclear.  相似文献   

5.
The present work reports the first numerical ages obtained for the two highest fluvial terraces (Qt1 and Qt2) of the Alcanadre River system (Northeastern Spain) representing the earliest remnants of Quaternary morphosedimentary fluvial activity in the Ebro basin. ESR dating method was applied to optically bleached quartz grains and both the Al and Ti centers were measured, in accordance with the Multiple Center approach. The results are overall in good agreement with the existing preliminary chronostratigraphic framework and our interpretation indicate that terraces Qt1 and Qt2 have an ESR age of 1276 ± 104 ka and 817 ± 68 ka, respectively. These data provide some chronological insights on the beginning of the fluvial sedimentary processes in a scenario of incision maintained over Quaternary in the Ebro Basin. These are among the first numerical ages obtained for such high terraces in the Iberian Peninsula.Our results demonstrate the interest of using the Multiple Center approach in ESR dating of quartz, since the two centers provide complementary information, i.e. an independent dose control. The overall apparent consistency between the ESR age estimates and the existing preliminary chronostratigraphic framework may be considered as an empirical evidence that the Ti–Li center may actually work for Early Pleistocene deposits, whereas the Ti–H center shows some clear limitations instead. Finally, these results demonstrate the interest of using ESR method to date Early Pleistocene fluvial terraces that are usually beyond the time range covered by the OSL dating method.  相似文献   

6.
There are only a few luminescence dating studies of loess sediments in Japan, but interleaved with these deposits are many well-described tephras of known age based on 14C and fission track analysis; these independent age controls provide an opportunity to test the reliability of loess luminescence ages. This study provides such a comparison at two sites in central Honshu, the largest island in the Japanese archipelago. Samples were collected from sequences of interleaved volcanic tephra and loess deposited on a Middle Pleistocene river terrace in the Niigata Prefecture and on an Early to Middle Pleistocene dissected fluvial surface at in the Tochigi Prefecture, Honshu. Equivalent doses (De) were estimated from fine grains (4–11 μm) using both polymineral IR-OSL and (post-IR) blue-OSL, and quartz blue-OSL. The blue-stimulated luminescence signals could be represented by up to three exponentially decaying components; only the most light sensitive of these components was used in the final De estimation. Almost all the estimates of De from polymineral IR-OSL are smaller than those from polymineral (post-IR) blue-OSL and quartz blue-OSL, whereas the latter two are in good agreement. The blue-light stimulated luminescence ages using the most light sensitive component are shown to be in good agreement with the independent control, up to 500 ka. Although the IR-OSL signals underestimate the known age, a simple laboratory fading test is found empirically to correct for this underestimation. We conclude that the most rapidly blue-stimulated luminescence signals from quartz extracted from our loess samples give reliable ages, and that future loess dating studies should concentrate on these signals.  相似文献   

7.
Electron spin resonance (ESR) dating of optically bleached quartz grains was performed on three sediment samples collected from the Middle Palaeolithic site of Cuesta de la Bajada (Spain). A standard multiple grain and multiple aliquot additive dose procedure was employed, and both the Al and Ti centres were measured as part of the multiple centres approach.ESR age estimates obtained for the three samples indicate that the Al centre provides a maximum possible chronology, as the Ti centres show that the Al signal was likely not systematically reset to its residual level during sediment transport. A direct comparison between ESR ages based on the Ti centres and single grain optically stimulated luminescence (OSL) ages from samples collected nearby shows broadly consistent results. The Ti-H centre also appears to provide suitable chronologies for at least two of the three Middle Pleistocene samples studied here. Surprisingly, the only sample showing consistent ESR ages between the Al and Ti centres appears to be overestimated in comparison with the Ti-centre and OSL ages derived from the other two samples. This indicates either incomplete bleaching of both the Al and Ti centres for this sample, or unexpected impacts of other sources of De uncertainty, such as multi-grain averaging effects. The ESR dating results overall indicate that the archaeological sequence of Cuesta de la Bajada CB-3 is most likely correlated to either MIS 7 or 9.  相似文献   

8.
The Nihewan Formation, consisting of thick fluvio–lacustrine sediments with abundant mammalian faunas and Paleolithic remains, is widely distributed in the Nihewan Basin, northern Hebei Province, China. In this study the fluvio–lacustrine sediments of the Nihewan Formation and the loess–paleosol sequence evident in the Haojiatai Section were dated by recuperated OSL (ReOSL) of fine-grained quartz (Wang, X.L., Lu, Y.C., Wintle, A.G., 2006a. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology 1, 89–100.). The preliminary ReOSL dating results show that: (i) the loess–paleosol sequence in the upper part of the profile started to develop at about 128 ka ago; (ii) the unconformity separating the loess–paleosol from the underlying Nihewan Formation represents a sedimentation break of about 130 ka. On the basis of the ReOSL dates and related stratigraphic evidence it is proposed that the ancient Lake Nihewan dried shortly after about 266 ka.  相似文献   

9.
When electron spin resonance (ESR) is applied to sedimentary quartz, dealing with the poor bleachability of the signals is particularly challenging. In this study, we used both the single-grain optically stimulated luminescence (OSL) and the single aliquot ESR dating of quartz from deep sand deposits preserving a Stone Age archaeological sequence to combine the advantages of the two methods: good bleaching behaviour and extended age range. Using the youngest samples at each sampling site we were able to calculate the mean ESR residual age from the difference between the OSL ages and the apparent ESR ages. Focusing mainly on the single aliquot regenerative dose (SAR) protocol here, we were able to calculate the mean ESR residual age for the Ti and Al centres, including the non-bleachable signal component for the latter. For the NP site, residual ages of 209 ± 13 ka and 695 ± 23 ka were calculated for the two centres, whereas for the ZS site 268 ± 39 ka and 742 ± 118 ka were determined. These residual ages are significant and cannot be neglected. Thus, the residual age was subtracted from the apparent ESR ages. The validity of the residual subtraction method was tested through a comparison of the oldest OSL age from each site with the residual subtracted ESR age. For both NP and ZS sites, the residual subtracted Ti and Al ages were consistent with the OSL age within 2-σ uncertainty, and therefore confirm the robustness of the subtraction method. Within the NP sequence, we were able to locate the end of the Early Stone Age at 590 ± 86 ka, and this provides a maximum age for the transition to the Middle Stone Age in this part of south-central Africa.  相似文献   

10.
The applicability of two different approaches in the luminescence dating of old (>70 ka) Chinese loess is investigated. Both SAR-OSL ages obtained on 63–90 μm quartz grains and SAR-IRSL ages obtained on 4–11 μm polymineral grains, for samples collected from two sites in the Chinese Loess Plateau (Luochuan and Dongchuan) are presented. The characteristics of the luminescence signals stimulated by blue and infrared light are investigated in terms of dose response and dose recovery, and as a function of age. Additionally, anomalous fading measurements from the 410 nm IRSL emission in polymineral fine-grains are reported. An average value of g2days amounting to 3% per decade was measured and seems to be independent of site location and age. For the samples from Luochuan, independent age control (pedostratigraphy and palaeomagnetism) is available. At both sites, the SAR-OSL ages are always lower than the SAR-IRSL ages after they have been corrected for anomalous fading. It seems that the quartz-based SAR-OSL ages are accurate for the younger ages, but that they underestimate the true age of deposition for loess that was deposited about 60–70 ka ago. The fading-corrected SAR-IRSL ages are in better agreement with the pedostratigraphic age control (75 and 130 ka) and allow dating beyond the quartz OSL range. Based on our results, we suggest that conventional SAR-OSL and SAR-IRSL protocols at these sites should be restricted to samples of ages not exceeding 40–50  and 100–120 ka, respectively.  相似文献   

11.
Loess and fluvial sand are important materials for dating river terraces and alluvial fans. This study focuses on the methodological aspects of dating loess and fluvial deposits from the northern flank of the Tian Shan range, China, using sand-sized quartz and potassium (K) feldspar. Luminescence characteristics of quartz and K-feldspar were studied for searching suitable dating procedures. Our results indicate that 1) most quartz aliquots were contaminated by feldspar, and were dated using a post-infrared optically stimulated luminescence (post-IR OSL) procedure. A Fast ratio acceptance threshold of 15 can be applied to select these aliquots with post-IR OSL signals dominated by quartz OSL; 2) the multi-elevated-temperature post-IR IR stimulated luminescence (MET-pIRIR) procedures are applicable for K-feldspar. A test dose of ∼30% of the natural dose is appropriate for dating of older (>10 ka) samples. An Age (T, t) plateau test can be used to evaluate the dating results; 3) for the loess samples, both quartz and K-feldspar were well bleached and are suitable for dating. Dating using K-feldspar is preferred for its higher efficiency; 4) for the fluvial sand samples, only the quartz grains were fully bleached. Single-aliquot dating of quartz gives reliable ages.  相似文献   

12.
Coastal plain of Hangzhou Bay, to the south of the present Yangtze Estuary, is closely linked to the evolution of the Yangtze River delta. However, absolute age of Pre-Holocene sediments is limited, which hinders the understanding of this area's environmental evolution. In this study, using optically stimulated luminescence (OSL), single aliquots and single grains of quartz and K-feldspar were used to date the late Quaternary sediments in coastal plain on the southern Hangzhou Bay. The vertical difference in particle size composition render either silt- or sand-sized quartz for dating. Cross-checking of multiple OSL dating methods indicated that the upper ∼65 m recorded the Holocene part of the succession; sediment from a depth of 136.6 m was dated to ∼180 ka. It was found that the single-grain method was more reliable in comparison to single-aliquot age, the former minimized the effect of signal components. Single-grain quartz and K-feldspar luminescence yielded consistent ages at sample depth of 136.6 m (∼160–180 ka), while the latter gave robust age at depth of 115.5 m (∼150 ka). This chronology is in general in accordance with neighbouring cores and can constrain paleomagnetic dating results in those cores. Taking together, the study site has thickest Holocene deposits in comparison to the highland centered around Taihu Lake on the southern Yangtze delta. Moreover, the luminescence characteristics of quartz from different sample depths, behaved differently with respect to luminescence sensitivity, signal components and saturation level, perhaps reflecting varied provenance and weathering characteristics caused by climate change.  相似文献   

13.
Loess deposits surrounding the high mountainous regions of arid central Asia (ACA) play an important role in understanding environmental changes in Eurasia on orbital and sub-orbital time scales. However, problems with dating loess in ACA have limited the interpretation of climatic and environmental data, especially Holocene data. We selected a typical loess/paleosol sequence (LJW10) on the northern slope of the Tianshan Mountains in ACA consisting of 280 cm of loess with multiple paleosols formed in the upper 170 cm of the section. We applied quartz OSL dating to coarse-grained (63–90 μm) fractions, and newly developed K-feldspar pIRIR dating protocols to both coarse-grained and medium-grained (38–63 μm) fractions of the samples from LJW10 section. Internal checks of the quartz OSL dating indicate that the single-aliquot regenerative-dose protocol on large aliquots (5 mm) is appropriate for equivalent dose (De) determinations and that the quartz ages of the loess samples are likely to be reliable. Luminescence characteristics and internal checks of the pIRIR dating indicate the pIRIR signal at a 170 °C stimulation temperature with a 200 °C preheat can be used for both coarse-grained and medium-grained De determinations. Anomalous fading tests for the pIRIR 170 °C signal indicate the pIRIR signals are stable and the anomalous fading of the pIRIR 170 °C signal can be ignored. Sunlight bleaching tests of the loess indicate the residual dose for the pIRIR 170 °C signal can also be ignored as it corresponds to only ∼9 years for the medium-grained K-feldspar and ∼85 years for the coarse-grained K-feldspar. The pIRIR ages of five medium-grained and coarse-grained K-feldspar samples are consistent with coarse-grained quartz OSL ages, and both the medium-grained and coarse-grained ages increase uniformly with depth, indicating these pIRIR ages are reliable. Based on the coarse-grained quartz OSL ages, and on coarse-grained and medium-grained K-feldspar pIRIR ages, an age-depth model for the paleosol-loess sequence was established by using a Bacon age-depth model. This model suggests eolian loess deposition began by at least ∼16 ka ago and that paleosol development on these eolian loess deposits began ∼5.5 ka, continuing to the present, with periods of high effective moisture at 5.5–4.9, 4.6–4.1, and 3.4–3.1 ka. This sequence suggests overall relative aridity during the early Holocene and an increase in effective moisture beginning ∼5.5 ka during the mid-late Holocene in ACA.  相似文献   

14.
Quartz optically stimulated luminescence (OSL) forms the basis for the chronology of Weichselian ice advances in Arctic Eurasia developed over the last few years. There is almost no age control on this chronology before 40 ka, except for some marine sediments correlated with marine isotope stage (MIS) 5e on the basis of their palaeofauna. Results from more southern latitudes have shown that dose estimates based on quartz OSL and the single aliquot regenerative (SAR) dose procedure may underestimate the age of MIS 5e deposits. Here we use the same method to date well-described marine sediments, thought to have been deposited during the very beginning of the Eemian interglacial at 130 ka, and exposed in two sections on the river Sula in northern Russia. Various quality-control checks are used to show that the OSL behaviour is satisfactory; the mean of 16 ages is 112±2 ka (σ=9 ka). This represents an underestimate of 14% compared to the expected age, a discrepancy similar to that reported elsewhere. In contrast to SAR, the single aliquot regeneration and added (SARA) dose procedure corrects for any change in sensitivity during the first OSL measurement. The SARA results are shown to be 10% older than those from SAR, confirming the geological age estimate and suggesting that SAR ages may underestimate older ages (larger doses), despite their good performance in the younger age range.  相似文献   

15.
Jeju Island, the largest Quaternary volcanic island in Korea, has formed mostly since the early Pleistocene, but its latest chronology of volcanism and sedimentation is still poorly constrained. Here we report optically stimulated luminescence (OSL) ages for two hydromagmatic volcanoes on the southwestern coast of Jeju Island, i.e., the Songaksan and Suwolbong tuff rings. The basaltic tuffs of these volcanoes contain abundant quartz sands from underlying marine sedimentary sequences. Two samples collected from the middle part of the Songaksan Tuff yielded highly reproducible quartz single-aliquot regenerative-dose (SAR) OSL ages of 7.0±0.3 ka, providing the first direct age estimate of Holocene volcanism in Jeju Island. The quartz OSL age estimate of 5.1±0.3 ka for the younger reworked basaltic tuff (the Hamori Formation) is comparable with previous radiocarbon and U-series disequilibrium dating of fossil mollusk shells. Two samples from the Suwolbong Tuff show quartz OSL age estimates of 18.3±0.7 and 18.6±0.9 ka, which are identical within error ranges and younger than the quartz OSL age estimate of 23.2±1.0 ka for the underlying Gosan Formation. This study confirms that volcanism and attendant sedimentation were active in Jeju Island until very recently.  相似文献   

16.
Optically stimulated luminescence (OSL) dating was applied to glacial and loess deposits in the north flank of the Terskey-Alatoo Range, Kyrgyz Republic, to elucidate the glacier chronology of the central Asian mountains during the Last Glacial. Moraines in five parts of study area were classified into four stages (Terskey Stages I–IV) based on their geographical position and elevation, and their moraine rock weathering. According to this classification, the oldest moraines (Terskey Stage I) were at 2100–2250 m a.s.l. and the second-oldest moraines (Terskey Stage II) were at 2400–2700 m a.s.l. Quartz samples from moraines of these two stages were used for OSL dating. The OSL ages of the quartz samples indicate that glacier expansion in the Terskey Stage II occurred between 21 and 29 ka BP.  相似文献   

17.
Single grain optical dating of glacigenic deposits   总被引:4,自引:0,他引:4  
Determining the age of glacigenic sediments is difficult for many geochronological methods because of the lack of suitable materials for analysis. Luminescence dating can be applied to the mineral grains making up the glacigenic sediments. However a major source of uncertainty in previous studies has been whether the mineral grains were exposed to sufficient daylight prior to deposition for the luminescence signal to be reset. Measurements of the optically stimulated luminescence signal from single sand-sized quartz grains offers the potential for explicitly identifying if a sediment contains grains that were not exposed to sufficient daylight to reset their signal. Statistical analysis of the resulting data can then reject those grains to allow the age of the sample to be determined. This study is the first to apply single grain optical dating to glacigenic sediments, and demonstrates the issues involved by analysis of samples from Chile and Scotland. Ages from 2.4±0.5 to 17.3±1.5 ka are produced. Comparison of the results with independent age control suggests that the ages are reliable. The results also show that the extent of bleaching at deposition varies considerably from one sample to another. For the most incompletely bleached sample, luminescence measurements based on the average of many hundreds or thousands of grains would have overestimated the age of the sample by 60 ka, but the single grain method proposed here was able to reliably date it.  相似文献   

18.
The West Mouth of the Great Cave of Niah is one of the major archaeological sites in Southeast Asia; the radiocarbon chronology of this site currently places the earliest presence of Homo sapiens (a Deep Skull find) in Southeast Asia at about 45 ka BP. An optical dating programme using sand-sized quartz was initiated in the West Mouth to complement the radiocarbon chronology. This paper reports on the progress in dating a key sample (sample 376r) that was taken from deposits containing the Deep Skull. A somewhat novel procedure was developed to separate and clean quartz grains from the unusual guano-rich deposits. From this, only a small quantity of quartz grains could be recovered and 36 aliquots (1 mm in diameter) were prepared, each consisting of 80 grains. This sample was dated by means of the single-aliquot regenerative-dose (SAR) method using the protocols of Murray and Wintle [2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73], and of Choi et al. [2003. Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea. Quaternary Science Reviews 22, 407–421]. The results showed a wide distribution of equivalent doses; this distribution is inferred to be due to bioturbation, variable bleaching at deposition, and to local variations in the dose rate within the sample site. Dose rates were measured using both field (in-situ γ-ray spectrometry, IGRS) and laboratory (inductively coupled plasma mass spectrometry/atomic emission spectrometry, ICP-MS/AES; and isotope dilution, ID) methods. There was significant disagreement between the concentrations of radioisotopes found using laboratory and field measurements, indicating sediment heterogeneity and also possible disequilibrium in the 238U decay chain. Future work in the West Mouth should therefore concentrate on taking sediment samples of at least 500–600 cm3, improving the dose rate estimates (e.g. by high-resolution γ-ray spectrometry) and investigating other luminescence signals (e.g. red thermoluminescence) as potential geochronometers.  相似文献   

19.
The Three Gorges and Western Hubei area in the geographic central part of China was a potential migration corridor for early hominin and mammals linking South and North China during the Pleistocene period. Some key early hominin sites are known in this region where limestone cave and fissure sites are numerous but difficult to date as beyond the dating range of OSL and mass spectrometry U-series method. Here, we report radiometric dating study for such a hominin site, Meipu (Hubei Province), by coupled ESR and U-series dating of nine fossil teeth and cosmogenic 26Al/10Be burial dating of one quartz sediment. The burial age calculated by simple burial model (573 ± 266 ka) gives a minimum age constraint of the sediment. The fossil dating provided two main age groups at 541 ± 48 ka and 849 ± 39 ka, the older age group is in agreement with the U-series age (>630 ka) of the flowstone overlying the fossil layer and the paleomagnetic data which placed the Brunhes-Matuyama boundary in the fossil layer. The reason of this age difference is probably caused by the U-content discrepancy in the enamel of the dated fossil samples. This study exhibits the limitation of ESR/U-series fossil dating and the importance of using multiple dating approach when it is possible in order to identify the problematic ages.  相似文献   

20.
Five Plio-Pleistocene to Holocene aeolian quartz samples from the coastal dune deposits of the Wilderness-Knysna area (South Africa) previously dated by OSL were selected for ESR dating. Samples were processed following the Multiple Centre approach and using the Multiple Aliquot Additive dose method. Aluminium (Al) and Titanium (Ti) signals were systematically measured in all samples.Our study shows that ESR results obtained for Middle Pleistocene to Holocene samples may be strongly impacted by (i) the presence of a significant high frequency noise in the ESR spectra acquired for the Ti signals and (ii) the choice of the fitting function employed. In particular, if not taken into account, very noisy spectra can lead to a significant overestimation of the true ESR intensity measured for the Ti–H signal. These sources of uncertainty are however not sufficient to remove the ESR age overestimations. Consequently, our results indicate that the Al and Ti ESR signals of these quartz samples have not been fully reset during their aeolian transport.While this work contributes to improve our understanding of the ESR method applied to quartz grains, and especially of the potential and limitations of the Ti signals, it also provides additional baseline data to illustrate the existing variability among quartz samples of different origins or sedimentary context. Our results are consistent with previous studies by confirming that the Ti–H signal shows the best potential for the evaluation of low dose values (<100 Gy for these samples), whereas it becomes inappropriate for the higher dose range, and the Ti–Li–H (option D sensu Duval and Guilarte, 2015) should be used instead.Beyond the methodological outcome, this ESR dating study also provides a useful addition to the existing chronology of the aeolian deposits in this region. In particular, new (and possibly) finite numerical age results were obtained for the two oldest samples, constraining the aeolianite landward barrier dune and the coversand formations to the MIS 10-8 and Pliocene, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号