首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper, seismic behavior of gas supply networks is investigated by constructing a 24 m×24 m buried network and conducting an artificial earthquake test by detonating TNT explosives. The pipe network consists of typical welded steel pipes used in gas supply networks. Ground motion is produced by detonating 30 kg of TNT explosives buried 5 m below ground surface and 15 m away from the network. The test preparations are presented, including site selection, network layout, ground motion generation, and arrangements of different sensors. The measured ground acceleration, strain, and acceleration of welded steel pipes, and pipe–soil relative slippage are discussed. The deformation patterns of welded steel pipes are also analyzed and explained, including axial and bending deformations, systematic network characteristics, deformation relationship between ground and pipes, and dynamic response of buried pipes.  相似文献   

3.
The present work deals with 1D and 2D ground response analysis and liquefaction analysis of alluvial soil deposits from Kanpur region along Indo-Gangetic plains. Standard penetration tests and seismic down hole tests have been conducted at four locations namely IITK, Nankari village, Mandhana and Bithoor at 1.5 m interval up to a depth of 30 m below the ground surface to find the variation of penetration blows and the shear wave velocity along the depth. From the selected sites undisturbed as well as representative soil samples have been collected for detailed soil classification. The soil profiles from four sites have been considered for 1D and 2D ground response analysis by applying the free field motions of three Himalayan earthquakes namely Chamba earthquake (Mw—5.1), Chamoli earthquake (Mw—6.4) and Uttarkashi earthquake (Mw—6.5). An average value of Peak Ground Acceleration (PGA) obtained from 1D and 2D analysis is considered for liquefaction analysis and post-liquefaction settlement. The excess pore water pressure ratio is greater than 0.8 at a depth of 24 m from ground surface for IITK, Nankari village, Bithoor sites. More than 50% of post liquefaction settlement is contributed by layers from 21–30 m for all sites. In general, the soil deposits in Kanpur region have silty sand and sand deposits and are prone to liquefaction hazards due to drastic decrease of cyclic resistance ratio (CRR) at four chosen sites in Kanpur.  相似文献   

4.
On 6 April 2009 a Mw=6.1 earthquake produced severe destruction and damage over the historic center of L’Aquila City (central Italy), in which the accelerometer stations AQK and AQU recorded a large amount of near-fault ground motion data. This paper analyzes the recorded ground motions and compares the observed peak accelerations and the horizontal to vertical response spectral ratios with those revealed from numerical simulations. The finite element method is considered herein to perform dynamic modeling on the soil profile underlying the seismic station AQU. The subsurface model, which is based on the reviewed surveys that were carried out in previous studies, consists of 200–400 m of Quaternary sediments overlying a Meso-Cenozoic carbonate bedrock. The Martin-Finn-Seed's pore-water pressure model is used in the simulations. The horizontal to vertical response spectral ratio that is observed during the weak seismic events shows three predominant frequencies at about 14 Hz, 3 Hz and 0.6 Hz, which may be related to the computed seismic motion amplification occurring at the shallow colluvium, at the top and base of the fluvial-lacustrine sequence, respectively. During the 2009 L’Aquila main shock the predominant frequency of 14 Hz shifts to lower values probably due to a peculiar wave-field incidence angle. The predominant frequency of 3 Hz shifts to lower values when the earthquake magnitude increases, which may be associated to the progressive softening of soil due to the excess pore-water pressure generation that reaches a maximum value of about 350 kPa in the top of fluvial-lacustrine sequence. The computed vertical peak acceleration underestimates the experimental value and the horizontal to vertical peak acceleration ratio that is observed at station AQU decreases when the earthquake magnitude increases, which reveals amplification of the vertical component of ground motion probably due to near-source effects.  相似文献   

5.
《Journal of Geodynamics》2008,45(3-5):160-172
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   

6.
Ground motion intensity measures such as the peak ground acceleration (PGA) and the pseudo-spectral acceleration (PSA) at two sites due to the same seismic event are correlated. The spatial correlation needs to be considered when modeling ground-motion fields for seismic loss assessments, since it can have a significant influence on the statistical moments and probability distribution of aggregated seismic loss of a building portfolio.Empirical models of spatial correlation of ground motion intensity measures exist only for a few seismic regions in the world such as Japan, Taiwan and California, since for this purpose a dense observation network of earthquake ground motion is required. The Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) provides one such dense array with station spacing of typically 2 km in the urban area of Istanbul. Based on the records of eight small to moderate (Mw3.5–Mw5.1) events, which occurred since 2003 in the Marmara region, we establish a model of intra-event spatial correlation for PGA and PSA up to the natural period of 1.0 s.The results indicate that the correlation coefficients of PGA and short-period PSA decay rapidly with increasing interstation distance, resulting in correlation lengths of approximately 3–4 km, while correlation lengths at longer natural periods (above 0.5 s) exceed 6 km. Finally, we implement the correlation model in a Monte Carlo simulation to evaluate economic loss in Istanbul's district Zeytinburnu due to a Mw7.2 scenario earthquake.  相似文献   

7.
R/S analysis is used in this work to investigate the fractal correlations in terms of the Hurst exponent for the 1998–2011 seismicity data in Southern Mexico. This region is the most seismically active area in Mexico, where epicenters for severe earthquakes (e.g., September 19, 1985, Mw = 8.1) causing extensive damage in highly populated areas have been located. By only considering the seismic events that meet the Gutenberg–Ritcher law completeness requirement (b = 0.97, MGR = 3.6), we found time clustering for scales of about 100 and 135 events. In both cases, a cyclic behavior with dominant spectral components at about one cycle per year is revealed. It is argued that such a one-year cycle could be related to tidal effects in the Pacific coast. Interestingly, it is also found that high-magnitude events (Mw  6.0) are more likely to occur under increased interevent correlations with Hurst exponent values H > 0.65. This suggests that major earthquakes can occur when the tectonic stress accumulates in preferential directions. In contrast, the high-magnitude seismic risk is reduced when stresses are uniformly distributed in the tectonic shell. Such cointegration between correlations (i.e., Hurst exponent) and macroseismicity is confirmed for spatial variations of the Hurst exponent. In this way, we found that, using the Hurst exponent standpoint, the former presumed Michoacan and the Guerrero seismic gaps are the riskiest seismic zones. To test this empirical finding, two Southern Mexico local regions with large earthquakes were considered. These are the Atoyac de Alvarez, Guerrero (Mw = 6.3), and Union Hidalgo, Oaxaca (Mw = 6.6), events. In addition, we used the Loma Prieta, California, earthquake (October 17, 1989, Mw = 6.9) to show that the high-magnitude earthquakes in the San Andreas Fault region can also be linked to the increments of determinism (quantified in terms of the Hurst exponent) displayed by the stochastic dynamics of the interevent period time series. The results revealed that the analysis of seismic activity by means of R/S analysis could provide further insights in the advent of major earthquakes.  相似文献   

8.
The northern Tehran fault (NTF) is a principal active fault of the Alborz mountain belt in the northern Iran. The fault is located north of the highly populated Metropolitan Area of Tehran. Historical records and paleoseismological studies have shown that the NTF poses a high seismic risk for the Tehran region and the surrounding cities (e.g. Karaj). A series of ground-motion simulations are carried out using a hybrid kinematic-stochastic model to calculate broadband (0.1–20 Hz) ground-motion time histories for deterministic earthquake scenarios (M7.2) on the NTF. We will describe the source characteristics of the target event to develop a list of scenario earthquakes that are probably similar to a large earthquake on the NTF. The effect of varying different rupture parameters such as rupture velocity and rise time on the resulting broadband strong motions has been investigated to evaluate the range of uncertainty in seismic scenarios. The most significant parameters in terms of ground-shaking level are the rise time and the value of the rupture velocity. For the worst-case scenario, the maximum expected horizontal acceleration, and velocity at rock sites in Tehran range between 128 and 1315 cm/s/s and 11–191 cm/s, respectively. For the lowest scenario, the corresponding values range between 102 and 776 cm/s/s and 12 to 81 cm/s. Nonlinear soil effects may change these results but are not accounted for in this study. The largest variability of ground motion is observed in neighborhood of asperity and also in the direction of rupture propagation. The calculated standard deviation of all ground-motion scenarios is less than 30% of the mean. The capability of the simulation method to synthesize expected ground motions and the appropriateness of the key parameters used in the simulations are confirmed by comparing the synthetic peak ground motions (PGA, PGV and response spectra) with empirical ground-motion prediction equations.  相似文献   

9.
In Ottawa, Canada, unusually high amplification ratios have recently been measured in clayey silts (called ‘Leda Clays’) at low levels of earthquake-induced ground shaking. However, the contribution of seismic Q, or material damping (ξ=1/2Q), to the overall ground motion at soft soil sites across the city is not well understood. This research investigates attenuation measurements in soft soils (Vs<250 m/s) for ongoing seismic hazard evaluation in the Ottawa area. The work focuses on in situ measurements of damping in two deep boreholes drilled into Leda Clay. To investigate the possibility of frequency-dependent dynamic properties of these materials at low strains, a new approach to the spectral ratio technique has been developed for the measurement of Qs in the field using a mono-frequency vibratory source (generating signals between 10 and 100 Hz), and two identical downhole 3-component geophones. Monofrequency signals also allowed for the measurement of dispersion (variation of velocity with frequency). Analysis of the data show that dynamic properties are, for the most part, independent of frequency in the homogenous silty soils, yielding negligible variation in shear wave velocity (<2 m/s) across the frequency test band, and small strain Qs's ranging from 170 to 200 (damping of 0.25–0.30%) over soil thickness intervals ranging from 10 to 60 m. At intervals within 20 m of the ground surface, laminated silt and clay beds of elevated porosity are found to have slight influence on the frequency dependence of damping for frequencies greater than 70 Hz (damping increase to 0.6%).  相似文献   

10.
The single backscattering model was used to estimate total attenuation of coda waves (Qc) of local earthquakes recorded on eight seismological stations in the complex area of the western continental Croatia. We estimated Q0 and n, parameters of the frequency dependent coda-Q using the relation Qc = Q0fn. Lapse time dependence of these parameters was studied using a constant 30 s long time window that was slid along the coda of seismograms. Obtained Qc were distributed into classes according to their lapse time, tL. For tL = 20–50 s we estimated Q0 = 45–184 and n = 0.49–0.94, and for tL = 60–100 s we obtained Q0 = 119–316 and n = 0.37–0.82. There is a tendency of decrease of parameter n with increasing Q0, and vice versa. The rates of change of both Q0 and n seem to decrease for lapse times larger than 50–80 s, indicating an alteration in rock properties controlling coda attenuation at depths of about 100–160 km. A very good correlation was found between the frequency dependence parameter n and the Moho depths for lapse times of 50, 60 and 70 s.  相似文献   

11.
Seismic activity has been postulated as a trigger of volcanic eruption on a range of timescales, but demonstrating the occurrence of triggered eruptions on timescales beyond a few days has proven difficult using global datasets. Here, we use the historic earthquake and eruption records of Chile and the Andean southern volcanic zone to investigate eruption rates following large earthquakes. We show a significant increase in eruption rate following earthquakes of MW > 8, notably in 1906 and 1960, with similar occurrences further back in the record. Eruption rates are enhanced above background levels for ~ 12 months following the 1906 and 1960 earthquakes, with the onset of 3–4 eruptions estimated to have been seismically influenced in each instance. Eruption locations suggest that these effects occur from the near-field to distances of ~ 500 km or more beyond the limits of the earthquake rupture zone. This suggests that both dynamic and static stresses associated with large earthquakes are important in eruption-triggering processes and have the potential to initiate volcanic eruption in arc settings over timescales of several months.  相似文献   

12.
Strong ground motion variability due to rapid changes in subsoil conditions may lead to different site responses, which in turn yields to beneficial or detrimental soil–foundation–structure interaction. This technical note presents the results of a seismic soil–structure interaction analysis conducted using a 2D finite difference model, developed with the program FLAC, of a critical section of a 60 km long strategic urban overpass, which is under construction in Mexico City, for a Mw 8.7 earthquake. Initially, the response of the free field was calibrated comparing the values obtained with FLAC, with those gathered using the computer code QUAD4M. Good agreement was observed between the results generated with these programs. Accelerations and displacements were determined at the upper deck and foundation of the urban overpass. Important seismic soil–structure interaction was observed along the overpass at the supports analyzed. This numerical study helps to gain insight regarding the site response ground motion incoherence effects that influence the dynamic behavior of this kind of structures during extreme events.  相似文献   

13.
In western India during the Bhuj earthquake (Mw 7.6) on January 26, 2001, the Anjar City at ~30 km southwest of Bhuj experienced three types of damage scenario: severely damaged, less damaged and non-damaged. Similar damage patterns were also observed for the 1819 (Mw 7.8) and the 1956 (Mw 6.0) earthquakes. Microtremor array measurements were conducted in and around the Anjar city to examine the strength of soil structures and damage pattern. Significant differences are observed in frequencies and amplitudes in horizontal-to-vertical spectral ratio (HVSR) using microtremor measurements. The severely- damaged site shows two peak amplitudes: 2.8 at 1.2 Hz; and 4.0 at 8.0 Hz. The less-damaged site also shows two amplitudes: 2.5 and 2.1 at 1.4 Hz; and 2.0 Hz, respectively. The non-damaged site, on the other hand, shows that the HVSR curves become almost flatter. Similar results for three types of damage scenario based on analyses of earthquake records are also observed for the study area. The microtremor array measurements has revealed shear wave velocity Vs≥400 m/s at 18 m depth in the non-damaged, at 40 m in the less-damaged and at 60 m depth in the severely-damaged sites. The site amplitudes and the Vs values show a good correlation with the soil characteristics and damage pattern, suggesting that strength of soil layers at varying depths is a dictating factor for the estimate of the earthquake risk evaluation of the area under study.  相似文献   

14.
The Ganzi-Yushu-Xianshuihe Fault Zone (GYXFZ) is a typical active strike-slip fault that has triggered many large historic earthquakes, including the 2010 Mw 6.9 Yushu earthquake in the central Tibetan Plateau. This fault zone extends for ca. 800 km from the central Tibetan Plateau to its southeastern margin and varies in trend from WNW-ESE in the northwestern segment of the fault zone to NNW-SSE in the southeastern segment, having the geometry of an arc projecting northeastwards. In this study, we present evidence for the systematical sinistral deflection and/or offset of the Yangtze River and its branch stream channels and valleys along the GYXFZ. Topographic analysis of three-dimensional (3D) perspective images constructed using digital elevation model (DEM) data, 0.5 m-resolution WorldView and GeoEye images, and 15 m-resolution Landsat-Enhanced Thematic Mapper (ETM+) images, together with analysis of geological structures, reveals the following: (i) the main river channels and valleys of the Yangtze River drainage system show systematic sinistral deflections and/or offsets along the GYXFZ; (ii) various amounts of sinistral offset have accumulated on the tributary stream channels, valleys, and gullies of the Yangtze River along the fault, with a linear relation, D = aL, between the upstream length L from the deflected point and the offset amount D with a certain coefficient a; (iii) the maximum amount of sinistral offset is up to ca. 60 km, which was accumulated in the past 13–5 Ma; and (iv) the long-term average strike-slip rate is ca. 4.6–12 mm/year. Geological and geomorphic evidence, combined with geophysical data, demonstrates that the GYXFZ is currently active as one of the major seismogenic faults in the Tibetan Plateau, dominated by left-lateral strike-slip motion. Our findings supply important evidence for the tectonic evolution of strike-slip faults in the Tibetan Plateau since the Eurasia-India continental collision.  相似文献   

15.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

16.
Predictive equations based on the stochastic approach are developed for earthquake ground motions from Garhwal Himalayan earthquakes of 3.5≤Mw≤6.8 at a distance of 10≤R≤250 km. The predicted ground motion parameters are response spectral values at frequencies from 0.25 to 20 Hz, and peak ground acceleration (PGA). The ground motion prediction equations (GMPEs) are derived from an empirically based stochastic ground motion model. The GMPEs show a fair agreement with the empirically developed ground motion equations from Himalaya as well as the NGA equation. The proposed relations also reasonably predict the observed ground motion of two major Himalayan earthquakes from Garhwal Himalayan region. For high magnitudes, there is insufficient data to satisfactorily judge the relationship; however it reasonably predicts the 1991 Uttarkashi earthquake (Mw=6.8) and 1999 Chamoli earthquake (Mw=6.4) from Garhwal Himalaya region.  相似文献   

17.
This paper discusses the design, the installation, and the experimental and numerical evaluation of the effectiveness of a stiff wave barrier in the soil as a mitigation measure for railway induced vibrations. A full scale in situ experiment has been conducted at a site in El Realengo (Spain), where a barrier consisting of overlapping jet grout columns has been installed along a railway track. This barrier is stiff compared to the soil and has a depth of 7.5 m, a width of 1 m, and a length of 55 m. Geophysical tests have been performed prior to the installation of the barrier for the determination of the dynamic soil characteristics. Extensive measurements have been carried out before and after installation of the barrier, including free field vibrations during train passages, transfer functions between the track and the free field, and the track receptance. Measurements have also been performed at a reference section adjacent to the test section in order to verify the effect of changing train, track, and soil conditions over time. The in situ measurements show that the barrier is very effective: during train passages, a reduction of vibration levels by 5 dB is already obtained from 8 Hz upwards, while a peak reduction of about 12 dB is observed near 30 Hz immediately behind the barrier. The performance decreases further away from the jet grouting wall, but remains significant. The experimental results are also compared to numerical simulations based on a coupled finite element–boundary element methodology. A reasonable agreement between experiments and predictions is found, largely confirming the initially predicted reduction. This in situ test hence serves as a ‘proof of concept׳, demonstrating that stiff wave barriers are capable of significantly reducing vibration levels, provided that they are properly designed.  相似文献   

18.
The city of Catania (Italy) in the South-Eastern Sicily has been affected in past times by several destroying earthquakes with high values of estimated magnitude. The seismogenic area to the south of Volcano Etna, known as Iblean Area, is placed between the African and the Euro-Asiatic plates on the west of the Ibleo-Maltese escarpment, to the south of the Graben of the Sicilian channel and on the east of the overlapping front of Gela. Basing on the seismic history of Catania, the following earthquake scenarios have been considered: the “Val di Noto” earthquake of January 11, 1693 (with intensity X-XI on MCS scale, magnitude MW=7.41 and epicentral distance of about 13 km); the “Etna” earthquake of February 20, 1818 (with intensity IX on MCS scale, magnitude MW=6.23 and epicentral distance of about 10 km). The soil response analysis at the surface, in terms of time history and response spectra, has been obtained by 1-D equivalent linear models for about 1200 borings location available in the data-bank of the central area of Catania of about 50 km2, using deterministic design scenario earthquakes as input at the conventional bedrock.Seismic microzoning maps of the city of Catania have been obtained in terms of different peak ground acceleration at the surface and in terms of amplification ratios for given values of frequency.  相似文献   

19.
Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.  相似文献   

20.
We analyzed records of eight seismic stations of the autonomous broadband seismograph network of a joint project between Utrecht University (the Netherlands), California Institute of Technology, and Centro de Investigación Científica y de Estudios Superiores de Ensenada (CICESE). These stations recorded the Mw 5.6 earthquake that occurred on 12 November 2003 at Salsipuedes basin in the middle of the Gulf of California 2 km west of the island Angel de la Guarda. This event was located at 29.16º N and 113.37º W, 30 km northeast of Bahia de los Angeles. A foreshock and hundreds of aftershocks were recorded in the 48 hours after its origin time. With the location of 29 earthquakes we identified the active segment, perpendicular to the main transform fault NW–SE of Canal de Ballenas, representing the transtensional boundary between the Pacific and North American plates. The direction of the active fault described is consistent with the normal fault mechanism reported by the National Earthquake Information Center (strike=39º, dip=34º, slip=–44º).From the duration magnitude of 456 aftershocks, we calculated a b-value of 1.14±0.28; furthermore, we calculated a seismic moment of (3.5 ±3.3) X1017Nm, a source radius of 3.7 ± 2.63 km, and a static stress drop of 3.94 ± 1.15 MPa (39.4 ± 11.5 bar.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号