首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nanling and adjacent regions of South China host a series of tin deposits related to Mesozoic granites with diverse petrological characteristics. The rocks are amphibole-bearing biotite granites, or(topaz-) albite-lepidolite(zinnwaldite) granites,and geochemically correspond to mealuminous and peraluminous types, respectively. Mineralogical studies demonstrate highly distinctive and critical patterns for each type of granites. In mealuminous tin granites amphibole, biotite and perthite are the typical rock-forming mineral association; titanite and magnetite are typical accessory minerals, indicating high fO2 magmatic conditions;cassiterite, biotite and titanite are the principal Sn-bearing minerals; and pure cassiterite has low trace-element contents. However,in peraluminous tin granites zinnwaldite-lepidolite, K-feldspar and albite are typical rock-forming minerals; topaz is a common accessory phase, indicative of high peraluminity of this type of granites; cassiterite is present as a uniquely important tin mineral,typically rich in Nb and Ta. Mineralogical distinction between the two types of tin granites is largely controlled by redox state,volatile content and differentiation of magmatic melts. In oxidized metaluminous granitic melts, Sn4+ is readily concentrated in Ti-bearing rock-forming and accessory minerals. Such Sn-bearing minerals are typical of oxidized tin granites, and are enriched in granites at the late fractionation stage. In relatively reduced peraluminous granitic melts, Sn2+ is not readily incorporated into rock-forming and accessory minerals, except for cassiterite at fractionation stage of granite magma, which serves as an indicator of tin mineralization associated with this type of granites. The nature of magma and the geochemical behavior of tin in the two types of granites thus result in the formation of different types of tin deposits. Metaluminous granites host disseminated tin mineralization,and are locally related to deposits of the chlorite quartz-vein, greisen, and skarn types. Greisen, skarn, and quartz-vein tin deposits can occur related to peraluminous granites, but disseminated mineralization of cassiterite is more typical.  相似文献   

2.
The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range have distinctly different mineralogical and geochemical signatures. The Cu-Pb-Zn-bearing granites are dominated by metaluminous amphibole-bearing granodiorites, which have higher CaO/(Na2O+K2O) ratios, light/heavy rare earth element(LREE/HREE) ratios, and δEu values,lower Rb/Sr ratios, and weak Ba, Sr, P, and Ti depletions, exhibiting low degrees of fractionation. The W-bearing granites are highly differentiated and peraluminous, and they have lower CaO/(Na2O+K2O) ratios, LREE/HREE ratios, and δEu values,higher Rb/Sr ratios, and strong Ba, Sr, P, and Ti depletions. The Cu-Pb-Zn-bearing granites were formed predominantly between155.2 and 167.0 Ma with a peak value of 160.6 Ma, whereas the W-bearing granites were formed mainly from 151.1 to 161.8Ma with a peak value of 155.5 Ma. There is a time gap of about 5 Ma between the two different types of ore-bearing granites.Based on detailed geochronological and geochemical studies of both the Tongshanling Cu-Pb-Zn-bearing and Weijia W-bearing granites in southern Hunan Province and combined with the other Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, a genetic model of the two different types of ore-bearing granites has been proposed. Asthenosphere upwelling and basaltic magma underplating were induced by the subduction of the palaeo-Pacific plate. The underplated basaltic magmas provided heat to cause a partial melting of the mafic amphibolitic basement in the lower crust, resulting in the formation of Cu-Pb-Zn mineralization related granodioritic magmas. With the development of basaltic magma underplating,the muscovite-rich metasedimentary basement in the upper-middle crust was partially melted to generate W-bearing granitic magmas. The compositional difference of granite sources accounted for the metallogenic specialization, and the non-simultaneous partial melting of one source followed by the other brought about a time gap of about 5 Ma between the Cu-Pb-Zn-bearing and W-bearing granites.  相似文献   

3.
The strongly peraluminous granites (SPGs) of Eastern Nanling Range (ENR) are a characteristic of all bearing highly aluminous minerals, such as muscovite±AI-rich biotite±tourmaline±garnet, and lack of cordierite. In respect of petrography, geochemistry, Nd isotope, and single grain zircon U-Pb dating, the representative granite bodies of them are studied. The research shows that these granites were emplaced in two stages, namely 228-225 Ma BP and J2-3 159-156 Ma BP, belonging to Indosinian and early Yanshanian periods, respectively, and they have low εNd(t) values (-10.6--11.1), high A/CNK, Rb/Sr ratios and tDM values (1887-1817 Ma), and REE's tetrad effect (TE1,3=1.13-1.34). In comparison with related geology, petrology and chronology of granites in adjacent regions, it is suggested that Indosinian SPGs of ENR formed in the circumstance of post-collisional extension 20 Ma after the major collision of Indosinian Movement (258-243 Ma BP) in Indo-China Peninsula, and early Yanshanian SPGs formed in the  相似文献   

4.
The Jacobina — Contendas Mirante belt represents a Transamazonian (2 Ga), N-S, 500-km long, elongated orogenic domain in the central part of the São Francisco craton, Bahia state. Numerous syntectonic to post-tectonic peraluminous leucogranites were emplaced along the major structures of the belt. Their mineralogical and geochemical and some of their metallogenetic characteristics are very similar to their Hercynian and Himalayan equivalents. However, their average peraluminous index varies from one granitic pluton to another and biotite is, on average, slightly more magnesian in the Transamazonian leucogranites. Higher oxygen fugacity is indicated by the general occurrence of magnetite, the stability of allanite and sometimes epidote in most of the plutons and by biotite chemistry. The peraluminous magmatism of the Jacobina-Contendas Mirante belt results from crustal partial melting during a continental collision event at 2 Ga.Trace-element geochemistry implies variable source composition and/or melting conditions for the different granitic plutons and some different facies within the same plutonic unit. The scarcity of ilmenite, the general occurrence of magnetite, and the relatively low peraluminous index of some of these granites suggest that graphite-beating sediments are not a significantly source material. From their mineralogical and geochemical characteristics, acid meta-igneous rocks such as the Sete Voltas TTG suite of presumed Archaean age, seem to represent a suitable source for these granites.Sn, W, Li, F and Be enrichment of most Transamazonian leucogranites is much weaker than in the mineralized Variscan equivalents. The Caetano-Aliança and Riacho das Pedras granites represent the most specialized granitic bodies. Beryl (emerald), molybdenite and scheelite mineralizations are related to some of these granites which intrude ultrabasic formations: the Campo Formoso and the Carnaiba granites. In many of these granites, uranium content is comparable to values measured in mineralized Hercynian leucogranites. The occurrence of hexavalent uranium minerals, mineralization and episyenitic alteration are favourable criteria for finding Variscan-type uranium ore deposits.  相似文献   

5.
Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt. They consist mainly of monzogranite and K-feldspar granite. There occur associations of early Yanshanian A-type granitoids (176 Ma-178 Ma) and bimodal volcanic rocks (158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts (177 Ma-178 Ma) in southern Hunan in the central sector of the belt. Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite, while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt. Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations. Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up, indicating that a new orogenic Wilson cycle is about to start. Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.  相似文献   

6.
Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt.They consist mainly of monzogranite and K-feldspar granite.There occur associations of early Yanshanian A-type granitoids(176 Ma-178 Ma) and bimodal volcanic rocks(158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts(177 Ma-178 Ma) in southern Hunan in the central sector of the belt.Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite,while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt.Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations.Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up,indicating that a new orogenic Wilson cycle is about to start.Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.  相似文献   

7.
新疆阿尔泰成矿带花岗岩发育,其中很多花岗岩与成矿作用有着密切的联系,特别是400Ma左右的岩浆活动是阿尔泰地区一次重要的岩浆成矿活动,阿尔泰许多金属矿床与这一时期的岩浆构造作用有关。本次研究的出露于可可塔勒铅锌矿区的黑云母花岗岩体,其锆石LA-ICPMSU-Pb年龄为(401.8士1.5)Ma,表明可可塔勒花岗岩是阿尔泰成矿带400Ma左右发生的一次重要岩浆构造作用的产物,该黑云母花岗岩体侵入于矿区下泥盆统康布铁堡组火山岩地层中,岩体与围岩接触带附近的围岩蚀变明显,该黑云母花岗岩的侵入以及其后期的岩浆热液活动可能对区内成矿物质的活化、迁移、富集、成矿具有一定的贡献。  相似文献   

8.
Emplacement P-T condition estimations using granites are important for understanding metamorphic and erosional processes of orogenic belt.Granites are widespread in South China and a majority of them are peraluminous.Particularly,over 91%of the Indosinian granites exposed in the region are peraluminous in composition.It is extremely hard to determine the pressure of intrusion of these peraluminous granites due to the absence of amphibole,a good mineral barometer commonly identified in metaluminous granites.Muscovite is a common mineral in peraluminous granites,certain kind of it could be used as a mineral barometer to constrain the emplacement pressure of peraluminous granites.In this paper,results of petrographic and geochemical studies of muscovites from the Indosinian and early Yanshanian two-mica granites at the Longyuanba in the eastern Nanling Range are reported.Based on petrographic studies,the primary muscovite can be discriminated from the secondary muscovites.Muscovites from the Indosinian two-mica granites are enriched in Ti,Al,Mg,and Na,and depleted in Fe and Mn.Geochemically,these muscovites were considered as primary,whereas those from the Yanshanian two-mica granites fall into the area of secondary muscovite on discrimination diagrams.Barometer estimations show that pressures calculated for primary muscovites are accurate,but those calculated for secondary muscovites are overestimated.The average pressure of emplacement of the Longyuanba Indosinian two-mica granites is 5.9 kbar,corresponding to~19 km in depth,suggesting that the Indosinian granitic magmas were probably generated by partial melting of a thickened crust root in a compressional tectonic setting.  相似文献   

9.
The polymetallic Dushiling W-Cu deposit is a large, altered, skarn-type deposit, located in the northeastern part of the Miao'ershan-Yuechengling pluton, China. Two types of granite have been identified in the deposit: a medium-grained porphyritic biotite granite, and a medium- to fine-grained biotite granite. Both are spatially and temporally related to ore bodies, suggesting they may be the source of mineralization in the deposit. A medium- to fine-grained porphyritic biotite granite is exposed at the surface in the region of mineralization. U-Pb dating of zircons yielded magmatic ages of 423 Ma for the medium-grained porphyritic biotite granite and 421 Ma for the medium- to fine-grained porphyritic biotite granite, while a younger age(217 Ma) obtained for surface samples indicates later diagenesis. Thus, magmatism occurred during the Caledonian and Indosinian, respectively. The petrological and geochemical characteristics of the two Caledonian granites show that both are calc-alkaline and peraluminous.They are moderately enriched in Cs, Rb, U, and REE, and strongly depleted in Sr,Ba,P,and Ti; they show similar REE behavior,including negative Eu anomalies. These geochemical similarities suggest that the two granites were derived from the same source,although they were emplaced during different stages of the evolution of the magma. Furthermore, the granites are associated with mineralization, suggesting they were the source of mineralization in the Dushiling W-Cu deposit. Sm-Nd ages of scheelite from the Dushiling W-Cu deposit indicate that metallogenesis occurred at 417±35 Ma, while the two types of titanite, intergrown with scheelite, yield U-Pb ages of 423–425 Ma(in altered granite sample) and 218 Ma(in skarn sample). These ages place the main mineralization event in the late Caledonian, and later magmatic-hydrothermal activity occurred in the Indosinian. The ages obtained for the Dushiling W-Cu deposit in the western Nanling Range, northern Yuechengling, together with the occurrence and ages of the Niutangjie W deposit in southern Yuechengling, provide insight into the process of ore concentration during the Caledonian and Indosinian.  相似文献   

10.
Although a number of petrographic observations and isotopic data suggest that magma mixing is common in genesis of many granite plutons, it is still controversial whether the mantle-derived magmas were involved in granites. We carried out in this study a systematic analysis of in situ zircon Hf-O isotopes for three early Yanshanian intrusions dated at ca. 160 Ma from the Nanling Range of Southeast China. The Qinghu monzonite has very homogeneous zircon Hf-O isotopic compositions, εHf(t) =11.6±0.3 and δ18O=5...  相似文献   

11.
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".  相似文献   

12.
The Niutangjie tungsten deposit is a bedded skarn-type scheelite deposit and is located at the junction between Ziyuan and Xingan counties in the north of Guangxi,China.The deposit is genetically related to a fine-grained two-mica granite within the orefield.Zircon LA-ICP-MS U-Pb dating of the granite yielded a Silurian(Caledonian)age of 421.8±2.4 Ma,which is contemporaneous with the adjacent Yuechengling batholith.Mineralization within the skarn is associated with a quartz,garnet,and diopside gangue,and scheelite is present in a number of different mineral assemblages,such as quartz-scheelite and quartz-sulfide-scheelite;these assemblages correspond to oxide and sulfide stages of mineralization.Sm-Nd isotope analysis of scheelite yielded an isochron age of 421±24 Ma.Although the uncertainty on this date is high,this age suggests that the scheelite mineralization formed during the Late Caledonian,at a similar time to the emplacement of the Niutangjie granite.Zircons within the granite have?Hf(t)values and Hf two-stage model ages of?6.5 to?11.6,and 1.79 to 2.11 Ga,respectively.These data suggest that the magma that formed the granite was derived from Mesoproterozoic crustal materials.Scheelite?Nd(t)values range from?13.06 to?13.26,also indicative of derivation from ancient crustal materials.Recent research has identified Caledonian magmatism in the western Nanling Range,indicating that this magmatism may be the source of contemporaneous tungsten mineralization.  相似文献   

13.
The high-K calc-alkaline granitoids in the northern part of the Mandara Hills are part of the wellexposed post-collisional plutons in northeastern Nigeria.The calc-alkaline rock association consists of quartz monzodiorite,hornblende biotite granite,biotite granites and aplite which intruded the older basement consisting mainly of low-lying migmatitic gneisses and amphibolites during the Neoproterozoic Pan-African Orogeny.Petrological and geochemical studies have revealed the presence of hornblende,iron oxide,and metaluminous to slightly peraluminous characteristics in the granitoids which is typical of I-type granite.The granitoids are also depleted in some high field strength elements(e.g.Nb and Ta) as well as Ti.Plots of Mg#versus SiO_2 indicate that the granite was derived from partial melting of crustal sources.Lithospheric delamination at the waning stage of the PanAfrican Orogeny possibly triggered upwelling of hot mafic magma from the mantle which underplated the lower crust.This,in turn,caused partial melting and magma generation at the lower to middle-crustal level.However,the peculiar geochemical characteristics of the quartz monzodiorite especially the enrichment in compatible elements such as MgO,Cr,and Ni,as well as LILE element(e.g.K,Ce,Cs,Ba,and Sr),signify that the rock formed from an enriched upper mantle source.The emplacement of high-K granites in the Madara Hill,therefore,marked an important episode of crustal reworking during the Neoproterozoic.However,further isotopic work is needed to confirm this model.  相似文献   

14.
The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd-Hf isotopic compositions to discuss its genesis, source, and tectonic setting. LA-ICP-MS zircon U-Pb dating indicates that the granite crystallized in the late Indosinian (224.8±1.6 Ma). The granite is enriched in SiO2 and K2O and low in CaO and Na2O. It is strongly peraluminous with the A/CNK values of 1.09–1.20 and 1.4 vol%–2.7 vol% normal corundum. Chondrite-normalized REE patterns show slightly right-dipping shape with strongly negative Eu anomalies (δEu =0.08–0.17). All samples show enrichment of LILEs (Cs, Rb and K) and HFSEs (U, Pb, Ce and Hf), but have relatively low contents of Ba, Sr and Ti. The zircon saturation temperatures (T zr) are from 711 to 740°C, which are slightly lower than the average value of typical S-type granite (764°C). The granite has negative ? Nd(t) and ? Hf(t) values, which change from ?9.1 to ?10.1 with the peak values of ?9.2 to ?9.0 and from ?3.7 to ?12.6 with the peak values of ?6 to ?5, respectively. The T DM C (Nd) and T DM C (Hf) values are 1.74–1.82 Ga with the peak values of 1.73–1.75 Ga and 1.49–2.04 Ga with the peak values of 1.5–1.6 Ga, respectively. These characteristics reveal that the source region of the granite is dominantly late Paleoproterozoic to early Mesoproterozoic crustal materials. Seven inherited magmatic zircons are dated at the age of 248.6±4.3 Ma, which suggests the existence of the early Indosinian granite in Limu area. These zircons have the ? Hf(t) values of ?6.7–?2.3, similar to those of the Daqiling granite, implying the involvement of the early Indosinian granite during the formation of the Daqiling granite. Inherited zircon of 945±11 Ma has the ? Hf(t) and T DM(Hf) values of 8.7 and 1.14 Ga, respectively, compatible with those of the Neoproterozoic arc magmatic rocks in the eastern Jiangnan orogenic belt. Therefore we inferred that Neoproterozoic arc magma might have been involved in the formation of the Daqiling granite, and that the Neoproterozoic arc magma belt and continent-arc collision belt between the Yangtze and Cathaysia Blocks might have extended westsouthward to Limu region. It is proposed that the underplating of mantle materials triggered by crustal extension and thinning resulted in partial melting of crustal materials to form the Daqiling granite in the late Indosinian under post-collisional tectonic setting.  相似文献   

15.
Pseudotachylytes generally possess stable remanent magnetizations but the processes by which pseudotachylytes are magnetized remain poorly understood. Magnetic hysteresis and scanning electron microscope studies reveal that experimental frictional melting of granites produces dispersed submicron inclusions of weakly interacting pseudo-single-domain (PSD) magnetite, in artificial pseudotachylyte. The magnetite inclusions are absent in the undeformed granite protolith and result from oxidation of Fe in melt-susceptible mafic minerals during the melt-quenched event. The pseudotachylytes acquired a stable thermal remanence in fine-grained PSD magnetites during the rapid cooling of the melt, implying that fine-grained magnetite has the potential for paleointensity determinations of contemporaneous magnetic fields with co-seismic faulting in granitoids.  相似文献   

16.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

17.
白石嶂钼矿区归属于环太平洋钼成矿带华南褶皱系钨-铜-钼成矿省,成矿于中生代燕山期。矿床赋存于燕山二期细粒二云母花岗岩株南东端西侧与上三叠-下侏罗统地层的接触带,白石嶂断裂(F19)与杨塘断裂的交汇部位。本文从区域地质背景入手,着重研究了地层、构造、岩浆岩与成矿的关系;并对矿床的成矿专属性作了初步探讨。文章对围岩及其蚀变特征与矿体/矿石赋存特征、矿体规模之间的关系作了较深入的分析;并在分析成矿物质来源、总结矿化富集规律的基础上,结合粤东地区钼矿成矿特征,总结出本区控矿地质条件与成矿规律,为粤东地区该类矿床的寻找提供理论上的参考。  相似文献   

18.
Source of ore-forming material is always one of the fundamental subjects in the study of mineral deposits. Recently, in order to probe deep sources of ore-forming materials, many interna-tional and Chinese investigators have paid much attention to the rel…  相似文献   

19.
Previous studies of weathering generally started with geochemistry[1—8] and mineralogy[9—12], and have been focused on chemical weathering rates[1—3], removability-enrichment of elements[3—6] during chemical weathering, and the age of weathering profi…  相似文献   

20.
The large-scale Huangshaping Pb-Zn-W-Mo polymetallic deposit is located in the central Nanling min- eralization zone, South China. Six molybdenite samples from the Huangshaping deposit were selected for Re-Os isotope measurement in order to define the mineralization age of the deposit. It yields a Re-Os isochron age of 154.8±1.9 Ma (2σ ), which is in accordance with the Re-Os model ages of 150.9― 156.9 Ma. This age is about 7 Ma younger than their host granite porphyry, which was dated as 161.6±1.1 Ma by zircon U-Pb method using LA-ICPMS. All these ages demonstrate that the Huang- shaping granite and related Pb-Zn-W-Mo deposit occurred in the middle Yanshanian period, when many other granitoid and related ore deposits emplaced and formed, e.g. the Qitianling granite and Furong tin deposit, the Qianlishan granite and giant Shizhuyuan W-Sn-Mo-Bi deposit and Jinchuantang Sn-Bi deposit in the nearby area. They constitute the main part of the magmatic-metallogenic belt of southern Hunan, and represent the large-scale metallogeny in middle Yanshanian in the area. The lower rhenium content in molybdenite of Huangshaping deposit suggests that the ore-forming material was mainly of crust origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号