首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The MODVOLC satellite monitoring system has revealed the first recorded eruption of Mount Belinda volcano, on Montagu Island in the remote South Sandwich Islands. Here we present some initial qualitative observations gleaned from a collection of satellite imagery covering the eruption, including MODIS, Landsat 7 ETM+, ASTER, and RADARSAT-1 data. MODVOLC thermal alerts indicate that the eruption started sometime between 12 September and 20 October 2001, with low-intensity subaerial explosive activity from the islands summit peak, Mount Belinda. By January 2002 a small lava flow had been emplaced near the summit, and activity subsequently increased to some of the highest observed levels in August 2002. Observations from passing ships in February and March 2003 provided the first visual confirmation of the eruption. ASTER images obtained in August 2003 show that the eruption at Mount Belinda entered a new phase around this time, with fresh lava effusion into the surrounding icefield. MODIS radiance trends also suggest that the overall activity level increased significantly after July 2003. Thermal anomalies continued to be observed in MODIS imagery in early 2004, indicating a prolonged low-intensity eruption and the likely establishment of a persistent summit lava lake, similar to that observed on neighboring Saunders Island in 2001. Our new observations also indicate that lava lake activity continues on Saunders Island.Editorial responsibility: J. Gilbert  相似文献   

2.
Satellite remote sensing represents a mature technology for long-term monitoring of volcanic activity at Mount Erebus, either independently or as a complement to field instrumentation. Observations made on 4290 discrete occasions over a six year period by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) indicate that the radiant flux from the volcano's summit crater (and by inference, the lava lake contained therein), while variable on the time scale of days to weeks, has varied little on an inter-annual basis over this period. The average radiant flux from the lake during this time was 15 MW, with a maximum flux of 100 MW. Such heat flux time-series have been shown to act as a reliable proxy for general levels of activity at erupting volcanoes around the world, particularly when these time-series are of a long duration. The apparent stability of Erebus' power output is in marked contrast to fluxes observed at three other terrestrial volcanoes, Erta ‘Ale (Ethiopia), Nyiragongo (Democratic Republic of Congo) and Ambrym (Vanuatu), which, while also hosting active lava lakes, all exhibit much greater variability in radiant flux over the same period of time. The results presented in this paper are confluent with those obtained from geochemical considerations of the Erebus' degassing regime, and confirm that remarkably stable open-system volcanism appears to be characteristic of this long-active volcano.  相似文献   

3.
During the 1971–1972 eruption of Soufrière volcano on St. Vincent Island, a lava mass was extruded subaqueously in the crater lake. An investigation of the chemistry of the lake indicates that over 50,000 tons of dissolved solids were taken into solution during the eruption, in addition to 9000 tons of iron precipitated as ferric oxide in syngenetic metalliferous sediments on the crater floor. Leaching of hot disintegrating lava and volcanic glass is the principal source of cations dissolved in the lake (Na, Ca, Mg, Si and K), whereas chlorine and sulfur were introduced during injection of acid volcanic gases from the submerged lava mass. Concentrations of the common cations in the lake are not affected by mineral solubility, except in the case of Fe3+, but rather by the rate of leaching, evaporation, and water-rock reactions. Variations in Cl/Na, total Cl and acidity have aided in identification of distinct fumarolic phases during the eruption, which may correlate with observed increase in frequency of minor volcanic tremors in the crater. Accumulation of ferric oxide in sediments on the crater floor is thought to be due to leaching of ferrous iron at high temperature from the lava mass, followed by oxidation and precipitation of hematite in the cooler lake.  相似文献   

4.
It has been shown that due to the small surface of crater lakes, temperature surveillance is a problem using meteorological satellites. This is particularly true for El Chichón surface lake because it's about one tenth of an AVHRR pixel at nadir. In order to guarantee at least one unmixed pixel in AVHRR data, it is necessary to use only AVHRR data from NOAA satellite passes as close as possible to the nadir for the period 1996–2006, therefore AVHRR data of El Chichón's crater lake were only used it they were cloudless and had scan angles close to nadir. The analysis of the time series data shows that lake surface temperature had annual maximum values (> 35 °C) during 1996 and 1997 then surface temperature decay with a negative exponential trend reaching a steady state of about 30 °C in the last years (2004–2006). A seasonal temperature variation between the dry (December to May) and the wet (June to November) seasons is also observed. Differences between nocturnal and midday temperatures indicate the influence of lake energy emission (including reflectance) at midday under a strong short-wave solar radiation. Water surface radiative flux under these conditions reaches an average of 77.8 W m− 2 and a maximum of 187.1 W m− 2. Whereas nocturnal heat output from El Chichón crater lake has an average surface radiative flux of 20.4 W m− 2 and a maximum of 74.3 W m− 2.  相似文献   

5.
Mount Erebus, a large intraplate stratovolcano dominating Ross Island, Antarctica, hosts the world's only active phonolite lava lakes. The main manifestation of activity at Erebus volcano in December 2004 was as the presence of two convecting lava lakes within an inner crater. The long-lived Ray Lake, ~ 1400 m2 in area, was the site of up to 10 small Strombolian eruptions per day. A new but short-lived, ~ 1000–1200 m2 lake formed at Werner vent in December 2004 sourced by lava flowing from a crater formed in 1993 by a phreatic eruption. We measured the radiative heat flux from the two lakes in December 2004 using a compact infrared (IR) imaging camera. Daily thermal IR surveys from the Main Crater rim provide images of the lava lake surface temperatures and identify sites of upwelling and downwelling. The radiative heat outputs calculated for the Ray and Werner Lakes are 30–35 MW and 20 MW, respectively. We estimate that the magma flux needed to sustain the combined heat loss is ~ 250–710 kg s− 1, that the minimum volume of the magma reservoir is 2 km3, and that the radius of the conduit feeding the Ray lake is ~ 2 m.  相似文献   

6.
Mount Erebus is presently the only Antarctic volcano with sustained eruptive activity in the past few years. It is located on Ross Island and a convecting anorthoclase phonolite lava lake has occupied the summit crater of Mount Erebus from January 1973 to September 1984. A program to monitor the seismic activity of Mount Erebus named IMESS was started in December 1980 as an international cooperative program among Japan, the United States and New Zealand. A new volcanic episode began on 13 September, 1984 and continued until December.Our main observations from the seismic activity from 1982–1985 are as follows: (1) The average numbers of earthquakes which occurred around Mount Erebus in 1982, 1983 and January–August 1984 were 64, 134 and 146 events per day, respectively. Several earthquake swarms occurred each year. (2) The averag number of earthquakes in 1985 is 23 events per day, with only one earthquake swarm. (3) A remarkable decrease of the background seismicity is recognized before and after the September 1984 activity. (4) Only a few earthquakes were located in the area surrounding Erebus mountain after the September 1984 activity.A magma reservoir is estimated to be located in the southwest area beneath the Erebus summit, based on the hypocenter distributions of earthquakes.  相似文献   

7.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   

8.
The Soufriere of St. Vincent has been monitored for more than 25 years as part of a regional programme in the Lesser Antilles. In that time the volcano has erupted twice but our studies have shown no discernible change in regional seismicity before either event. However, very small seismic events were observed in the crater during the 1971–1972 eruption and were detected before the start of the 1979 explosive eruption; we believe that they were generated by thermally induced hydraulic fracturing within the lava mass inside the crater lake. We conclude that seismographic monitoring of Lesser Antillean volcanoes can give ambiguous results but that at least one instrument must be placed within 1 km of the vent if the earliest signs of activity are to be detected.  相似文献   

9.
Poa´s Volcano is an active stratovolcano in Costa Rica that has a lake in its active crater. The crater lake has high temperatures (50–90 °C), high acidity (pH ≈ 0.0), and a high dissolved-solids content (100 g/kg). The volcano has numerous freshwater springs on its flanks, but a few on the northwestern flank are highly acidic (pH = 1.6–2.5) and have high dissolved-solids concentrations (2–22 g/kg). This study analyzes the regional groundwater system at Poa´s and demonstrates the likelihood that the water discharging from the acidic springs in the Rio Agrio watershed originates at the acidic crater lake. Both heat and solute transport are analyzed on a regional scale through numerical simulations using the HST3D finite-difference model, which solves the coupled equations for fluid flow, heat transport, and solute transport. The code allows fluid viscosity and density to be functions of both temperature and solute concentration. The simulations use estimates for recharge to the mountain and a range of values and various distributions of permeability and porosity. Several sensitivity analyses are performed to test how the uncertainty in many of the model parameters affects the simulation results. These uncertainties yield an estimated range of travel times from the crater lake to the Rio Agrio springs of 1–30 years, which is in close agreement with the results of tritium analyses of the springs. Calculated groundwater fluxes into and out of the crater lake are both about several hundred kg/s. These fluxes must be accounted for in water budgets of the crater lake.  相似文献   

10.
Ground surveys made during August, 1961, show large vertical magnetic intensity anomalies associated with the partly lava filled crater of Kilauea Iki. A vertical magnetic variation of 11,600 gammas occurs along a north-south profile across the crater, the maximum being on the north rim of the crater and the minimum on the south edge of the encrusted lava lake below the south rim. An east-west profile shows less vertical magnetic variation, with lake-surface measurements 1500 to 2500 gammas lower than measurements on the east rim of the crater. Computed anomalies using two-dimensional potential field graticules are in good agreement with the observed anomalies and support the following conclusions: 1) Average measured values of remanent magnetization of 10?2 cgs units and susceptibilities of 10?3 cgs units give reasonable magnitudes to the computed anomalies. 2) The remanent magnetization is parallel to the earth’s present magnetic field. 3) The maximum vertical magnetic field value in the north-south profile is the result of reinforcement of the positive terrain effect of the north rim of the crater and the positive edge effect of the north side of the lava lake. 4) The minimum value in the same profile is the result of reinforcement of the negative terrain effect at the base of the south rim of the crater and the negative edge effect of the south side of the lava lake. 5) Variation in the east-west magnetic profile is less because the terrain and edge effects of the horizontal components of the earth’s magnetic field and remanent magnetization approach zero. Changes in vertical magnetic field values as the lake solidifies will be maximum at the north edge of the lava lake, but more consistent changes of the opposite sign will occur on the south side of the lava lake. Total change will be approximately + 2300 gammas between the August 1961 measurement at station S6 and the value at that point when the entire lava lake has cooled below 400° C. The maximum rate of change at station S6 will occur when the 500° C isotherm is 35 to 65 meters below the surface and will be about 28 gammas per meter of lowering of the 500°C surface. Because of the steep magnetic anomalies associated with the lava lake and crater rims, the permanent magnetization presently forming in the cooling lake crust will have inclinations as much as 12° less than the average 37.5° inclination in the Kilauea area.  相似文献   

11.
Three major phases are distinguished during the growth of Nyiragongo, an active volcano at the western limit of the Virunga Range, Zaire. Lavas erupted during phase 1 are strongly undersaturated melilitites characterized by the presence of kalsilite phenocrysts, perovskite, and the abundance of calcite in the matrix. Such lavas crop out mainly on the inner crater wall and progressively evolve toward more aphyric melilite nephelinites well represented on the flanks of the volcano. Adventive vents lying at the base of the cone developed along radial fracture systems and erupted olivine and/or clinopyroxene – rich melilitites or nephelinites. Stage 2 lavas are melilite-free nephelinites. Clinopyroxene is the main phenocryst and feldspathoids are abundant in the lavas exposed on the crater wall. These flows result from periodic overflowing of a magma column from an open crater. Extensive fissure flows which erupted from the base of the cone at the end of this stage are related to widespread draining out of magma which in turn induces the formation of the summit pit crater. Magmas erupted during stage 3 are relatively aphyric melilite nephelinites and the main volcanological characteristic is the permanent lava lake observed into the pit crater until the 1977 eruption. Fluctuations of the level of the lava lake was responsible for the development of the inner terraces. Periodic overflowing of the lava lake from the central pit formed the nepheline aggregate lava flows. Petrography and major element geochemistry allow the determination of the principal petrogenetic processes. Melilitites and nephelinites erupted from the summit crater are lavas derived, via clinopyroxene fractionation, from a more primitive melt. The abundance of feldspathoids in these lavas is in keeping with nepheline flotation. Aphyric melilite nephelinites covering the flanks and the extensive fissure flows have a homogeneous chemical composition; rocks from the historical lava lake are slightly more evolved. All these lavas differentiated in a shallow reservoir. Lavas erupted from the parasitic vents are mainly olivine and/or clinopyroxene-phyric rocks. Rushayite and picrites from Muja cone are peculiar high-magnesium lavas resulting from the addition of olivine xenocrysts to melilitic or nephelinitic melts. Fluid and melt inclusions in olivine and clinopyroxene phenocrysts indicate a crystallization depth of 10–14 km. A model involving two reservoirs located at different depths and periodically connected is proposed to explain the petrography of the lavas; this hypothesis is in accordance with geophysical data. Received: July 8, 1993/Accepted: September 10, 1993  相似文献   

12.
Samples from Kawah Ijen crater lake, spring and fumarole discharges were collected between 1990 and 1996 for chemical and isotopic analysis. An extremely low pH (<0.3) lake contains SO4–Cl waters produced during absorption of magmatic volatiles into shallow ground water. The acidic waters dissolve the rock isochemically to produce “immature” solutions. The strong D and 18O enrichment of the lake is mainly due to enhanced evaporation at elevated temperature, but involvement of a magmatic component with heavy isotopic ratios also modifies the lake D and 18O content. The large ΔSO4–S0 (23.8–26.4‰) measured in the lake suggest that dissolved SO4 forms during disproportionation of magmatic SO2 in the hydrothermal conduit at temperatures of 250280°C. The lake δ18OSO4 and δ18OH2O values may reflect equilibration during subsurface circulation of the water at temperatures near 150°C. Significant variations in the lake's bulk composition from 1990 to 1996 were not detected. However, we interpret a change in the distribution and concentration of polythionate species in 1996 as a result of increased SO2-rich gas input to the lake system.Thermal springs at Kawah Ijen consist of acidic SO4–Cl waters on the lakeshore and neutral pH HCO3–SO4–Cl–Na waters in Blawan village, 17 km from the crater. The cation contents of these discharges are diluted compared to the crater lake but still do not represent equilibrium with the rock. The SO4/Cl ratios and water and sulfur isotopic compositions support the idea that these springs are mixtures of summit acidic SO4–Cl water and ground water.The lakeshore fumarole discharges (T=170245°C) have both a magmatic and a hydrothermal component and are supersaturated with respect to elemental sulfur. The apparent equilibrium temperature of the gas is 260°C. The proportions of the oxidized, SO2-dominated magmatic vapor and of the reduced, H2S-dominated hydrothermal vapor in the fumaroles varied between 1979 and 1996. This may be the result of interaction of SO2-bearing magmatic vapors with the summit acidic hydrothermal reservoir. This idea is supported by the lower H2S/SO2 ratio deduced for the gas producing the SO4–Cl reservoir feeding the lake compared with that observed in the subaerial gas discharges. The condensing gas may have equilibrated in a liquid–vapor zone at about 350°C.Elemental sulfur occurs in the crater lake environment as banded sediments exposed on the lakeshore and as a subaqueous molten body on the crater floor. The sediments were precipitated in the past during inorganic oxidation of H2S in the lake water. This process was not continuous, but was interrupted by periods of massive silica (poorly crystallized) precipitation, similar to the present-day lake conditions. We suggest that the factor controlling the type of deposition is related to whether H2S- or silica-rich volcanic discharges enter the lake. This could depend on the efficiency with which the lake water circulates in the hydrothermal cell beneath the crater. Quenched liquid sulfur products show δ34S values similar to those found in the banded deposits, suggesting that the subaqueous molten body simply consists of melted sediments previously accumulated at the lake bottom.  相似文献   

13.
This paper describes a methodology for the monitoring of fumarole temperatures at medium ranges (~ 6 km) using a handheld infrared camera (wavelength range: 8–13.5 µm). As a relationship between fumarole temperatures, gas flux and volcanic activity has been demonstrated by a number of studies, fumarole temperature data has a potential use as a monitoring tool. Volcán de Colima is an andesitic stratovolcano with a 300 m diameter summit crater formed by the destruction of the 2004 lava dome by a series of explosions in 2005. Between January 2006 and August 2007, sequences of thermal images were recorded from a viewpoint 6 km to the north during regular 24–48 hour monitoring excursions. The temperatures of fumaroles on the crater rim and the ground surface on the volcano's flanks were measured. A methodology was developed to remove data affected by clouds or volcanic water vapour based on rates of temperature change and scatter within the data. For the remaining data, it is demonstrated mathematically that at this range, typical variations in atmospheric transmissivity will affect the apparent temperatures by +/− 2 °C, while a 25% change in fumarole heat flux would change it by 5–10 °C. The mean night-time apparent temperature of the fumaroles was calculated for each excursion and showed an irregular decline over the 19 month period. Subtracting the radiant heat flux of flank rocks from those of the fumaroles removes seasonal variations and gives the clearest view of trends in the fumarole heat flux. A sharp drop in fumarole temperature during February 2007 coincided with the emergence of a lava dome in the crater. The declining fumarole temperature is interpreted to reflect decreasing gas flux from the crater in line with a change in eruptive regime from frequent, small, ash-rich explosions to slow effusion of lava.  相似文献   

14.
Comparisons are made between the Lesser Antilles and the South Sandwich Islands, the recent volcanic island chains at the eastern margins of the Caribbean and Scotia arcs. Although situated in similar geological and structural environments there are differences in the type of volcanic activity which prevails in these two arcs and in the petrography and chemistry of the lavas emitted. There is good evidence that the South Sandwich Islands are in general appreciably younger than the islands of the Lesser Antilles. Basaltic rocks predominate in the South Sandwich Islands whereas andesite is the dominant rock-type of the Lesser Antilles. Many of the lavas of the South Sandwich Islands, including the andesites and dacites are aphyric whereas those of the Lesser Antilles are almost invariably porphyritic. The basalts of the South Sandwich Islands are of tholeiitic type and the series shows more pronounced iron enrichment than does that of the Lesser Antilles. Basalts of the South Sandwich Islands have a lower Fe2O3/FeO ratio, contain lower concentrations of K, Sr and Ba and higher Cr, Co and Ni than the basalts of the West Indies. It is thought that the South Sandwich Islands may represent a volcanic island-arc in the early stages of development and the Lesser Antilles a later stage.  相似文献   

15.
Concentrations of chloride and sulfate and pH in the hot crater lake (Laguna Caliente) at Poás volcano and in acid rain varied over the period 1993–1997. These parameters are related to changes in lake volume and temperature, and changes in summit seismicity and fumarole activity beneath the active crater. During this period, lake level increased from near zero to its highest level since 1953, lake temperature declined from a maximum value of 70°C to a minimum value of 25°C, and pH of the lake water increased from near zero to 1.8. In May 1993 when the lake was nearly dry, chloride and sulfate concentrations in the lake water reached 85,400 and 91,000 mg l−1, respectively. Minimum concentrations of chloride and sulfate after the lake refilled to its maximum volume were 2630 and 4060 mg l−1, respectively. Between January 1993 and May 1995, most fumarolic activity was focused through the bottom of the lake. After May 1995, fumarolic discharge through the bottom of the lake declined and reappeared outside the lake within the main crater area. The appearance of new fumaroles on the composite pyroclastic cone coincided with a dramatic decrease in type B seismicity after January 1996. Between May 1995 and December 1997, enhanced periods of type A seismicity and episodes of harmonic tremor were associated with an increase in the number of fumaroles and the intensity of degassing on the composite pyroclastic cone adjacent to the crater lake. Increases in summit seismic activity (type A, B and harmonic tremor) and in the height of eruption plumes through the lake bottom are associated with a period of enhanced volcanic activity during April–September 1994. At this time, visual observations and remote fumarole temperature measurements suggest an increase in the flux of heat and gases discharged through the bottom of the crater lake, possibly related to renewed magma ascent beneath the active crater. A similar period of enhanced seismic activity that occurred between August 1995 and January 1996, apparently caused fracturing of sealed fumarole conduits beneath the composite pyroclastic cone allowing the focus of fumarolic degassing to migrate from beneath the lake back to the 1953–1955 cone. Changes in the chemistry of summit acid rain are correlated changes in volcanic activity regardless of whether fumaroles are discharging into the lake or are discharging directly into the atmosphere.  相似文献   

16.
A two-channel or split-window algorithm designed to correct for atmospheric conditions was applied to thermal images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) of Lake Yugama on Kusatsu–Shirane volcano in Japan in order to measure the temperature of its crater lake. These temperature calculations were validated using lake water temperatures that were collected on the ground. Overall, the agreement between the temperatures calculated using the split-window method and ground truth is quite good, typically ± 1.5 °C for cloud-free images. Data from fieldwork undertaken in the summer of 2004 at Kusatsu–Shirane allow a comparison of ground-truth data with the radiant temperatures measured using ASTER imagery. Further images were analyzed of Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes to acquire time-series of lake temperatures. A total of 64 images of these 4 volcanoes covering a wide range of geographical locations and climates were analyzed. Results of the split-window algorithm applied to ASTER images are reliable for monitoring thermal changes in active volcanic lakes. These temperature data, when considered in conjunction with traditional volcano monitoring techniques, lead to a better understanding of whether and how thermal changes in crater lakes aid in eruption forecasting.  相似文献   

17.
The pattern of volcanic tremor accompanying the 1989 September eruption at the south-east summit crater of Mount Etna is studied. In specific, sixteen episodes of lava fountaining, which occurred in the first phase of the eruption, are analysed. Their periodic behaviour, also evidenced by autocorrelation, allows us to define the related tremor amplitude increases as intermittent volcanic tremor episodes. Focusing on the regular intermittent behaviour found for both lava fountains and intermittent volcanic tremors, we tried an a posteriori forecast using simple statistical methods based on linear regression and the Student’ t-test. We performed the retrospective statistical forecast, and found that several eruptions would have been successfully forecast. In order to focus on the source mechanism of tremor linked to lava fountains, we investigated the relationship between volcanic and seismic parameters. A mechanism based on a shallow magma batch ‘regularly’ refilled from depth is suggested.  相似文献   

18.
The initial phase of the eruption forming Ukinrek Maars during March and April 1977 were explosions from the site of West Maar. These were mainly phreatomagmatic and initially transitional to strombolian. Activity at West Maar ceased after three days upon the initiation of the East Maar. The crater quickly grew by strong phreatomagmatic explosions. During the first phases of phreatomagmatic activity at East Maar, large exotic blocks derived from a subsurface till were ejected. Ballistic studies indicate muzzle velocities for these blocks of 80–90 m s−1.Phreatomagmatic explosions ejected both juvenile and non-juvenile material which formed a low rim of ejecta (< 26 mhigh) around the crater and a localized, coarse, wellsorted (σφ = 1−1.5) juvenile and lithic fall deposit. Other fine ash beds, interstratified with the coarse beds, are more poorly sorted (σφ = 2−3) and are interpreted as fallout of wet, cohesive ash from probably milder phases of activity in the crater. Minor base surge activity damaged trees and deposited fine ash, including layers plastered on vertical surfaces. Viscous basalt lava appeared in the center of the East Maar crater almost immediately and a lava dome gradually grew in the crater despite phreatomagmatic eruptions adjacent to it.The development of these maars appears to be mainly controlled by gradual collapse of crater and conduit walls, and blasting-out of the slumped debris by phreatomagmatic explosions when rising magma contacted groundwater beneath the regional water table and a local perched aquifer.Ballistic analysis on the ejected blocks indicates a maximum muzzle velocity of 100–150 m s-1, values similar to those obtained from other ballistic studies on maar ejecta.  相似文献   

19.
Methods used previously to remove compositional modifications from volcanic gas analyses for Mount Etna and Erta'Ale lava lake have bean employed to estimate the gas phase composition at Nyiragongo lava lake, based on samples obtained in 1959. H2O data were not reported in 11 of the 13 original analyses. The restoration methods have been used to estimate the H2O contents of the samples and to correct the analyses for atmospheric contamination, loss of sulfur and for pre- and pest-collection oxidation of H2S, S2, and H2. The estimated gas compositions are relatively CO2-rich, low in total sulfur and reduced. They contain approximately 35–50% CO2 45–55% H2O, 1–2% SO2, 1–2% H2., 2–3% CO, 1.5–2.5% H2S, 0.5% S2 and 0.1% COS over,he collection temperature range 102° to 960° C. The oxygen fugacities of the gases are consistently about half an order of magnitude below quartz-magnetite-fayalite. The low total sulfur content and resulting low atomic S/C of the Nyiragongo gases appear to be related to the relatively low fO2 of the crystallizing lava. At temperatures above 800°C and pressures of 1–1.5 k bar, the Nyiragongo gas compositions resemble those observed in primary fluid inclusions believed to have formed at similar temperatures and pressures in nephelines of intrusive alkaline rocks. Cooling to 300°C, with fO2 buffered by the rock, results in gas compositions very rich in CH4 (50–70%) and resembling secondary fluid inclusions formed at 200–500°C in alkaline rocks. Below 600°C the gases become supersaturated in carbon as graphite. These inferences are corroborated by several reports of hydrocarbons in plutonic alkaline rocks, and by the presence of CH4-rich waters in Lake Kivu — a lake on the flanks of Nyiragongo volcano.  相似文献   

20.
Using near simultaneously acquired Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Earth Observing-1 Advanced Land Imager (ALI) data we assess the relative radiant responses over active lava flows from the Mt. Etna July/August 2001 flank eruption. By assessing the extent of saturation between the two instruments and using the dual-band method of extracting sub pixel thermal information, we show that the ALI represents an improvement over the ETM+ in the present ability to assess temperatures of hot active lava flows for a number of reasons. (1) The extra spectral channels provided by ALI compliment the current SWIR channels on ETM+ by providing a greater number of paired channel combinations for input into the dual-band method. Thus, dual-band temperature solutions can be determined for a greater range of lava flow types than previously possible using the two paired channel combinations available with the ETM+. (2) The ALI instrument is less susceptible than ETM+ to saturation within the SWIR, especially when using channels 5, 5p and 4p at wavelengths of 1.65, 1.25 and 0.87 μm respectively. (3) The greater radiometric sensitivity of the ALI 12 bit electronics coupled with a significantly higher signal to noise ratio aid in obtaining successful dual-band solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号