首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
甘孜—玉树断裂带是青藏高原中东部的一条大型左旋走滑断裂带,同时也是羌塘地体和巴颜喀拉地体的重要地质边界.当江断裂位于甘孜—玉树断裂带的西北段,沿线发育当江荣、当江和哲达等一系列串珠状第四纪断层谷地.通过遥感影像解译和数字高程地形模型(DEM)数据分析,结合野外构造地貌调查,以及断错地貌面的光释光年代测定,发现断裂沿线冲沟、河流阶地和洪积扇等断错地貌发育,反映了该断裂晚第四纪左旋走滑活动性强烈.该断裂最新活动时代为全新世晚期,距今约3.04 ka.当江断裂晚更新世以来的左旋滑动速率为7±3mm·a~(-1).研究结果为该区的地震危险性分析和高原东北部的运动学特征探讨提供了基础资料.  相似文献   

2.
文中从几何结构特征、断裂长期滑动速率和古地震复发特征3个方面对阿万仓断裂进行了研究。详细的遥感解译和野外调查结果表明:1)阿万仓断裂作为东昆仑断裂带东段(玛沁—玛曲段)的分支断裂,和东昆仑断裂一样也是1条全新世活动断裂,性质为左旋走滑兼逆断,总长约200km。西北段由2条总体走向310°,相距约16km近平行的次级断层组成,向SE方向合为1条断裂。2)在阿万仓断裂上发现大约15km长的古地震地表破裂带,表现为断层陡坎、断塞塘、地裂缝、断层沟槽等典型断错微地貌现象。3)经航、卫片解译,野外现场调查,断错地貌测量和样品测试,得到该断裂晚第四纪以来的平均左旋水平滑动速率为3mm/a,垂直滑动速率约0.07mm/a。4)通过对断错最新地貌面的测年和探槽剖面分析,认为阿万仓断裂带存在4次古地震事件,属原地复发型,最新1次事件是在(850±30)a BP以后发生的。5)阿万仓断裂左旋滑动速率与东昆仑断裂带玛沁—玛曲段递减的滑动速率量值相当,它的存在和发现可以很好地解释东昆仑断裂带东段(玛沁—玛曲段)滑动速率递减的特征。东昆仑活动断裂带中东段滑动速率逐渐递减,与东昆仑活动断裂带中东段帚状散开的几何结构有关,其中的阿万仓断裂是东昆仑断裂带东延过程中的重要分支断裂,吸收了东昆仑断裂带东延的应变分配。  相似文献   

3.
由于调查研究资料有限,目前对藏北高原内部近EW向的伸展变形样式和具体调节机制一直存在诸多争议。最新开展的地表调查在藏北高原西部的别若则错新发现了1条长约20km、走向近NNW的走滑断裂。该断裂表现出断塞塘、水系错动及断层崖等典型的走滑断裂变形标志。水系错动及构造地貌显示,别若则错断裂是以右旋走滑运动为主、兼具明显正断分量的张扭性断层,是高原内部近EW向伸展变形的产物。通过与羌塘古大湖进行对比分析,认为该断裂错断的最新地貌体是晚更新世的冲洪积扇,未错断全新世扇体,且断崖坡角已显著变缓,表明其最新活动时间可能为晚更新世。综合分析地表调查和遥感影像的错断位移恢复结果,发现最新一次断裂活动的最大右旋走滑位移约2~3m。晚更新世早—中期冲洪积扇体的累积最大右旋走滑位移约44m,垂直错动约2m,由此推测该断裂晚第四纪以来走滑速率约1mm/a,显示弱走滑变形特征。别若则错断裂近NNW的走向与印度和欧亚板块碰撞的主压应力轴(σ1)的夹角约30°,而已发现的区域性共轭走滑断裂与σ1呈约60°~75°的较大夹角,两者显著不同,表明藏北地区共轭走滑断裂带的组合方式可能存在不同的样式:一种是钝角,可能与拉萨和羌塘地体内的剪切作用或块体挤出有关;另一种是锐角,可能代表着新生破裂特征,推测其可能与高原内部近SN向正断层的N向的延伸有关,其成因机制仍需进一步研究。  相似文献   

4.
通过卫星影像解译、野外实地调查和地质填图,获得滇西南地区澜沧断裂的基本特征和活动性参数,澜沧断裂属于龙陵—澜沧新生地震断裂带的东南段,北起耿马县联合村,向南东经澜沧县哈卜吗、战马坡、大塘子至澜沧县城东南,总体走向NNW,长度约85km。该断裂为一条全新世活动的右旋走滑断裂,兼具倾滑分量,沿断裂形成了丰富的断错地貌现象,主要表现为断层陡崖、冲沟右旋、断层陡坎、断层沟槽、断层垭口和断陷凹坑等。通过详细的野外考察,选择典型断错地貌进行差分GPS测量,结合所获相应地貌面的年代数据,得到该断裂全新世以来平均右旋走滑速率为(4.2±2.3)mm/a,其结果与现今GPS观测所得速率相当,反映了该断裂长期以来滑动速率的稳定性。同时根据岩体的最大位错量4.6~4.8km,估算断裂开始右旋走滑的时代为距今约1.1 Ma,即早更新世晚期。  相似文献   

5.
《地震地质》2021,43(3)
青藏高原东北缘地区的构造变形以NE向挤压缩短、顺时针旋转和向E挤出为主要特征,在NE向挤压作用下形成了NNW向的右旋走滑断裂,进一步将东北缘地区分为多个次级块体。其中,鄂拉山断裂与东昆仑断裂围限形成的柴达木次级块体整体以向NW方向的旋转挤出为主要特征,但处于这2条边界断裂交会部位的柴达木盆地东缘都兰地区的构造变形方式却不清楚。近期在针对都兰地区的野外地质调查中,发现了一条NW走向、长60~70km的右旋走滑断裂带,即夏日哈断裂带。该断裂带位于鄂拉山断裂西侧,由2条近平行的断裂组成,分别为夏日哈断裂和英德尔康断裂。经遥感解译与野外地质调查发现,该断裂线性特征明显,断错了多期冲积扇、河流阶地等晚第四纪地质地貌体,发现了多个断错晚第四纪沉积物的剖面,显示该断裂带为晚更新世—全新世活动断裂。综合分析认为,该断裂与前期发现的近EW走向的热水-桃斯托河全新世左旋走滑断裂,分别在鄂拉山断裂和东昆仑断裂的影响下共同调节柴达木块体端部的挤出旋转变形。同时,该断裂为该区新发现的活动断裂,具有中强地震的潜在发震能力,这不仅对理解区域构造变形模式具有重要意义,也导致对该区域地震危险性的认识发生较大改变。因此,亟待在该区域开展更进一步研究工作,以增进对区域应变分配模式的理解,为区域地震安全问题提供参考。  相似文献   

6.
通过卫星影像解译、野外实地调查与地质填图,对滇西南地区黑河断裂中西段晚第四纪构造活动特征进行了研究.结果表明,黑河断裂为一条规模较大的区域性活动断裂带,西起沧源县南,向东南止于澜沧江断裂,全长约168 km,走向280°~310°.该断裂晚第四纪新活动性具有一定的差异性和分段性.根据其几何结构、最新活动性及1988年澜沧7.6级地震破裂带特征,可将黑河断裂从西向东划分为沧源-木戛、木戛-南代和南代-勐往三条次级断裂段.其中的中、西段长约88 km,全新世活动显著,活动性质以右旋走滑为主.沿断裂形成了丰富的断错地貌现象.西段断裂的最新活动断错了全新世晚期地层;中段是1988年澜沧7.6级地震的发震断裂之一.根据对断错冲沟的测量和年代测试,得到其全新世以来右旋滑动速率为(3.54±0.78)mm/a,与区域上其它断裂的滑动速率大致相当,反映了其区域构造活动的整体性和协调性.  相似文献   

7.
天全-荥经断裂是青藏高原东南缘的1条晚第四纪且活动资料较少的断裂,在2008年汶川M 8.0地震之后,龙门山断裂带西南端未来的地震危险性受到关注。对天全-荥经断裂晚第四纪活动特征的获取有助于理解该区地震危险性的评价。通过遥感影像解译,结合野外调查和断错地貌测量,分析了天全-荥经断裂在荥经下坝村至桂花村切过荥经河河谷晚第四纪地貌区的活动证据。断裂沿线形成冲积扇断错、阶地坎断错和断坎等地貌,并沿断裂发育滑坡。晚第四纪以来断裂以左旋走滑活动为主,其中T2/T2'阶地坎被左旋断错22—24m。利用荥经河阶地与青衣江河流阶地对比,认为该断裂20—40ka以来左旋走滑速率为0.6—1.1mm/a。仍需要从古地震等方面开展工作,来进一步确定天全-荥经断裂的地震危险性。  相似文献   

8.
基于川滇地区活动块体划分及断裂构造现有认知,文中构建了包含块体主要边界断裂的二维有限元接触模型,利用1991—2015年长期GPS观测结果,采用"块体加载"方法模拟块体边界带现今的运动,得到了断裂滑动速率和应力分布.结合震源机制解、地震活动性等资料,对川滇地区大型左旋走滑断裂带滑动速率分配、传递与应力转换的关联,局部区域正断型震源机制解的构造机制以及红河断裂南、北段地震活动性差异的可能成因进行了初步探讨.主要结论包括:1)东昆仑断裂带和鲜水河-小江断裂带的左旋走滑由NW向转变为近SN向,断裂强烈转折区吸收了部分走滑分量并转化为应变积累,呈高应力分布特征.2)受小江断裂左旋剪切的影响,红河断裂中南段以右旋走滑兼微弱挤压运动为主,并牵引断裂北段右旋走滑,与金沙江和德钦-中甸断裂共同构成右阶斜列右旋剪切变形带,正断型震源机制解多分布于该变形带的构造拉分区内.3)红河断裂中南段为弱压性,北段呈弱张性,更易破裂,地震活动明显强于中南段.  相似文献   

9.
德钦—中甸—大具断裂晚第四纪活动的地质与地貌表现   总被引:3,自引:0,他引:3  
根据野外地质、地貌调查结果,重点论述了德钦—中甸—大具断裂的几何展布、运动性质和最新活动时代。该断裂多处断错了晚更新世及全新世地层,具明显的右旋走滑兼正断性质,最新活动时代为晚更新世至全新世,水平滑动速率为1.7~2.0 mm/a,垂直滑动速率为0.6~0.7 mm/a。该断裂是川滇菱形块体西北边缘的一条重要的NW向走滑断裂,它与金沙江断裂带一起,共同构成了川滇菱形块体西北边界。  相似文献   

10.
2008年5月12日四川汶川Ms8.0地震是一条陆内活动逆断裂带最新活动的结果.地震震源断裂沿龙门山构造带中央断裂发生斜滑作用和沿前山断裂发生纯逆断裂作用,断裂产状前者陡后者缓,垂直位移前者大后者小,这是一条少见的具有右旋走滑特征的挤压性质双断坡破裂,它是深部斜滑断裂在上地壳脆性域发生应变分解的结果.地震地表破裂带的分段活动和位移分布、地震波反演、余震空间分布、主震和余震震源机制解都说明这一条活动断裂带的活动机制和震源断裂破裂机制的复杂性.北西向小鱼洞左旋走滑破裂带是调节北东向破裂带中缩短量不同的破裂段之间的捩断裂,但由于震源断裂西南段经受着强烈挤压,左旋走滑的小鱼洞断裂也具有明显的挤压分量.在中央断裂这一条走滑逆冲和逆走滑性质的断裂和破裂带中出现的走滑正断裂控制的沙坝沟槽是在一个特殊的构造和地貌条件下,由震源断裂滑动和重力共同作用的结果,重力作用加大了该段破裂的正断层型垂直位移量,它不能真正代表震源断裂的最大地表垂直位移.  相似文献   

11.
东昆仑活动断裂是青藏高原东北部一条重要的NWW向边界断裂。 玛曲断裂位于东昆仑断裂带的最东段。 根据野外考察结果认为玛曲断裂全新世以来活动强烈, 主要表现为左旋走滑运动, 并伴有正倾滑运动性质。 断错地貌特征明显, 断裂过玛曲县城以后, 沿黑河南岸穿过若尔盖草地向东, 直至岷山北端求吉附近。 通过两处断错地貌的全站仪器实测和测年资料讨论了玛曲断裂新活动特征和全新世滑动速率, 玛曲断裂全新世早期以来的平均水平滑动速率为6.29~5.71 mm/a, 全新世晚期以来的平均水平滑动速率为4.19~4.03 mm/a。  相似文献   

12.
The nearly EW-trending East Kunlun fault zone is the north boundary of the Bayan Har block.The activity characteristics and the position of the eastern end of its eastward extension are of great significance to probing into the dynamic mechanism of formation of the east edge of the Tibetan Plateau,and also lay the foundation for seismic risk assessment of the fault zone.The following results are obtained by analysis based on satellite image interpretation of landforms,surface rupture survey,terrace scarp deformation survey,and terrace dating data on the eastern part of the East Kunlun fault zone:(1)the Luocha segment is a Holocene active fault,where a reverse L-shape paleoearthquake surface rupture zone of about 50 km long is located;(2)the Luocha segment is characterized by left-lateral slip movement under the compression-shear condition since the later period of the Late Pleistocene,with a rate of 7.68–9.37 mm/a and a vertical slip rate of 0.7–0.9 mm/a,which are basically in accord with the activity rate of segments on its west side.The results indicate that it is a part of eastward extension of the East Kunlun fault zone;(3)the high-speed linear horizontal slip of the nearly EW-trending East Kunlun fault zone is blocked by the South China block at east,and transforms into the vertical movement of the nearly SN-NNE trending Minjiang fault zone and the Longmenshan fault zone,and the uplift of Longmenshan and Minjiang.The area where transform of the two tectonic systems occurred confines the position of the east end;(4)Luocha segment and Maqu segment constitute the"Maqu seismic gap",so,seismic risk at Maqu segment is higher than that at Luocha segment,which should attract more attention.  相似文献   

13.
东昆仑断裂东段玛沁-玛曲段几何结构特征   总被引:7,自引:1,他引:6       下载免费PDF全文
文中主要通过ETM,Quickbird,Worldview卫星影像解译,利用断裂带的几何、构造不连续点,对东昆仑断裂带玛沁—玛曲段进行几何分段。自西向东可分为东倾沟段、大武滩段、肯定那段、西科河段、唐地段、玛曲段、墨溪段和罗叉段,前7条断裂羽列排列,唐地段和玛曲段为右阶排列,其余为左阶排列,各阶区之间范围较小,联系紧密。最大的阶区长10km,宽1.3km。除了阶区,断裂的分段标志还有走向的弯曲与断裂的交会。东倾沟段和罗叉段的分段标志主要为断裂走向的弯曲,最大的走向弯曲为东倾沟段,为34°的右阶挤压弯曲。在莫哈汤南侧东昆仑断裂与阿万仓断裂交会,为西科河段的1个分段标志。该段广泛分布的构造地貌和古地震造成的破裂标志表明该段曾经历过多次活动。断裂带从NW向SE呈帚状散开,结合不同段上的滑动速率,发现东昆仑断裂东段滑动速率呈梯度下降与东昆仑断裂带东段帚状散开的几何特征一一对应  相似文献   

14.
为了解东昆仑断裂活动对2017年8月8日九寨沟M_S7.0地震的影响,本文选取1999—2007年、2013—2017年GPS速度场作为约束,基于块体-位错模型反演计算东昆仑断裂两个时间段的块体运动速率、断裂滑动速率和滑动亏损率,并进一步研究青藏高原东缘最大剪应变率场和九寨沟震区的震间库仑应力累积速率.结果显示,东昆仑断裂中西段左旋走滑速率较高,东段走滑速率较低,自西向东逐步递减,存在明显的梯度.在两个时间段,阿坝块体刚性运动的方向顺时针偏转0.2°,运动速率由12.22mm·a-1增大到15.96mm·a-1;东昆仑断裂左旋走滑速率升高,其中西段较为明显(升高约1.2±0.3mm·a-1);东昆仑断裂东段闭锁深度和闭锁程度增加;2013—2017年,东昆仑断裂滑动引起的九寨沟震区库仑应力累积速率是1999—2007年的3倍,最大剪应变率也明显升高.因此本文认为:2008年汶川地震和2013年芦山地震后,龙门山断裂部分解锁,阿坝地块活动性增强,东昆仑断裂滑动速率增大,导致九寨沟震区库仑应力加载速率增加,加速了九寨沟地震的孕育过程.  相似文献   

15.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.  相似文献   

16.
李建军  蔡瑶瑶  张军龙 《地震》2019,39(1):20-28
塔藏断裂位于东昆仑断裂带东段,长约170km,与岷山断裂带共同构成巴颜喀拉块体的东北构造边界,中部与岷江断裂、荷叶断裂、虎牙断裂的北延段交会,构成岷山隆起的地貌边界。通过卫星影像解译结合构造地貌调查,确定了断层属于全新世活动断层,并利用断层走向弯曲和活动性、阶区等标志将塔藏断裂分为三段。西段为罗叉段,总体走向NWW,西侧与玛曲断裂形成左行左阶拉分区,东侧在下黄寨村走向顺时针偏转至东北村段。中段为东北村段,总体走向NW,东侧在九寨沟口附近走向逆时针偏转至马家磨段。东段为马家磨段,总体走向NWW,西侧隔荷叶断裂、虎牙断裂的北延段与中段相接。东北村段以岷江断裂斜交点为界可分为南北两个次级段,马家磨段以阶区为界划分为扎如次段、唐寨次段、勿角次段。罗叉段和马家磨段的地震离逝时间较近,东北村段相对较远。断裂带整体呈反"S"形,自西向东滑动速率总体呈减小趋势,大部分水平变形转化为垂向的岷山隆升。结合不同段上的滑动速率,发现东昆仑断裂东段滑动速率呈梯度下降特征与东昆仑断裂带东段断层弯曲的几何特征相对应。  相似文献   

17.
The East Kunlun Fault is a giant fault in northern Tibetan, extending eastward and a boundary between the Songpan-Ganzi block and the West Qinling orogenic zone. The East Kunlun Fault branches out into a horsetail structure which is formed by several branch faults. The 2017 Jiuzhaigou MS7.0 earthquake occurred in the horsetail structure of the East Kunlun Fault and caused huge casualties. As one of several major faults that regulate the expansion of the Tibetan plateau, the complexity of the deep extension geometry of the East Kunlun Fault has also attracted a large number of geophysical exploration studies in this area, but only a few are across the Jiuzhaigou earthquake region. Changes in pressure or slip caused by the fluid can cause changes in fault activity. The presence of fluid can cause the conductivity of the rock mass inside the fault zone to increase significantly. MT method is the most sensitive geophysical method to reflect the conductivity of the rock mass. Thus MT is often used to study the segmented structure of active fault zones. In recent years MT exploration has been carried out in several earthquake regions and the results suggest that the location of main shock and aftershocks are controlled by the resistivity structure. In order to study the deep extension characteristics of the East Kunlun Fault and the distribution of the medium properties within the fault zone, we carried out a MT exploration study across the Tazang section of the East Kunlun Fault in 2016. The profile in this study crosses the Jiuzhaigou earthquake region. Other two MT profiles that cross the Maqu section of East Kunlun Fault performed by previous researches are also collected. Phase tensor decomposition is used in this paper to analyze the dimensionality and the change in resistivity with depth. The structure of Songpan-Ganzi block is simple from deep to shallow. The structure of West Qinlin orogenic zone is complex in the east and simple in the west. The structure near the East Kunlun Fault is complex. We use 3D inversion to image the three MT profiles and obtained 3D electrical structure along three profiles. The root-mean-square misfit of inversions is 2.60 and 2.70. Our results reveal that in the tightened northwest part of the horsetail structure, the East Kunlun Fault, the Bailongjiang Fault, and the Guanggaishan-Dieshan Fault are electrical boundaries that dip to the southwest. The three faults combine in the mid-lower crust to form a "flower structure" that expands from south to north. In the southeastward spreading part of the horsetail structure, the north section of the Huya Fault is an electrical boundary that extends deep. The Tazang Fault has obvious smaller scale than the Huya Fault. The Minjiang Fault is an electrical boundary in the upper crust. The Huya Fault and the Tazang Fault form a one-side flower structure. The Bailongjiang and the Guanggaishan-Dieshan Fault form a "flower structure" that expands from south to north too. The two "flower structures" combine in the high conductivity layer of mid-lower crust. In Songpan-Ganzi block, there is a three-layer structure where the second layer is a high conductivity layer. In the West Qinling orogenic zone, there is a similar structure with the Songpan-Ganzi block, but the high conductivity layer in the West Qinling orogenic zone is shallower than the high conductivity layer in the Songpan-Ganzi block. The hypocenter of 2017 MS7.0 Jiuzhaigou earthquake is between the high and low resistivity bodies at the shallow northeastern boundary of the high conductivity layer. The low resistivity body is prone to move and deform. The high resistivity body blocked the movement of low resistivity body. Such a structure and the movement mode cause the uplift near the East Kunlun Fault. The electrical structure and rheological structure of Jiuzhaigou earthquake region suggest that the focal depth of the earthquake is less than 11km. The Huya Fault extends deeper than the Tazang Fault. The seismogenic fault of the 2017 Jiuzhaigou earthquake is the Huya Fault. The high conductivity layer is deep in the southwest and shallow in the northeast, which indicates that the northeast movement of Tibetan plateau is the cause of the 2017 Jiuzhaigou earthquake.  相似文献   

18.
The NE margin of Tibetan plateau outspreads northeastward in late Cenozoic. The west Qinling locates at intervening zone among Tibetan plateau, Sichuan Basin and Ordos block, and is bounded by East Kunlun Fault in the southwest, the north margin of West Qinling Fault in the northeast, and the Longmen Shan Fault in the southeast. The west Qinling has been experiencing intense tectonic deformation since late Cenozoic, accompanying by uplift of mountains, downward incision of rivers, frequent moderate-strong earthquakes, vertical and horizontal motion of secondary faults, and so on. A series of "V-shape" faults are developed in the transfer zone between East Kunlun Fault and north margin of West Qinling Fault. The NWW-NW striking faults include Tazang Fault, Bailongjiang Fault, Guanggai Shan-Die Shan Fault, and Lintan-Dangchang Fault; EW-NEE-NE striking faults include Ha'nan-Qingshanwan-Daoqizi Fault, Wudu-Kangxian Fault, Liangdang-Jiangluo Fault, and Lixian-Luojiapu Fault. Among them, the Southern Guanggai Shan-Die Shan Fault (SGDF)is one of the principle branch which accommodates strain partitioning between the East Kunlun Fault and the north margin of west Qinling Fault. Although some works have been done and published, the geometry of SGDF is still obscure due to forest cover, bad traffic, natural and manmade reworks. In this paper, we collected remote sensing images with various resolutions, categories, imaging time. The selected images include composite map of Landsat image (resolution is 28.5m among 1984-1997, and 14.5m among 1999-2003), Landsat-8 OLI image (15/30m), Gaofen-1 (2m/8m), Pleiades (0.5m/2m), DEM (~25m)and Google Earth image (submeter resolution). After that, we reinforced tectonic information of those images by Envi5.2 software, then we interpreted SGDF from those images. As indoor interpretation fulfilled, we testified indoor interpretation results through geomorphological and geological investigation. Finally, we got fault distribution of SGDF. Conclusions are as follows:First, remote sensing image selection and management is crucial to indoor interpretation, and image resolution is the only factor we commonly consider before, however, things have changed in places where there is complex weather and dense vegetation. Image categories, imaging time and bands selected for compositing in pretreatment and etc. should all be taken into consideration for better interpretation. Second, SGDF distributes from Lazikou town in the west, extending through Pingding town, Zhou County, Huama town, then terminating at Majie town of Wudu district in the east, the striking direction is mainly NWW, and it could be roughly divided into 3 segments:Lazikou-Heiyusi segment, Pingding-Huama segment, and Huama-Majie segment, with their length amounting to 47km, 32.5km, 47km, respectively. The arrangement pattern between Lazikou-Heiyusi segment and Pingding-Huama segment is right-stepping, and the arrangement pattern is left-stepping bending between Pingding-Huama segment and Huama-Majie segment. Third, SGDF controlled magnificent macro-topography, such as fault cliff, fault facet, which often constitute the boundary of intermontane basins or erosional surfaces to west of Minjiang River. Micro-geomorphic expressions were severely eroded and less preserved, including fault scarps, fault troughs, sinistral offset gullies and geomorphic surfaces. Finally, SGDF mainly expresses left-lateral dominated motion, only some short branch faults with diverting striking direction exhibit vertical dominated motion. The left-lateral dominated component with little vertical motion of SGDF is consistent with regional NWW-striking faults as Tazang Fault, Bailongjiang Fault and Lintan-Dangchang Fault, also in coincidence with regional boundary faults such as east Kunlun Fault and north margin of west Qinling Fault, illustrating regional deformation field is successive in west Qinling, and NWW striking faults show good inheritance and transitivity on differential slip rate between east Kunlun Fault and west Qinling Fault. The geometry of SGDF makes quantitative studies possible, and also provides scientific basis for keeping construction away from fault traces.  相似文献   

19.
徐化超  王辉  曹建玲 《地震》2018,38(3):13-23
本文利用青藏高原东北缘地区1991—2015年的GPS速度场资料, 基于弹性球面块体模型获得了区域活动断裂的滑动速率, 并讨论了断裂滑动速率分配的动力学意义。 反演结果表明, 青藏高原东北缘地区主要块体以北东向并兼顺时针旋转运动为主; 区域断裂平均闭锁深度为17 km; 另外, 各主要断裂滑动速率也不尽相同。 其中, 阿尔金断裂、 东昆仑断裂左旋走滑速率为10~12 mm/a, 祁连—海原断裂左旋走滑速率为3~5 mm/a, 鄂拉山断裂、 拉脊山断裂右旋走滑速率为1~3 mm/a。 阿尔金断裂、 祁连—海原断裂、 东昆仑断裂的走滑速率被其端部的山脉隆起和逆冲断裂所吸收和转换, 鄂拉山断裂和拉脊山断裂则起到了调节块体间运动平衡的作用。  相似文献   

20.
The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions:1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5) m, (17.9±1.5) m, and(36.8±2) m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5) m and the T2/T1 is (35.8±2) m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M5 3/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau. The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号