首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Modeling effects of multinode wells on solute transport   总被引:1,自引:0,他引:1  
Long-screen wells or long open boreholes with intraborehole flow potentially provide pathways for contaminants to move from one location to another in a ground water flow system. Such wells also can perturb a flow field so that the well will not provide water samples that are representative of ground water quality a short distance away from the well. A methodology is presented to accurately and efficiently simulate solute transport in ground water systems that include wells longer than the grid spacing used in a simulation model of the system and hence are connected to multiple nodes of the grid. The methods are implemented in a MODFLOW-compatible solute-transport model and use MODFLOW's Multi-Node Well Package but are generic and can be readily implemented in other solute-transport models. For nonpumping multinode wells (used to simulate open boreholes or observation wells, for example) and for low-rate pumping wells (in which the flow between the well and the ground water system is not unidirectional), a simple routing and local mixing model was developed to calculate nodal concentrations within the borehole. For high-rate pumping multinode wells (either withdrawal or injection, in which flow between the well and the ground water system is in the same direction at all well nodes), complete and instantaneous mixing in the wellbore of all inflows is assumed.  相似文献   

2.
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.  相似文献   

3.
The USGS conducted a geophysical investigation in support of a U.S. Naval Facilities Engineering Command, Southern Division field-scale biostimulation pilot project at Anoka County Riverfront Park (ACP), down-gradient of the Naval Industrial Reserve Ordnance Plant, Fridley, Minnesota. The goal of the pilot project is to evaluate subsurface injection of vegetable oil emulsion (VOE) to stimulate microbial degradation of chlorinated hydrocarbons. To monitor the emplacement and movement of the VOE and changes in water chemistry resulting from VOE dissolution and/or enhanced biological activity, the USGS acquired cross-hole radar zero-offset profiles, travel-time tomograms, and borehole geophysical logs during five site visits over 1.5 years. Analysis of pre- and postinjection data sets using petrophysical models developed to estimate VOE saturation and changes in total dissolved solids provides insights into the spatial and temporal distribution of VOE and ground water with altered chemistry. Radar slowness-difference tomograms and zero-offset slowness profiles indicate that the VOE remained close to the injection wells, whereas radar attenuation profiles and electromagnetic induction logs indicate that bulk electrical conductivity increased down-gradient of the injection zone, diagnostic of changing water chemistry. Geophysical logs indicate that some screened intervals were located above or below zones of elevated dissolved solids; hence, the geophysical data provide a broader context for interpretation of water samples and evaluation of the biostimulation effort. Our results include (1) demonstration of field and data analysis methods for geophysical monitoring of VOE biostimulation and (2) site-specific insights into the spatial and temporal distributions of VOE at the ACP.  相似文献   

4.
Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.  相似文献   

5.
Calibration of base flow separation methods with streamflow conductivity   总被引:1,自引:0,他引:1  
The conductivity mass-balance (CMB) method can be used to calibrate analytical base flow separation methods. The principal CMB assumptions are base flow conductivity is equal to streamflow conductivity at lowest flows, runoff conductivity is equal to streamflow conductivity at highest flows, and base flow and runoff conductivities are assumed to be constants over the period of record. To test the CMB assumptions, fluid conductivities of ground water, surface runoff, and streamflow were measured during wet and dry conditions in a 12-km(2) stream basin. Ground water conductivities at wells varied an average of 6% from dry to wet conditions, while stream conductivities varied 58%. Shallow ground water conductivity varied significantly with distance from the stream, with lowest conductivities of 87 microS/cm near the divide, a maximum of 520 microS/cm 59 m from the stream, and 215 microS/cm 22 m from the stream. Runoff conductivities measured in three rain events remained nearly constant, with lower conductivities of 35 microS/cm near the divide and 50 microS/cm near the stream. The CMB method was applied to the records from 10 USGS stream-gauging stations in Texas, Kentucky, Georgia, and Florida to calibrate the USGS base flow separation technique, HYSEP, by varying the time parameter 2N*. There is a statistically significant relationship between basin areas and calibrated values of 2N*, expressed as N = 0.46A(0.44), with N in days and A in km(2). The widely accepted relationship N = 0.83A(0.2) is not valid for these basins. Other analytic methods can also be calibrated with the CMB method.  相似文献   

6.
A benchmark analysis is developed for assessing the reliability of the representation of multiaquifer wells in numerical solute transport simulators. The analysis considers the installation of a well that penetrates two aquifers that are otherwise isolated. The interconnection of the two aquifers by the multiaquifer well leads to the capture of a plume in an upper aquifer and the development of a plume in a lower aquifer. The benchmark analysis couples an exact Laplace transform solution for radially convergent transport with a generalization of an exact Laplace transform solution for radially divergent transport. The benchmark analysis is used to test the multiaquifer well simulation capability incorporated recently in MT3DMS. The results of the analysis provide insights into important issues of model accuracy and efficiency. The results of the analysis also highlight the potential implications of installing wells with relatively long screens at sites with contaminated groundwater.  相似文献   

7.
An abandoned creosote facility in Conroe, Texas, has become a field site for the National Center for Ground Water Research (NCGWR) at Rice University. Ground-water contamination in the shallow aquifer beneath the site was characterized by sampling soils and water quality at 14 monitoring wells and 35 boreholes. Results from six sampling trips over two years for inorganic and organic chemical concentrations in the ground water show wells around the site were contaminated to levels above 800 μg/l for naphthalene, 400 μg/1 for methyl naphthalene, and 150 μg/1 for dibenzofuran. Conservative constituents, traced by chloride concentrations up to 75 mg/l, have migrated 300 ft (90 m) downgradient of the site. Organic contaminants have been adsorbed and microbially degraded in their migration from the waste source as evidenced by their attenuated concentrations. Detailed field pump tests have been performed to evaluate hydraulic conductivity at several of the shallow wells. The U.S. Geological Survey (USGS) Solute Transport Model (Konikow and Bredehoeft, 1978) has been used to predict chloride plume patterns and evaluate parameters which govern transport processes at the Conroe waste site.  相似文献   

8.
The reliability of filter pack and annular seal emplacements, and the degree of integrity of installed seals, are two of the most important factors to be considered when both installing and later utilizing ground water monitoring wells.
Numerous, and often costly, problems of using existing methods of installing filter packs and annular seals during the construction of ground water monitoring wells have led to the development of a technique of installing these monitoring well components using a dry injection system.
The dry injection system has been used to construct monitoring wells in extremely complex overburden/bedrock environments with a variety of drilling techniques. The system has shown that a high degree of reliability in the, construction of monitoring wells and greater confidence in obtaining representative ground water samples can be achieved over existing methods of filter pack and annular seal emplacement. The system has also been more cost effective than existing methods, especially for deep boreholes and multilevel monitoring system installations.  相似文献   

9.
The Effect of Three Drilling Fluids on Ground Water Sample Chemistry   总被引:1,自引:0,他引:1  
Three monitoring wells were installed in borings that were constructed using water-based drilling fluids containing either (1) guar bean, (2) guar bean with breakdown additive, or (3) bentonite. These fluids were selected to observe their effect on the chemistry of subsequent water samples collected from the wells. The wells were installed to depths of 66 feet, 100.5 feet and 103 feet, respectively, in fine-to-medium sand and gravel outwash deposits near Antigo, Wisconsin. Drilling fluids were necessary to maintain an open borehole during well construction through strata containing cobbles and boulders.
The bentonite and guar drilling fluids caused temporarily elevated concentrations of chemical oxygen demand (COD) in ground water samples collected from the monitoring wells. Using standard development, purging and sampling procedures, elevated COD concentrations persisted for about 50 days for the well bored with the guar-with-additive fluid, 140 days for the bentonite well and 320 days for the guar well. Unfiltered ground water samples for all wells had greater concentrations of COD than samples filtered through a 0.45 micron filter. Sulfate concentrations also decreased with time in the guar-with-additive well and bentonite well, but not in the guar well.
The elevated COD concentrations are attributed to the large concentrations of oxidizable carbon present in the guar bean drilling fluid and in the organic polymers present in the bentonite drilling fluid. Well development and purging procedures, including borehole flushing, surging, bailing and/or chemically induced viscosity breakdown of the guar mud decreased the time before background conditions were achieved. Future research should evaluate the physical and geochemical interaction of different drilling fluid compositions with a variety of geologic matrices and drilling, well development and well purging techniques.  相似文献   

10.
Well vulnerability: a quantitative approach for source water protection   总被引:9,自引:0,他引:9  
The concept of vulnerability of drinking water sources is reviewed, and a quantitative approach for assessing well vulnerability for complex three-dimensional ground water systems is developed. The approach focuses on the relative expected impact of potential contaminant sources at unknown locations within a well capture zone, providing relative measures of intrinsic well vulnerability, including the expected times of arrival of a contaminant, the dispersion-related reduction in concentration, the time taken to breach a certain quality objective, and the corresponding exposure times. Thus, the result of the analysis includes the usual advective travel time information used in conventional wellhead protection analysis, plus a set of selected quantitative measures expressing the expected impact. The technique is based on adjoint theory and combines forward- and backward-in-time transport modeling using a standard numerical flow and transport code. The methodology is demonstrated using the case study of a complex glacial multiaquifer system in Ontario. The new approach will be useful in helping water managers develop more physically based and quantitative wellhead protection strategies.  相似文献   

11.
本文较为系统地分析了青海省玉树与德令哈二口地热观测井自2007年以来的水温观测数据,发现这两口井对2008年5月12日四川汶川MS8.0级和2010年4月14日青海玉树MS7.1级地震前均有较明显的前兆异常,此外某些强地震前也有类似的异常信息.进一步对每口井的水温异常信息(诸如异常幅度、持续时间)进行了定量分析,以及每口井对应不同地震的异常曲线形态对比、异常数据的相关性分析,得出这两口井在不同地震前的水温异常形态表现出高度相似性;通过对这些曲线形态的认识与分析,为今后利用水温数据进行经验预报地震的探索开辟一条新路径.另外得出玉树井水温异常的幅度随震级与震中距的不同呈规律性变化,具体表现在震级越大、井震距越小,对应的异常幅度越大、异常持续时间也越长,且玉树井的异常主要是中长周期的异常,这种特性对利用水温异常特征判断未来地震的强度有重要意义;德令哈井则呈现出短临异常特性十分明显的特点,这种特性对利用该井水温数据来判断发震时间有着重要意义.  相似文献   

12.
In this paper, the long time series data of the well water-level data of 12 wells in the Sichuan and Yunnan area is analyzed by the Baytap-G tidal analysis software, and well water level tidal response characteristic parameters (amplitude ratio and phase change) are extracted. We analyzed the features of the shape and stage change, and characteristic parameters of the tidal response of well water level before and after the earthquakes, which can provide a new method and approach to analyzing the response relationships between well water level and earth tide and barometric pressure. The results show that Luguhu Well and 9 other wells are affected by earth tides, and their well water level amplitude ratios and phases are relatively stable; the Nanxi Well and Dayao Well water level changes are affected by the barometric pressure combined with tide force, and their well water level amplitude ratios and phases are more discrete. The water level amplitude ratios and phases of Jiangyou Well, Luguhu Well and Dongchuan Well are significant to large earthquakes, and the relationship between seismic energy density and water level amplitude ratios and phases of M2 wave of the three wells are presented.  相似文献   

13.
巩浩波  李光科  廖欣  陈敏 《地震》2017,37(1):20-30
利用Baytap-G潮汐分析软件对川滇地区12口观测井数字化水位的长时序数据进行计算, 提取井水位潮汐响应特征参数(振幅比和相位差), 分析其形态、 阶段变化等特征, 探讨地震前后井水位潮汐响应特征参数的变化情况, 为深入分析井水位与固体潮、 气压之间响应关系的研究提供新的方法和途径。 结果表明, 泸沽湖井等10口受固体潮影响的井水位振幅比和相位差变化相对稳定; 而南溪井和大姚井受到气压-固体潮综合作用影响的井水位振幅比和相位差变化则比较离散。 其中江油川10井、 泸沽湖井、 东川井等3口井水位振幅比和相位差对大震的响应显著, 并给出了地震能量密度与这三口井水位M2波相位差和振幅比的变化关系。  相似文献   

14.
From the mid-1940s through the 1980s, large volumes of waste water were discharged at the Hanford Site in southeastern Washington State, causing a large-scale rise (>20 m) in the water table. When waste water discharges ceased in 1988, ground water mounds began to dissipate. This caused a large number of wells to go dry and has made it difficult to monitor contaminant plume migration. To identify monitoring wells that will need replacement, a methodology has been developed using a first-order uncertainty analysis with UCODE, a nonlinear parameter estimation code. Using a three-dimensional, finite-element ground water flow code, key parameters were identified by calibrating to historical hydraulic head data. Results from the calibration period were then used to check model predictions by comparing monitoring wells' wet/dry status with field data. This status was analyzed using a methodology that incorporated the 0.3 cumulative probability derived from the confidence and prediction intervals. For comparison, a nonphysically based trend model was also used as a predictor of wells' wet/dry status. Although the numerical model outperformed the trend model, for both models, the central value of the intervals was a better predictor of a wet well status. The prediction interval, however, was more successful at identifying dry wells. Predictions made through the year 2048 indicated that 46% of the wells in the monitoring well network are likely to go dry in areas near the river and where the ground water mound is dissipating.  相似文献   

15.
Arrays of unpumped wells can be used as discontinuous permeable walls in which each well serves both as a means to focus ground water flow into the well for treatment and as a container either for permeable reactive media which directly destroy dissolved ground water contaminants or for devices or materials which release amendments that support in situ degradation of contaminants within the aquifer downgradient of the wells. This paper addresses the use of wells for amendment delivery, recognizing the potential utility of amendments such as electron acceptors (e.g., oxygen nitrate), electron donors (primary substrates), and microbial nutrients for stimulating bioremediation, and the potential utility of oxidizers, reducers, etc., for controlled abiotic degradation. Depending on its rate and constraints, the remedial reaction may occur within the well and/or downgradient. For complete remediation of ground water passing through the well array, the total flux of amendment released must meet or exceed the total flux demand imposed by the plume. When there are constraints on the released concentration of amendment (relative to the demand), close spacing of the wells may be required. If the flux balance allows wider spacing, it is likely that limited downgradient spreading of the released amendment will then be the primary constraint on interwell spacing. Divergent flow from the wells, roughly two times the well diameter, provides the bulk of downgradient spreading and constrains maximum well spacing in the absence of significant lateral dispersion. Stronger lateral dispersion enhances the spreading of amendment, thereby increasing the lateral impact of each well, which allows for wider well spacing.  相似文献   

16.
A geographic data model for representing ground water systems   总被引:4,自引:0,他引:4  
The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.  相似文献   

17.
Ground water samples collected from the Norman Landfill research site in central Oklahoma were analyzed as part of the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program's national reconnaissance of pharmaceuticals and other organic waste water contaminants (OWCs) in ground water. Five sites, four of which are located downgradient of the landfill, were sampled in 2000 and analyzed for 76 OWCs using four research methods developed by the USGS. OWCs were detected in water samples from all of the sites sampled, with 22 of the 76 OWCs being detected at least once. Cholesterol (a plant and animal steroid), was detected at all five sites and was the only compound detected in a well upgradient of the landfill. N,N-diethyltoluamide (DEBT used in insect repellent) and tri(2-chloroethyl) phosphate (fire-retardant) were detected in water samples from all four sites located within the landfill-derived leachate plume. The sites closest to the landfill had more detections and greater concentrations of each of the detected compounds than sites located farther away. Detection of multiple OWCs occurred in the four sites located within the leachate plume, with a minimum of four and a maximum of 17 OWCs detected. Because the landfill was established in the 1920s and closed in 1985, many compounds detected in the leachate plume were likely disposed of decades ago. These results indicate the potential for long-term persistence and transport of some OWCs in ground water.  相似文献   

18.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

19.
Writing Analytic Element Programs in Python   总被引:1,自引:0,他引:1  
The analytic element method is a mesh-free approach for modeling ground water flow at both the local and the regional scale. With the advent of the Python object-oriented programming language, it has become relatively easy to write analytic element programs. In this article, an introduction is given of the basic principles of the analytic element method and of the Python programming language. A simple, yet flexible, object-oriented design is presented for analytic element codes using multiple inheritance. New types of analytic elements may be added without the need for any changes in the existing part of the code. The presented code may be used to model flow to wells (with either a specified discharge or drawdown) and streams (with a specified head). The code may be extended by any hydrogeologist with a healthy appetite for writing computer code to solve more complicated ground water flow problems.  相似文献   

20.
Analytical solutions are developed for modeling the transient and steady-state gas pressure and the steady-state streamfunction fields resulting from gas injection and extraction from a pair of parallel horizontal wells. These solutions apply to cases in which the ground surface is open to the atmosphere, and in which the porous media is anisotropic but homogeneous. By neglecting end effects due to the finite length of the wells, the three-dimensional gas flow field is approximated as a two-dimensional cross section perpendicular to the wells. These solutions may be used to develop estimates of the horizontal well system behavior and to analyze horizontal well gas pump tests, and are useful for numerical model verification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号