首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
We discuss the model representation of volume transports through one of the most climate-relevant ocean passages, the Fram Strait. We compare results from a coupled ocean–sea ice model with different resolutions (∼1/12° and ∼1/4°) and measurements from a mooring array along 79° N. The 1/4° model delivers a realistic mean climate state and realistic net volume transports. However, this model fails to reproduce the observed intense barotropic recirculation that reaches far north in Fram Strait. This recirculation is captured in the higher resolution version of the model. Other differences exist in the circulation over the East Greenland Shelf and in the temperature of Atlantic waters in the Fram Strait region as well as in surface heat fluxes. We find that a combination of high-resolution model results and long-term measurements can improve the interpretation of measured and simulated processes and reduce the uncertainties in exchange rates between Arctic and the North Atlantic.  相似文献   

2.
Some previous studies demonstrated that model bias has a strong impact on the quality of long-term prognostic model simulations of the sub-polar North Atlantic Ocean. Relatively strong bias of water mass characteristics is observed in both eddy-permitting and eddy-resolving simulations, suggesting that an increase of model resolution does not reduce significantly the model bias. This study is an attempt to quantify the impact of model bias on the simulated water mass and circulation characteristics in an eddy-permitting model of the sub-polar ocean. This is done through comparison of eddy-permitting prognostic model simulations with the results from two other runs in which the bias is constrained by using spectral nudging. In the first run, the temperature and salinity are nudged towards climatology in the whole column. In the second run, the spectral nudging is applied in the surface 30 m layer and at depths below 560 m only. The biases of the model characteristics of the unconstrained run are similar to those reported in previous eddy-permitting and eddy-resolving studies. The salinity in the surface and intermediate waters of the Labrador Sea waters increases with respect to the climatology, which reduces the stability of the water column. The deep convection in the unconstrained run is artificially intensified and the transport in the sub-polar gyre stronger than in the observations. In particular, the transport of relatively salty and warm Irminger waters into the Labrador Sea is unrealistically high. While the water mass temperature and salinity in the run with spectral nudging in the whole column are closest to the observations, the depth of the winter convection is underestimated in the model. The water mass characteristics and water transport in the run with spectral nudging in the surface and deep layers only are close to observations and at the same time represent well the deep convection in terms of its intensity and position. The source of the bias in the prognostic model run is discussed.  相似文献   

3.
The development of numerical wave models for coastal applications, including coupling with ocean circulation models, has spurred an ongoing effort on theoretical foundations, numerical techniques, and physical parameterizations. Some important aspects of this effort are reviewed here, and results are shown in the case of the French Atlantic and Channel coast using version 4.18 of the WAVEWATCH III R model. Compared to previous results, the model errors have been strongly reduced thanks to, among other things, the introduction of currents, coastal reflection, and bottom sediment types. This last item is described here for the first time, allowing unprecedented accuracy at some sites along the French Atlantic Coast. The adequate resolution, necessary to represent strong gradients in tidal currents, was made possible by the efficiency brought by unstructured grids. A further increase in resolution, necessary to resolve surf zones and still cover vast regions,will require further developments in numerical methods.  相似文献   

4.
Tal Ezer 《Ocean Dynamics》2017,67(5):651-664
Two aspects of the interactions between the Gulf Stream (GS) and the bottom topography are investigated: 1. the spatial variations associated with the north-south tilt of mean sea level along the US East Coast and 2. the high-frequency temporal variations of coastal sea level (CSL) that are related to Gulf Stream dynamics. A regional ocean circulation model is used to assess the role of topography; this is done by conducting numerical simulations of the GS with two different topographies–one case with a realistic topography and another case with an idealized smooth topography that neglects the details of the coastline and the very deep ocean. High-frequency oscillations (with a 5-day period) in the zonal wind and in the GS transport are imposed on the model; the source of the GS variability is either the Florida Current (FC) in the south or the Slope Current (SC) in the north. The results demonstrate that the abrupt change of topography at Cape Hatteras, near the point where the GS separates from the coast, amplifies the northward downward mean sea level tilt along the coast there. The results suggest that idealized or coarse resolution models that do not resolve the details of the coastline may underestimate the difference between the higher mean sea level in the South Atlantic Bight (SAB) and the lower mean sea level in the Mid-Atlantic Bight (MAB). Imposed variations in the model’s GS transport can generate coherent sea level variability along the coast, similar to the observations. However, when the bottom topography in the model is modified (or not well resolved), the shape of the coastline and the continental shelf influence the propagation of coastal-trapped waves and impact the CSL variability. The results can explain the different characteristics of sea level variability in the SAB and in the MAB and help understand unexpected water level anomalies and flooding related to remote influence of the GS.  相似文献   

5.
The temperature variability of the Atlantic Ocean is investigated using an eddy-permitting (1/4°) global ocean model (ORCA-025) forced with historical surface meteorological fields from 1958 to 2001. The simulation of volume-averaged temperature and the vertical structure of the zonally averaged temperature trends are compared with those from observations. In regions with a high number of observations, in particular above a depth of 500 m and between 22° N and 65° N, the model simulation and the dataset are in good agreement. The relative contribution of variability in ocean heat transport (OHT) convergence and net surface heat flux to changes in ocean heat content is investigated with a focus on three regions: the subpolar and subtropical gyres and the tropics. The surface heat flux plays a relatively minor role in year-to-year changes in the subpolar and subtropical regions, but in the tropical North Atlantic, its role is of similar significance to the ocean heat transport convergence. The strongest signal during the study period is a cooling of the subpolar gyre between 1970 and 1990, which subsequently reversed as the mid-latitude OHT convergence transitioned from an anomalously weak to an anomalously strong state. We also explore whether model OHT anomalies can be linked to surface flux anomalies through a Hovmöller analysis of the Atlantic sector. At low latitudes, increased ocean heat gain coincides with anomalously strong northward transport, whereas at mid-high latitudes, reduced ocean heat loss is associated with anomalously weak heat transport.  相似文献   

6.
Paleoreconstructions suggest that during the Last Glacial Maximum (LGM) the North Atlantic circulation was noticeably different from its present state. However, the glacial salt conveyor belt is believed to be similar to the present-day’s conveyor, albeit weaker and shallower because of an increased freshwater flux in high-latitudes. We present here the investigation of the conveyor operation based on ocean circulation modelling using two numerical models in parallel. The GFDL primitive equation model and a planetary geostrophic model are employed to address the problem of the paleocirculation modelling in cases of uncertain and sparse data comprising the glacial surface boundary conditions. The role of different simplifications that may be used in the ocean climate studies, including the role of grid resolution, bottom topography, coast-line, etc., versus glacial-interglacial changes of the ocean surface climatology is considered. The LGM reverse conveyor gyre appeared to be the most noticeable feature of the glacial-to-interglacial alteration of the ocean circulation. The reversed upper-ocean conveyor, weaker and subducting ‘normal’ conveyor in the intermediate depths, and the change of the deep-ocean return flow route are robust signatures of the glacial North Atlantic climate. The results are found to be ‘model-independent’ and fairly insensitive to all factors other than the onset of the glacial surface conditions.  相似文献   

7.
Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2° × 2°) global ocean model applying the state estimation technique. Temperature, salinity, and velocity data on two Weddell Sea sections from the regional model are used as constraints for the large-scale model in addition to satellite altimetry and sea-surface temperatures. The differences between the model with additional constraints and without document that the Weddell Sea circulation exerts significant influence on the course of the Antarctic Circumpolar Current with consequences for Southern Ocean water mass characteristics and the spreading of deep and bottom waters in the South Atlantic. Furthermore, a warming trend in the period 1993–2001 was found in the Weddell Sea and adjacent basins in agreement with float measurements in the upper Southern Ocean. Teleconnections to the North Atlantic are suggested but need further studies to demonstrate their statistical significance.  相似文献   

8.

The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200 km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.

  相似文献   

9.
10.
The current study deals with a parameterization of diapycnal diffusivity in an ocean model. The parameterization estimates the diapycnal diffusivity depending on the location of tidal-related energy dissipation over rough topography. The scheme requires a bottom roughness map that can be chosen depending on the scales of topographic features. Here, we implement the parameterization on an ocean general circulation model, and we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different ranges of spatial scales, with the largest scale varying up to 200?km. Three main results are discussed. First, the dependence of the topographic spectra with depth, characterized by an increase in spectral energy over short length scales in the deep ocean, influences the vertical profile of the diffusivity. Second, the changes in diffusivities lead to different equilibrium solutions in the Atlantic meridional overturning circulation and bottom circulation. In particular, the lower cell of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger diffusivities at the corresponding basins and depths, and the strongest when using the small-scale roughness map. Third, a comparison of the density fields of the three simulations with the density field of World Ocean Atlas dataset, from which the models are initialized, shows that among the simulations with three different roughness maps, the one using small-scale bottom roughness map has the smallest density bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号