首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
喻顺  陈文  张斌  孙敬博  李超  袁霞  沈泽  杨莉  马勋 《地球物理学报》2016,59(8):2922-2936
天山是中亚造山带重要组成部分,其中-新生代构造热演化及隆升剥露史研究是认识中亚造山带构造变形过程与机制的关键.本文应用磷灰石(U-Th)/He技术重建中天山南缘科克苏河地区中-新生代构造热演化及隆升剥蚀过程.磷灰石(U-Th)/He数据综合解释及热演化史模拟表明该地区至少存在晚白垩世、早中新世、晚中新世3期快速隆升剥蚀事件,起始时间分别为~90Ma、~13Ma及~5Ma,且这3期隆升剥蚀事件在整个天山地区具有广泛的可对比性.相对于磷灰石裂变径迹,磷灰石(U-Th)/He年龄记录了中天山南缘地质演化史中更新和更近的热信息,即中天山在晚中新世(~5 Ma)快速隆升剥蚀,其剥蚀速率为~0.47mm·a~(-1),剥蚀厚度为~2300m.总体上,中天山科克苏地区隆升剥蚀起始时间从天山造山带向昭苏盆地(由南向北)逐渐变老,表明了中天山南缘隆升剥蚀存在不均一性,并发生了多期揭顶剥蚀事件.  相似文献   

2.
The thermal history of the Jiaodong region and adjacent provinces(Shandong and northern Jiangsu) have been extensively studied,particularly by apatite fission track(AFT) dating.However,the AFT ages from surface outcrops range broadly and do not show an apparent relationship between age and elevation.This work provides a multiple low temperature thermochronological dataset including zircon and apatite(U-Th)/He ages(ZHe and AHe),and AFT ages from a 1000-m-deep borehole at the Jiaojia goldneld in the northwest of Jiaodong Peninsula.ZHe,AFT and AHe ages range from-100-70,-85-50and-65-50 Ma,respectively.These data conform to the principles of age vs.closure temperature and age vs.elevation and thus can be employed to estimate the exhumation history.Based on the density histogram of fission track length calculation,thermal history modeling,and previously published AFT ages from the Chinese Continental Science Drill program,this work concludes that compared to the AFT ages from surface outcrops,the low temperature thermochronological ages from the boreholes show a better relationship between age,elevation and closure temperature,and the age becomes younger with increasing depth.In addition,the exhumation history in the Jiaodong and adjacent areas can be divided into two distinct stages:a short,rapid tectonic exhumation(~100-95 Ma) and a long,slow exhumation since 95 Ma.The rate and amount of tectonic exhumation since 95 Ma are inferred as ~30 m Ma~(-1) and ~3 km,respectively.  相似文献   

3.
长波长、低起伏度大凉山构造带新生代隆升剥露与建造过程是解译青藏高原东向扩展过程的关键核心地区之一.本文基于大凉山构造带喜德剖面和沐川剖面9件样品的多封闭系统低温热年代学年龄(即磷灰石(U-Th)/He(AHe)、磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe))定年,揭示出多封闭系统热年代学年龄与古岩性柱深度具有明显的正相关性,即伴随古岩性柱深度增大,多封闭系统热年代学年龄明显减小.喜徳剖面多封闭系统低温热年代学AHe、AFT和ZHe年龄值分别为7—9Ma、14—22Ma和25—38Ma;沐川剖面多封闭系统低温热年代学AHe和AFT年龄值分别为10—26Ma、23—85Ma,ZHe年龄值为未完全退火年龄.多封闭系统热年代学和QTQt热史模拟揭示,大凉山构造带喜徳和沐川剖面岩性柱所有样品都经历大致相似的三阶段热演化过程,尤其是晚新生代快速隆升剥露阶段(30—20 Ma以来),其平均剥露速率分别为~0.15mm·a-1和~0.20mm·a-1,抬升剥露量分别为~3.0km和~1.5km.结合区域低温热年代学特征的大凉山构造带地表隆升动力学模型,揭示出重力均衡作用下地壳缩短与剥露作用(即构造隆升剥露机制)控制形成了现今大凉山造山带长波长、低起伏和高海拔地貌建造过程.  相似文献   

4.
The Xigaze fore-arc basin is adjacent to the Indian plate and Eurasia collision zone. Understanding the erosion history of the Xigaze fore-arc basin is significant for realizing the impact of the orogenic belt due to the collision between the Indian plate and the Eurasian plate. The different uplift patterns of the plateau will form different denudation characteristics. If all part of Tibet Plateau uplifted at the same time, the erosion rate of exterior Tibet Plateau will be much larger than the interior plateau due to the active tectonic action, relief, and outflow system at the edge. If the plateau grows from the inside to the outside or from the north to south sides, the strong erosion zone will gradually change along the tectonic active zone that expands to the outward, north, or south sides. Therefore, the different uplift patterns are likely to retain corresponding evidence on the erosion information. The Xigaze fore-arc basin is adjacent to the Yarlung Zangbo suture zone. Its burial, deformation and erosion history during or after the collision between the Indian plate and Eurasia are very important to understand the influence of plateau uplift on erosion. In this study, we use the apatite fission track(AFT)ages and zircon and apatite(U-Th)/He(ZHe and AHe)ages, combined with the published low-temperature thermochronological age to explore the thermal evolution process of the Xigaze fore-arc basin. The samples' elevation is in the range of 3 860~4 070m. All zircon and apatite samples were dated by the external detector method, using low~U mica sheets as external detectors for fission track ages. A Zeiss Axioskop microscope(1 250×, dry)and FT Stage 4.04 system at the Fission Track Laboratory of the University of Waikato in New Zealand were used to carry out fission track counting. We crushed our samples finely, and then used standard heavy liquid and magnetic separation with additional handpicking methods to select zircon and apatite grains. The new results show that the ZHe age of the sample M7-01 is(27.06±2.55)Ma(Table 2), and the corresponding AHe age is(9.25±0.76)Ma. The ZHe and AHe ages are significantly smaller than the stratigraphic age, indicating suffering from annealing reset(Table 3). The fission apatite fission track ages are between(74.1±7.8)Ma and(18.7±2.9)Ma, which are less than the corresponding stratigraphic age. The maximum AFT age is(74.1±7.8)Ma, and the minimum AFT age is(18.7±2.9)Ma. There is a significant north~south difference in the apatite fission track ages of the Xigaze fore-arc basin. The apatite fission track ages of the south part are 74~44Ma, the corresponding exhumation rate is 0.03~0.1km/Ma, and the denudation is less than 2km; the apatite fission track ages of the north part range from 27 to 15Ma and the ablation rate is 0.09~0.29km/Ma, but it lacks the exhumation information of the early Cenozoic. The apatite(U-Th)/He age indicates that the north~south Xigaze fore-arc basin has a consistent exhumation history after 15Ma. The results of low temperature thermochronology show that exhumation histories are different between the northern and southern Xigaze fore-arc basin. From 70 to 60Ma, the southern Xigaze fore-arc basin has been maintained in the depth of 0~6km in the near surface, and has not been eroded or buried beyond this depth. The denudation is less than the north. The low-temperature thermochronological data of the northern part only record the exhumation history after 30Ma because of the young low-temperature thermochronological data. During early Early Miocene, the rapid erosion in the northern part of Xigaze fore-arc basin may be related to the river incision of the paleo-Yarlungzangbo River. The impact of Great Count Thrust on regional erosion is limited. The AHe data shows that the exhumation history of the north-south Xigaze fore-arc basin are consistent after 15Ma. In addition, the low-temperature thermochronological data of the northern Xigaze fore-arc basin constrains geographic range of the Kailas conglomerate during the late Oligocene~Miocene along the Yarlung Zangbo suture zone. The Kailas Basin only develops in the narrow, elongated zone between the fore-arc basin and the Gangdese orogenic belt. The southern part of the Xigaze fore-arc basin has been uplifted from the sea level to the plateau at an altitude of 4.2km, despite the collision of the Indian plate with the Eurasian continent and the late fault activity, but the plateau has been slowly denuded since the early Cenozoic. The rise did not directly contribute to the accelerated erosion in the area, which is inconsistent with the assumption that rapid erosion means that the orogenic belt begins to rise.  相似文献   

5.
江南隆起位于扬子与华夏地块的碰撞汇聚带,是研究华南大地构造演化的关键地质单元.本文采用磷灰石裂变径迹及(U-Th-Sm)/He年龄分布特征定性分析与径迹长度分布数据定量模拟相结合,主要研究了幕阜山岩体新生代的隆升与剥蚀过程,并在此基础上结合区域构造背景, 对其构造-热演化之间的关系进行了探讨.自晚白垩世持续隆升以来,幕阜山岩体经历的平均剥蚀厚度约4800 m.在不同岩体间,隆升过程及幅度存在差异,空间上具有非均匀性.热史结果显示幕阜山岩体经历了3期剥蚀, 其中两期快速剥蚀分别发生在晚白垩世-古近纪(80~50 Ma)和10 Ma以来,而这之间为一期缓慢剥蚀过程.研究区古近纪的快速剥蚀反映了中-下扬子喜山期大规模伸展断陷作用造成的肩部块体快速剥蚀事件; 约10 Ma以来的快速剥蚀是对太平洋板块向西运动的响应.幕阜山岩体自燕山晚期以来的隆升剥蚀作用具有良好的盆地沉积响应, 三期隆升剥蚀事件与研究区构造演化的动力学背景相吻合.  相似文献   

6.
Low‐temperature thermochronology provides information on the timing of rifting and denudation of passive margins, and the Red Sea with its well‐exposed, young rift margins is a suitable setting for its application. Here we present new apatite fission‐track (AFT) data from Sudan northern hinterland and Red Sea coastal areas. From the former region we obtained ages between 270 ± 2 Ma ad 253 ± 53 Ma, and from the coastal belt between 83 ± 8 Ma and 39 ± 7 Ma. These data prompted a review and comparison with low‐temperature thermochronological data from the whole Nubian Red Sea Margin, and a discussion on their implication in assessing the margin evolutionary style. AFT data are available for Egypt and Eritrea as well as apatite (U‐Th)/He (AHe) ages for two transects transversal to the margin in Eritrea. Both in Egypt and Eritrea AFT data record a cooling event at about 20–25 Ma (Early Miocene) and an earlier, more local, cooling event in Egypt at about 34 Ma (Early Oligocene). The thermal modeling of the Sudan samples provides an indication of a rapid cooling in Miocene times, but does not support nor rules out an Early Oligocene cooling phase. The re‐assessment of new and existing thermochronological data within the known geological framework of the Nubian and conjugate Arabian margins favours the hypothesis that early rifting stages were affecting the whole Gulf of Suez–Red Sea–Gulf of Aden system since the Oligocene. These precocious, more attenuated, phases were followed by major extension in Miocene times. As to the mode of margin evolution, AFT age patterns both in Egypt and Eritrea are incompatible with a downwarp model. The distribution of AHe ages across the Eritrean coastal plain suggests that there the escarpment was evolving predominantly by plateau degradation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
低温热年代学数据是一个与热历史过程紧密相关的资料类型,与高温年代学不同,低温热年代学表观年龄本身在很多情况下没有直接的地质意义.当且仅当样品线性持续冷却的情况下,表观年龄才可以被直接解释为样品经过其封闭温度的大致时间.因此,只有结合地质约束通过对低温热年代学数据进行热历史模拟才能更好地揭示其所蕴含的地质信息.对川东北地...  相似文献   

8.
The uplift and exhumation process in the Tianshan orogen since the late Paleozoic were likely related to the preservation of ore deposits. This study involved reconstructing the whole tectonic thermal history of the Ouxidaban pluton in central South Tianshan Mountains based on hornblende/plagioclase Ar-Ar and zircon/apatite(U-Th)/He methods. The thermal history and uplift process of central South Tianshan Mountains since the late Paleozoic were analyzed according to the results of previous works and cooling/exhumation rate features. The hornblende yields a plateau age of 382.6±3.6 Ma, and the plagioclase yields a weighted mean age of 265.8±4.9 Ma. The Ouxidaban pluton yields weighted mean zircon(U-Th)/He age of 185.8±4.3 Ma and apatite(U-Th)/He age of 31.1±2.9 Ma, respectively. Five stages of tectonic thermal history of South Tianshan Mountains since the late Paleozoic could be discriminated by the cooling curve and modeling simulation:(1) from the latest Silurian to Late Devonian, the average cooling rate of the Ouxidaban pluton was 7.84°C/Ma;(2) from the Late Devonian to the latest Middle Permian, the average cooling rate was about 2.07°C/Ma;(3) from the latest Middle Permian to the middle Eocene, the cooling rate decreased to about 0.68°C/Ma, suggesting that the tectonic activity was gentle at this time;(4) a sudden increase of the cooling rate(5.00°C/Ma) and the exhumation rate(0.17 mm/a), and crustal exhumation of ~1.83 km indicated that the Ouxidaban pluton would suffer a rapid uplift event during the Eocene(~46?35 Ma);(5) since the middle Eocene, the rapid uplift was sustained, and the average cooling rate since then has been 1.14°C/Ma with an exhumation rate of about 0.04 mm/a and an exhumation thickness of 1.33 km. The strong uplift since the Cenozoic would be related to a far-field effect from the Indian and Eurasian plates' collision. However, it was hysteretic that the remote effect was observed in the Tianshan orogenic belt.  相似文献   

9.
柴达木盆地东部都兰一带,由于一系列北东倾的、向南西推覆的逆冲断层作用和温泉断裂的右行走滑作用,将柴达木盆地的变质基底和前中生界沉积基底翘起,从而使得柴达木盆地与共和盆地分隔开来. 逆冲断层中磷灰石裂变径迹(FT)测年结果反映了柴达木盆地基底断层作用的规律性. 从FT测年结果可以看出,FT年龄分为2组,也就是2个活动时期:第1期为108 Ma至61 Ma;第2期为26.6 Ma至17.8 Ma. 第1期反映的断裂活动具有明显的规律性:从柴达木盆地南缘的东昆仑开始,向柴北缘方向,逆冲推覆的断层作用时间逐渐变年轻,从东昆仑的108.0±9.6 Ma(柴达木南缘断裂)变为63.7±4.4 Ma(柴北缘断裂),之后可能有小的跳动. 第2期,在原有的一些逆冲断层上形成了新的活动,或形成了一些新的逆冲断层,总体上具有无序或跳跃式变动的特点.  相似文献   

10.
本文通过背斜褶皱变形与低温热年代学年龄(磷灰石和锆石(U-Th)/He、磷灰石裂变径迹)端元模型研究,约束低起伏度、低斜率地貌特征的四川盆地南部地区新生代隆升剥露过程.四川盆地南部沐川和桑木场背斜地区新生代渐新世-中新世发生了相似的快速隆升剥露过程(速率为~0.1 mm/a、现今地表剥蚀厚度1.0~2.0 km),反映出盆地克拉通基底对区域均一性快速抬升冷却过程的控制作用.川南沐川地区磷灰石(U-Th)/He年龄值为~10-28.6 Ma, 样品年龄与古深度具有明显的线性关系,揭示新生代~10-30 Ma以速率为0.12±0.02 mm/a的稳态隆升剥露过程.桑木场背斜地区磷灰石裂变径迹年龄为~36-52 Ma,古深度空间上样品AFT年龄变化不明显(~50 Ma)、且具有相似的径迹长度(~12.0 μm).磷灰石裂变径迹热演化史模拟表明桑木场地区经历三个阶段热演化过程:埋深增温阶段(~80 Ma以前)、缓慢抬升冷却阶段(80-20 Ma)和快速隆升剥露阶段(~20 Ma-现今),新生代隆升剥露速率大致分别为~0.025 mm/a和~0.1 mm/a.新生代青藏高原大规模地壳物质东向运动与四川盆地克拉通基底挤压,受板缘边界主断裂带差异性构造特征控制造就了青藏高原东缘不同的边界地貌特征.  相似文献   

11.
现代的天山山脉是在古生代造山基础上,于新生代强烈抬升而形成.其新生代造山和隆升过程,造就了现今的天山地貌格局.本文选取西南天山作为研究区域,采用河床砂岩屑裂变径迹测年分析,从统计角度限定西南天山的隆升-剥露过程.样品采集于特克斯河支流阿克雅孜河、夏特河、木扎河以及特克斯河干流的沉积河床.磷灰石裂变径迹测试和统计分析表明,存在代表源区热史演化不同阶段的年龄峰值.尽管不同样品的年龄众数分布有少许差别,颗粒年龄众数的去褶积分析获得了西南天山山体新生代冷却的三个基本一致的阶段:6~8 Ma,12~19 Ma以及32~40 Ma.结合山脉隆起的地质地貌模型,无论是整体抬升或掀斜抬升,以及压扭性背景的花状挤出抬升,根据磷灰石裂变径迹封闭温度推断的抬升量与现今天山高度基本相当的事实,都可以确认西南天山山体是6~8 Ma以来形成的.天山这三期快速抬升冷却事件与青藏高原及其周边的主要隆升时期有较好的对应,证明了天山隆升和印度-欧亚板块碰撞远程效应的关系.另外,6~8 Ma的冷却事件与沉积地层学研究揭示的6 Ma左右的气候显著变化相互印证,显示了研究区域山脉隆升和气候变化之间存在的密切关系.  相似文献   

12.
The Cretaceous Toki granitic pluton of the Tono district, central Japan was emplaced in the East Asian continental margin at about 70 Ma. The Toki granite has apatite fission‐track (AFT) ages ranging from 52.1 ±2.8 Ma to 37.1 ±3.6 Ma (number of measurements, n = 33); this indicates the three‐dimensional thermal evolution during the pluton's low‐temperature history (temperature in the AFT partial annealing zone: 60–120 °C). The majority of the Toki granite has a spatial distribution of older ages in the shallower parts and younger ages in the deeper parts, representing that the shallower regions arrived (were exhumed) at the AFT closure depth earlier than the deeper regions. Such a cooling pattern was predominantly constrained by the exhumation of the Toki granitic pluton and was related to the regional denudation of the Tono district. The age–elevation relationships (AERs) of the Toki granite indicate a fast exhumation rate of about 0.16 ±0.04 mm/year between 50 Ma and 40 Ma. The AFT inverse calculation using HeFTy program gives time‐temperature paths (tT paths), suggesting that the pluton experienced continuous slow cooling without massive reheating since about 40 Ma until the present day. A combination of the AERs and AFT inverse calculations represents the following exhumation history of the Toki granite: (i) the fast exhumation at a rate of 0.16 ±0.04 mm/year between 50 Ma and 40 Ma; (ii) slow exhumation at less than 0.16 ±0.04 mm/year after 40 Ma; and (iii) exposure at the surface prior to 30–20 Ma. The Tono district, which contains the Toki granite, underwent slow denudation at a rate of less than 0.16 ±0.04 mm/year within the East Asian continental margin before the Japan Sea opening at 25–15 Ma and then within the Southwest Japan Arc after the Japan Sea opening, which is in good agreement with representative denudation rates obtained in low‐relief hill and plain fields.  相似文献   

13.
2008汶川地震之后,多个研究组对龙门山的新生代剥蚀历史进行了研究,但是在龙门山推覆构造带中段,剥蚀历史研究主要集中在彭灌杂岩,而彭灌杂岩东侧(即中央断裂下盘)的热年代学资料相对缺乏,其剥蚀历史还比较模糊.对于彭灌杂岩东侧岩体的新生代剥蚀历史研究,不仅可以了解龙门山推覆构造带的新生代断层活动历史,而且对于青藏高原东缘的新生代隆升机制具有重要约束作用.在前人热年代学研究基础上,在龙门山推覆构造带中段中央断裂和前山断裂附近补充了一些裂变径迹样品.采用外探测器法(external detector method)对样品进行裂变径迹分析,实验测试在台湾中正大学裂变径迹实验室完成.实验获得了6个锆石裂变径迹和6个磷灰石裂变径迹年龄.前山断裂上盘,AFT(磷灰石裂变径迹)年龄以小鱼洞断裂为界存在明显的差异,其中小鱼洞断裂以南的样品AFT年龄为39Ma,小鱼洞断裂以北的4个AFT年龄介于6—8 Ma之间.研究揭示出中央断裂和前山断裂的新生代活动性以NW向小鱼洞断裂为界存在较大差异:距今8Ma以来,小鱼洞断裂以北,中央断裂和前山断裂的平均垂向滑动速率分别为约0.1mm·a-1和约0.55mm·a-1;小鱼洞断裂以南,平均垂向滑动速率则分别为约0.55mm·a-1和约0.1mm·a-1.低温热年代学方法获得的断层新生代垂向滑动速率与汶川地震断层垂向同震位移分布基本一致.前山断裂(小鱼洞断裂以北)距今8 Ma以来北西-南东向水平缩短量达到8~12km,表明地壳缩短是造成龙门山抬升和剥蚀的重要因素之一.本研究结论不支持下地壳增厚模型对于龙门山隆升的解释.  相似文献   

14.
U–Pb Sensitive High‐Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U–Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic rocks in the Western Carpathians collected in the Central Slovakian Neovolcanic Field. Two samples of diorite from the locality Banky, and granodiorite from Banská Hodru?a yield the U–Pb zircon concordia ages of 15.21 ±0.19 Ma and 12.92 ±0.27 Ma, respectively, recording the time of zircon crystallization and the intrusions’ emplacement. Zircon (U–Th)/He ages of 14.70 ±0.94 (Banky) and 12.65 ±0.61 Ma (Banská Hodru?a), and apatite (U–Th)/He ages of 14.45 ±0.70 Ma (diorite) and 12.26 ±0.77 Ma (granodiorite) are less than 1 Myr younger than the corresponding zircon U–Pb ages. For both diorite and granodiorite rocks their chronological data thus document a simple cooling process from magmatic crystallization/solidification temperatures to near‐surface temperatures in the Middle Miocene, without subsequent reheating. Geospeedometry data suggest for rapid cooling at an average rate of 678 ±158 °C/Myr, and the exhumation rate of 5 mm/year corresponding to active tectonic‐forced exhumation. The quick cooling is interpreted to record the exhumation of the studied granitic rocks complex that closely followed its emplacement, and was likely accompanied by a drop in the paleo‐geothermal gradient due to cessation of volcanic activity in the area.  相似文献   

15.
The Møre Trøndelag Fault Complex (MTFC) of central Norway is a long-lived structural zone whose tectonic history included dextral strike slip, sinistral strike slip, and vertical offset. Determination of an offset history for the MTFC is complicated by the lack of well preserved stratigraphic markers. However, low temperature apatite fission track (AFT) thermochronology offers important new clues by allowing the determination of exhumation histories for individual fault blocks presently exposed within the MTFC area. Previously published AFT data from crystalline basement in and near the MTFC suggest the region has a complicated pattern of exhumation. We present new AFT data from a NW–SE transect perpendicular to the principal structural grain of the MTFC. FT analyses of 15 apatite samples yielded apparent ages between 90 and 300 Ma, with mean FT length ranging from 11.8 to 13.5 μm. Thermal models based upon the age and track length data show the MTFC is comprised by multiple structural blocks with individual exhumation histories that are discrete at the 2σ confidence level. Thermal modeling of the AFT data indicates exhumation progressed from west to east, and that the final juxtaposition and exhumation of the innermost blocks took place during Cretaceous or Tertiary (possibly Neogene) time. We suggest that least some of the fracture lineaments of central Norway were re-activated during Mesozoic extension and the opening of the Norwegian sea, and may have remained active into the Cenozoic.  相似文献   

16.
报道了米仓山-汉南穹窿一带磷灰石裂变径迹分析结果,以制约该区白垩纪以来的剥蚀-演化历史.露头样品磷灰石裂变径迹年龄分布显示从汉南穹窿南部的核部地区向南至四川盆地北部裂变径迹的年龄逐渐变新,这与米仓山地区逆冲断裂以背驮式扩展的构造样式从汉南穹窿向南经米仓山褶皱-逆冲带发育到四川盆地北缘的构造模式相吻合.热模拟的结果显示米仓山-汉南穹窿经历了两期快速的剥蚀,其分别发生在白垩纪(约90 Ma之前)和15 Ma以来.研究区白垩纪的快速剥蚀反映了秦岭-大别造山带白垩纪的区域性剥蚀事件,这可能是对临区诸多构造事件(如西伯利亚-蒙古-中朝板块的碰撞,拉萨-羌塘-思茅-印支块体的碰撞,太平洋板块向欧亚板块的俯冲及其相关的岩浆活动)远场效应的响应;约15 Ma以来的快速剥蚀是对青藏高原隆升向东北方向传递的响应.  相似文献   

17.
TheNW-SEstrikingXianshuihefaultzoneslicesthesoutheasternTibetanPlateauandconnectssoutheastwardwiththeAnninghe-Zemuhe-Xiaojiangfaultzone,whichformahuge,activesinistralstrike-slipfaultzone(fig.1).ThisfaultzoneisanimportantseismicfaultineastTibet[1-5].EarthquakegeologystudiesandoffsetpatternsofyounggeologicalfeatureshaveshownthatlateQuaternarysinistralsliprateoftheXianshuihefaultzonereaches13mm/a[1,2].TheXianshuhefaultzoneconsistsoftwomainbranches,theDaofufaultbranchinthewestandtheXianshuih…  相似文献   

18.
伸展正断层下盘的冷却历史记录了主要伸展变形的时间及幅度.太白山位于秦岭北缘,作为伸展正断层的下盘,其新生代伸展隆升冷却历史有助于我们更好地理解渭河盆地的伸展变形时间及其幅度.本文利用磷灰石裂变径迹分析方法对太白山的冷却历史进行了研究.来自太白山总计17个样品的磷灰石裂变径迹数据及热历史模拟揭示出山体经历了始于约48 Ma的小幅度快速抬升冷却阶段,和始于约9.6 Ma的大幅度快速抬升冷却阶段;分别对应平行于秦岭北缘山脉的两阶段伸展变形.始于约48 Ma的伸展变形可能是印度板块与欧亚板块碰撞作用在大陆内部的远场响应,而始于约9.6 Ma的快速伸展变形可能与青藏高原在该时期快速隆升和对外扩展有关.  相似文献   

19.
The uplift process of the Qinghai-Tibetan Plateau holds the key to understand the dynamic mechanisms of continental crust shortening and mountain-building and to test the relationship between the Tibetan uplift and tectonic-climatic coupling and environmental im-pacts[1―4].However,there are still many debates in the process and mechanism of how the Tibetan Plateau uplifted to the present configuration.Among various approaches to solve these key questions,dating of the Cenozoic stratigraphy …  相似文献   

20.
运用裂变径迹分析方法, 探讨分析了千家店地区侏罗系后城组地层的构造热演化特征. 千家店地区后城组上段三个磷灰石样品,AFT年龄集中在85.7~76.0 Ma,小于其相应的地层年龄;平均封闭径迹长度为9.4~10.8 μm,小于初始径迹长度(16.3±0.9 μm),呈非对称的单峰态分布,标准偏差为2.1~2.5. 后城组下段的三个AFT样品,AFT年龄集中在82.6~62.4 Ma,小于其相应的地层年龄,也小于上段层位的AFT年龄;平均封闭径迹长度仅为7.2~7.7 μm,远小于初始径迹长度(16.3±0.9 μm),其中YQ-07样品的封闭径迹长度呈似双峰态分布,标准偏差达到3.1;显然,侏罗系样品经历了明显的中度退火行为,最大温度可能接近于90℃. AFT年龄和封闭径迹长度的规律性变化主要是由于埋深不同引起的温度差异造成的. 裂变径迹热历史模拟结果表明,沉积物自进入盆地充填埋藏一直到115 Ma左右,盆地沉积物达到最大埋深3000多米,盆地温度达到最大值90℃多,这一过程沉积速率达到66.7 m/Ma. 115 Ma之后盆地处于相对稳定期,没有明显的温度波动,直到6 Ma左右温度以11.7 ℃/Ma的速度突然下降,表明侏罗系地层遭受剥蚀,迅速上升、快速冷却直至地表,剥露速率超过了500 m/Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号