首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

3.
A sediment mass balance constructed for a 16‐km reach of the Snake River downstream from Jackson Lake Dam (JLD) indicates that river regulation has reduced the magnitude of sediment mass balance deficit that would naturally exist in the absence of the dam. The sediment budget was constructed from calibrated bed load transport relations, which were used to model sediment flux into and through the study reach. Calibration of the transport relations was based on bed load transport data collected over a wide range of flows on the Snake River and its two major tributaries within the study area in 2006 and 2007. Comparison of actual flows with unregulated flows for the period since 1957 shows that operations of JLD have reduced annual peak flows and increased late summer flows. Painted tracer stones placed at five locations during the 2005 spring flood demonstrate that despite the reduction in flood magnitudes, common floods are capable of mobilizing the bed material. The sediment mass balance demonstrates that more sediment exits the study reach than is being supplied by tributaries. However, the volume of sediment exported using estimated unregulated hydrology indicates that the magnitude of the deficit would be greater in the absence of JLD. Calculations suggest that the Snake River was not in equilibrium before construction of JLD, but was naturally in sediment deficit. The conclusion that impoundment lessened a natural sediment deficit condition rather than causing sediment surplus could not have been predicted in the absence of sediment transport data, and highlights the value of transport data and calculation of sediment mass balance in informing dam operations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
During floods, large quantities of wood can be mobilized and transported downstream. At critical sections, such as bridges, the transported wood might be entrapped and a quick succession of backwater effects can occur as a result of the reduction of the cross‐sectional area. The aim of this work is to explore large wood‐related hazards during floods in the gravel‐bed river Czarny Dunajec (Polish Carpathians), where the river flows through the village of D?ugopole. This work is based on the numerical modelling of large wood transport together with flow dynamics in which inlet and boundary conditions were designed based on field observations. The exploratory approach developed in this study uses multiple scenarios (193) to analyse the factors controlling bridge clogging: wood size, wood supply, flow conditions, morphology and obstacles in the riverbed. Results highlighted the strong control of log length (stronger than that of log diameter) on potential blockage probability; however, according to our results the main factor controlling bridge clogging was the flood discharge. River morphology and wood supply play an important role as well. The river morphology may reduce bridge blockage, as it influences flow velocity and depth, and creates natural retention zones for wood. In addition, the impacts of bridge blockage were analysed in terms of afflux depth and length, and flooded area. Results showed that bridge blockage may result in a significant increase in water depth (up to 0.7 m) and flooded area (up to 33% more), therefore increasing flood risk in the village. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A review of 112 years of change in the channel of the Salt River, central Arizona, U.S.A., shows that this arid-region river has a main-flow channel that has migrated laterally up to 1.6 km (1 mi) in response to floor events. Maps showing locational probabilities indicate that along the channel zones of relative locational stability alternate with zones of relative instability at a 3.2 km (2 mi) interval. Construction of upstream reservoirs has reduced sediment input into the main river but has not controlled floods. The channel width has not changed except for moderate fluctuations around mean values; the main-flow channel has incised approximately 6 m (20 ft) over most of the 48 km (30 mi) study reach during six recent floods. Gradient has remained unchanged. During floods bed material was mobilized to a depth below the original bed level that was greater than the height of the water surface above the original bed. Calculations based on tractive force indicate a threshold discharge of instability that is equal to the flow with a five-year return interval. The river exhibits remarkable stability with respect to gradient and sinuosity, irrespective of water and sediment discharges, but horizontal channel location exhibited selective instability. Over the record period of more than a century, the channel appears not to have been in equilibrium considering geometry, discharge, and sediment.  相似文献   

6.
Riverine sediments have played an important role in the morphological evolution of river channels and river deltas. However, the sediment regime in the many world's rivers has been altered in the context of global changes. In this study, temporal changes in the sediment regime of the Pearl River were examined at different time scales, that is, annual, seasonal, and monthly time scales, using the Mann–Kendall test. The results revealed that precipitation variability was responsible for monthly and seasonal distribution patterns of the sediment regime and the long‐term changes in the water discharge; however, dam operation has smoothed the seasonal distribution of water discharge and resulted in decreasing trends in the annual, wet‐season, and dry‐season sediment load series since the 1950s. Due to the different regulation magnitudes of dam operation, differences were observed in sediment regime changes among the three tributaries. In addition, human activities have altered the hysteresis of seasonal rating curves and affected hysteresis differences between increasing and decreasing water discharge stages. Sediment supply is an important factor controlling river channel dynamics, affecting channel morphology. From the 1950s to the 1980s, siltation was dominant in river channels across the West River and North River deltas in response to the sediment increases; however, scouring occurred in the East River deltas due to sediment reduction. Significant erosion occurred in river channels in the 1990s, which was mostly due to downcutting of the river bed caused by sand excavations and partly because of the reduced sediment load from upstream. Although sand excavations have been banned and controlled by authority agencies since 2000, the erosion of cross sections was still observed in the 2000s because of reduced sediment caused by dam construction. Our study examines the different effects of human activities on the sediment regime and downstream channel morphology, which is of substantial scientific importance for river management.  相似文献   

7.
1 wrsoooCTIoxThe Yeuow mver crtes a huge amoun of sedimcht and the noods often cause raPid and severeerosinn and dePOsihon. The channl bed of the YelOw mver often exPeriences degIadation in the mainchannel during fioods. In some cases vigorous erosion uP to l0 meters takes place in a shOrt Period oftiIn. Such phenomenon usually occurs in the ndddie reaChs of the Yelow mver and its tributaries suchas the Wdse mVer the Beiluohe mver etc. For examPle, th6 hyPenconcentraed nood in July l…  相似文献   

8.
The peak in sediment transport in alluvial rivers generally lags behind the peak in discharge. It is thus not clear how the hysteresis in the sediment/discharge relationship may be impacted by damming, which can fundamentally alter the water and sediment regimes in the downstream reaches of the river. In this study, a total of 500 flood events in the Yichang–Chenglingji Reach (YCR) of the Middle Yangtze River immediately downstream of the Three Gorges Dam (TGD) are analysed to study the impacts of dam operations on the hysteresis of suspended sediment transport. Sediment rating curves, hysteresis patterns, as well as lag times, are investigated to determine the relationship between suspended sediment concentration (SSC) and flow discharge (Q) at different temporal scales, from inter-annual to individual flood events, for the pre- and post-TGD period from 1992 to 2002 and from 2003 to 2017, respectively. The results showed that the TGD operation decreased the frequency and magnitude of floods. The decrease in peak flow and increase in base flow weakened the flood contribution to the annual discharge by nearly 20%. However, the relative suspended sediment load contribution during flood events was much higher than the discharge contribution, and was little impacted by the dam. At seasonal and monthly scales, more than 80% of the suspended sediment was transported by ~65% of the water discharge in the summer and early autumn. The monthly SSCQ relationship changed from a figure-eight to an anti-clockwise pattern after the construction of the TGD. For single flood events, the TGD operations significantly modified the downstream SSCQ hysteresis patterns, increasing the frequency of anti-clockwise loops and the lag time between peak Q and peak SSC. These adjustments were mainly caused by differences in the propagation velocities of flood and sediment waves and the sediment ‘storage–mobilization–depletion’ process, whereas the influence of lateral diversions was small. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
A survey of flows was conducted at a river confluence with coarse bed material. Bridges were installed on both tributaries, at the confluence and farther downstream on the receiving stream. At these stations, flow velocities were measured over a dense grid for seven conditions ranging from very low flows to the bankfull stage. Hydraulic geometry relationships established at all four stations revealed that flow is accelerated through the confluence as stage rises. At bankfull discharge, average velocity is 1.6 times higher at the confluence than on either tributary. Flow acceleration occurs at and above intermediate flow stages and is concentrated at the centre of a linear pool located at the confluence. The development of a zone of high shear stress is also associated with the cell of high flow velocity. Flow acceleration is dissipated at the exit of the pool where water surges over boulder ribs. The acceleration is not related to the development of flow separation zones as observed by Best and Reid (1984) for wide junction angles, nor is it explained by the reduction of the friction exerted by the banks. Acceleration is associated with the plan geometry of the confluence, with the lateral slopes which permit water to converge, and with a reduction in grain roughness at the confluence. Owing to the curvature of the tributary and to the acute angle of entry, relative power losses through the confluence decrease with increasing stages.  相似文献   

10.
The effects of large floods on river morphology are variable and poorly understood. In this study, we apply multi‐temporal datasets collected with small unmanned aircraft systems (UASs) to analyze three‐dimensional morphodynamic changes associated with an extreme flood event that occurred from 19 to 23 June 2013 on the Elbow River, Alberta. We documented reach‐scale spatial patterns of erosion and deposition using high‐resolution (4–5 cm/pixel) orthoimagery and digital elevation models (DEMs) produced from photogrammetry. Significant bank erosion and channel widening occurred, with an average elevation change of ?0.24 m. The channel pattern was reorganized and overall elevation variation increased as the channel adjusted to full mobilization of most of the bed surface sediments. To test the extent to which geomorphic changes can be predicted from initial conditions, we compared shear stresses from a two‐dimensional hydrodynamic model of peak discharge to critical shear stresses for bed surface sediment sizes. We found no relation between modeled normalized shear stresses and patterns of scour and fill, confirming the complex nature of sediment mobilization and flux in high‐magnitude events. However, comparing modeled peak flows through the pre‐ and post‐flood topography showed that the flood resulted in an adjustment that contributes to overall stability, with lower percentages of bed area below thresholds for full mobility in the post‐flood geomorphic configuration. Overall, this work highlights the potential of UAS‐based remote sensing for measuring three‐dimensional changes in fluvial settings and provides a detailed analysis of potential relationships between flood forces and geomorphic change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
More frequent extreme flood events are likely to occur in many areas in the twenty‐first century due to climate change. The impacts of these changes on sediment transport are examined at the event scale using a 1D morphodynamic model (SEDROUT4‐M) for three tributaries of the Saint‐Lawrence River (Québec, Canada) using daily discharge series generated with a hydrological model (HSAMI) from three global climate models (GCMs). For all tributaries, larger flood events occur in all future scenarios, leading to increases in bed‐material transport rates, number of transport events and number of days in the year where sediment transport occurs. The effective and half‐load discharges increase under all GCM simulations. Differences in flood timing within the tributaries, with a shift of peak annual discharge from the spring towards the winter, compared to the hydrograph of the Saint‐Lawrence River, generate higher sediment transport rates because of increased water surface slope and stream power. Previous research had shown that channel erosion is expected under all GCMs' discharge scenarios. This study shows that, despite lower bed elevations, flood risk is likely to increase as a result of higher flood magnitude, even with falling base level in the Saint‐Lawrence River. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

This paper presents a reach-scale sediment balance of a large impounded Mediterranean river (the lower Ebro, 1998–2008). Multi-temporal sediment storage and the influence of floods and tributaries on the sediment load were examined using continuous discharge and turbidity records. The mean annual suspended sediment load at the reach outlet (Xerta) is 0.12?×?106 t, corroborating previous results. Suspended sediment concentrations were low (SSCmean?=?13 mg L-1), attaining a maximum of 274 mg L-1. Erosion processes (channel-scour, bank erosion) are dominant, and net export of sediment occurs over the long term. Unexpectedly, ephemeral tributaries were found to contribute significantly: sediment delivered during torrential events attained 5% of the Ebro annual load, and was even larger than that in flushing flows. Overall, most of the suspended sediment load is transported by floods (up to 65% in some years). The results constitute basic information to underpin current management actions aiming to achieve the sustainability of the riverine and deltaic system.

Editor D. Koutsoyiannis; Associate editor D. Hughes

Citation Tena, A., Batalla, R.J. and Vericat, D., 2012. Reach-scale suspended sediment balance downstream from dams in a large Mediterranean river. Hydrological Sciences Journal, 57 (5), 831–849.  相似文献   

13.
1INTRODUCTIONThesouthwesternregionoftheUnitedStates,includingSoutheastArizona,ischaracterizedbyasemiaridclimatewithhotsummers,mildwinters,andephemeralstreamsdrainingsparselyvegetatedareas.ChannelmorphologyoftheephemeralstreamsinSoutheastArizonaisinfluencedbybothlateralandverticalchannelchangesoccurringduringmajorfloods.Lateralchannelchangesoccurinthreewaysbankerosion,meandermigration,andchannelavulsion.Verticalchannelchangesinclude,beddegradationoraggradation,andmayoccurseparatelyorinco…  相似文献   

14.
The aim of this paper is to quantify peakflow attenuation and/or amplification in a river, investigating lateral flow from the intermediate catchment during floods. This is a challenge for the study of the hydrological response of permeable/intermittent streams, and our contribution refers to a modelling framework based on the inverse problem for the diffusive wave model applied in a karst catchment. Knowing the upstream and downstream hydrographs on a reach between two stations, we can model the lateral one, given information on the hydrological processes involved in the intermediate catchment. The model is applied to 33 flood events in the karst reach of the Iton River in French Normandy where peakflow attenuation is observed. The monitored zone consists of a succession of losing and gaining reaches controlled by strong surface‐water/groundwater (SW/GW) interactions. Our results show that despite a high baseflow increase in the reach, peakflow is attenuated. Model application shows that the intensity of lateral outflow for the flood component is linked to upstream discharge. A combination of river loss and overbank flow for highest floods is proposed for explaining the relationships. Our approach differentiates the role of outflow (river loss and overbank flow) and that of wave diffusion on peakflow attenuation. Based on several sets of model parameterization, diffusion is the main attenuation process for most cases, despite high river losses of up to several m3/s (half of peakflow for some parameterization strategies). Finally, this framework gives new insight into the SW/GW interactions during floods in karst basins, and more globally in basins characterized by disconnected river‐aquifer systems.  相似文献   

15.
《Water Policy》2000,1(6):653-658
An extended period of wetter weather persisted over the Yangtze river region for three months in 1998 and culminated with a series of intense storms, causing the worst floods of this century. The present analysis shows that the flow was only a 60-year event according to the maximum discharge peak. Human-induced deforestation and soil erosion play an important role in the special phenomena of the low peak charge but highest water level in the 1998 flood. Thus, to control flooding, soil and water conservation should be implemented on a large scale in this river region.  相似文献   

16.
Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi‐distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high‐mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two‐step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing ‘normal’ (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

17.
Abstract

This paper aims at initiating a fundamental understanding of the suspended load transport of river sediment in unsteady flow. Laboratory erosion tests as well as artificial flood experiments are used to evaluate the influence of the transient regime on the transport efficiency of the flow. The erosion experiments reveal that the transport capacity is augmented when the unsteadiness of the flow increases. However, the influence of the transient regime is counteracted by the cohesive properties of the river bed. Field experiments with artificial floods released from a reservoir into a small canal confirm these findings and show a relationship between the friction velocity and the suspended load transport. An appropriate parameter β is proposed to evaluate the impact of the transient regime on the transport of suspended sediment.  相似文献   

18.
In mixed bedrock–alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20–50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

19.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Sediment mining in rivers may have a major impact on river geomorphology and research is required to quantify these impacts. In this research, experimental studies were conducted to analyse the morphological changes of channel bed and the turbulent characteristics of flow in the presence of mining. The channel bed profile shows erosion at the bank of the pit and that the erosion expands to the whole width of the channel and propagates downstream with time. The deposition of sediment occurs along the upstream edge of the pit and the depth of the pit decreases with time. Velocity reversal occurs at the central bottom of the pit related to a recirculation zone. Reynolds shear stress and the turbulent intensities become higher in the mining pit region and downstream of it as compared to the upstream section, causing a more rapid movement of bed particles. Analysis of the bursting phenomenon shows that the contribution of sweep and ejection events to the total Reynolds shear stress is more dominant over outward and inward interaction events. The dominance of the sweep event over ejection is observed at the near‐bed region for all the sections, but the depth range of dominance of sweep events in the pit and downstream of the pit is found to be more than the upstream. The increase in thickness is responsible for the increase in bed material transport. The increased sediment transport capacity at the mining pit and downstream of it caused the deformation and lowering of channel bed downstream. An empirical formulation of bedload transport for mining induced channels is derived from two different sized uniform bed materials. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号