首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
框架-剪力墙结构作为多层及高层结构普遍采用的建筑结构形式之一,是抗震设计与加固的重点与热点。组合连梁技术为降低墙肢损伤,震后快速恢复结构功能,降低社会灾后重建的成本提供了新的思路。但目前对组合连梁框架-剪力墙结构体系的研究仍不充分,组合连梁对于整体结构的控制效果仍有待确认。本文通过子结构试验与数值分析的方法,系统地研究了组合连梁的力学性能,给出了合理的组合连梁设计参数,并提出了基于连续化方法的带组合连梁的剪力墙结构的抗震分析方法。本文的主要工作及成果如下:(1)带缝钢板阻尼器力学性能试验研究。通过带缝钢板阻尼器低周拟静力循环加载试验研究,研究了开缝宽度和工艺、连接构造措施、弯曲单元跨高比等关键因素对带缝钢板阻尼器力学性能的影响,同时研究了带缝钢板阻尼器的延性、超强系数及低周疲劳性能。并通过精细化有限元分析对缝宽为2mm的阻尼器试验进行了模拟,讨论了损伤模型及损伤参数的取值,并为试验结果补充了分析参数。通过Bouc-Wen宏观模型,对缝宽为6mm的阻尼器试验进行了模拟,通过回归分析,建立了Bouc-Wen形状控制参数与阻尼器力学性能控制参数之间的关系。(2)传统连梁与带缝钢板阻尼器组合连梁对比试验研究。通过一组传统连梁与组合连梁的对比试验研究,验证了组合连梁在连梁和墙肢的损伤控制、相同位移角下的耗能能力,变形能力等方面的优势,同时研究了超强系数对组合连梁的影响。(3)大比例传统剪力墙和组合连梁剪力墙子结构试验研究。根据某18层原型结构,制作了1/3缩比的6层传统连梁剪力墙和组合连梁剪力墙试验体,进行了子结构拟动力试验及低周拟静力循环加载试验研究,研究了组合连梁剪力墙结构的力学性能及损伤破坏模式,证明了组合连梁墙片在结构层间位移角、地震力输入方面的控制效果,同时测量了组合连梁的变形需求。(4)组合连梁框剪结构参数分析。在验证模型正确的基础上,应用有限元软件Marc对消能墙片进行了参数分析,研究了在10层、20层、30层3种不同高度下,组合连梁的跨高比、刚度参数及强度参数对于整体框架-剪力墙结构的地震响应的控制作用,分析了结构的层间位移角、楼层剪力分布、结构沿楼层的耗能分布等结构响应随参数的变化关系,并给出了组合连梁设计参数的合理范围。(5)基于等效弹性连续化方法的组合连梁剪力墙结构的抗震分析方法。基于传统双肢剪力墙的连续化方法,考虑了组合连梁以及墙肢的塑性能力,通过计算组合连梁剪力墙的周期与振型、组合连梁的附加阻尼比,并结合MPA方法,提出了基于等效弹性连续化方法的组合连梁剪力墙抗震分析方法,为阻尼器参数及优化分析奠定了基础。  相似文献   

2.
钢筋混凝土剪力墙结构是高层建筑结构中最常用的结构类型之一,消能减振技术作为控制结构振动反应的有效手段而越来越多地应用于钢筋混凝土剪力墙结构。连梁作为钢筋混凝土剪力墙结构的重要构件,在结构体系中起到增加结构侧移刚度、传递墙肢间荷载和位移、担当结构抗震设防第一道防线、强烈地震作用下消耗振动能量等重要作用。鉴于连梁的重要性,自上世纪60年代以来国内外学者先后提出了普通配筋连梁、斜向交叉暗撑配筋连梁、菱形配筋连梁、斜向交叉钢筋连梁、双连梁、劲性连梁、刚性连梁、外贴钢板式耗能连梁、刚度串联式耗能连梁等多种连梁设计方案。其中钢筋混凝土—软钢阻尼器刚度串联式耗能连梁(以下简称刚度串联式耗能连梁)作为钢筋混凝土剪力墙结构消能减振领域内的一项新技术,自提出以来逐渐被多个工程项目采纳和使用。刚度串联式耗能连梁设计方案自上世纪90年代被提出以来,国内外学者进行了一定的研究。但目前国内外研究成果主要集中于阻尼器类型的设计,而少有人研究阻尼器在结构空间位置优化布置的问题。本文基于国内外研究现状,针对刚度串联式耗能连梁的设计概念、设计技术以及阻尼器沿结构空间位置优化等问题进行了研究。本文主要研究工作汇总如下:(1)总结并分析了钢筋混凝土剪力墙结构连梁受力特征及刚度串联式耗能连梁工作机理。首先对连梁的震害特征以及对连梁横截面剪切应力沿结构高度方向的分布规律进行了分析。然后基于延性设计原理,阐述了双肢剪力墙中耦合比的概念。最后根据建筑结构阻尼器工作原理,结合连梁内力分布特征分析和连梁震害特征总结,分析了组合耗能连梁的工作机理。(2)基于反应谱理论拟合出考虑多因素的速度反应谱阻尼效应修正系数计算公式并剖析了减震系统工作原理。首先,介绍了地震反应谱相关理论,并初步分析了两大减震系统的工作机理以及其适用范围。然后基于反应谱理论详细分析了两大减震系统的减震原理。最后基于强震记录拟合得到速度反应谱阻尼效应修正系数计算公式。(3)提出并分析了刚度串联式减震结构减震性能曲线基本理论、曲线构建方法和曲线形式,并建立了基于减震结构性能曲线的刚度串联式减震结构初步设计方法。根据单自由度力学模型以及对应的滞回曲线,并基于弹塑性反应谱等效线性化方法的基本原理,推导出单自由度减震系统的等效周期、等效阻尼比的计算公式。确定了减震结构性能曲线绘制方法及关键技术,建立了刚度串联式减震结构减震性能曲线,探讨了减震结构性能曲线的工程应用价值。提出了基于减震结构性能曲线的刚度串联式减震结构设计方法和设计流程。(4)提出了软钢阻尼器沿钢筋混凝土剪力墙结构竖向布置的设计方法、设计原则以及设计计算公式。研究了基于减震结构性能曲线相关理论的多自由度减震系统阻尼器刚度沿结构高度方向的分配原则和方法。详细分析了每一竖向布置原则的物理意义,并对五大竖向布置原则之间的关系进行了探讨。根据阻尼器沿结构竖向布置五大原则所对应的力学原理及计算公式,推导出结构各层阻尼器刚度和延性系数分配计算公式。(5)提出了软钢阻尼器在钢筋混凝土剪力墙结构各层布置原则以及软钢阻尼器的设计方法、设计原则以及设计计算公式。提出了阻尼器沿结构水平向布置的基本原则。基于连梁的实际工作性能和软钢阻尼器的力学特性,提出了刚度串联式耗能连梁中金属阻尼器设计的三大原则。根据力学理论和结构材料特性,分别推导出各阻尼器设计原则所对应的方法和公式。(6)采用本文建立的结构消能减震设计方法,对一栋典型的钢筋混凝土剪力墙结构进行了消能减震优化设计,并使用Seismostruct有限元分析软件对设计结果进行了弹塑性时程分析验证,验证结果表明本文所确定的刚度串联式消能减震设计方法科学合理、结果可靠、具有工程实用价值。  相似文献   

3.
连梁作为剪力墙结构中的抗震第一道防线,其承载力和耗能能力对整体结构的抗震性能有重要影响。本文提出在连梁中附设粘滞阻尼器,利用阻尼器发生竖向剪切变形而耗能。结合实际工程研究粘滞阻尼耗能连梁的性能,采用ETABS和PERFORM-3D软件对粘滞阻尼耗能连梁结构与传统连梁结构进行有限元模拟对比分析,并对粘滞阻尼耗能连梁的各项最优参数进行研究。结果表明:粘滞阻尼耗能连梁充分发挥耗能作用,整体结构具有良好的抗震性能,与传统连梁结构相比,主体结构的弹性耗能得到明显降低。平面布置方式、竖向布置方式、阻尼器参数的选取对附设粘滞阻尼耗能连梁的框架-核心筒结构减震效果影响较大,合理选择这些参数可以使耗能结构减震效果最优。  相似文献   

4.
联肢剪力墙结构中连梁因跨高比偏小且受力复杂,在地震中常遭遇不同程度的损伤,为降低其损伤程度且便于震后快速修复,本文提出一种新型的连梁截断式剪切型金属阻尼器及具体的设计要求,应用工程力学理论推导阻尼器双线性模型的参数设计方法,然后程序化设计流程以便于工程应用,最后采用壳单元和纤维模型分别建模分析多层双肢剪力墙拟静力试验,对比安装阻尼器前后结构初始刚度、失效模式及耗能性能的变化。研究结果表明,本文提出的阻尼器及其设计方法可靠合理,在安装阻尼器后结构抗震性能得到明显提高;当结构抗侧刚度与极限承载力削弱在10%以内时,其延性增强程度及破坏模式改善的效果显著;针对连梁先于墙肢屈服的结构,阻尼器耗能占结构总耗能的比例与附加阻尼比均有较大提高,达到了预期的设计目标。  相似文献   

5.
张军涛  宫海  程美涛 《地震研究》2015,38(2):297-300,334
介绍了阻尼器型屈曲约束支撑和阻尼器型屈曲约束钢板墙这两种耗能减震技术的简化设计方法,并通过这种简化设计方法使阻尼器型屈曲约束支撑这种耗能减震技术在抗震加固工程中的得到了应用,从案例分析结果看,这种耗能减震技术简化设计方法为结构抗震设计提供了可靠、便利的设计依据,是一种合理有效的抗震途径或结构振动控制技术手段,可应用于抗震加固工程的设计理论和分析。  相似文献   

6.
混合暗支撑高阻尼混凝土联肢剪力墙是一种新型延性双肢剪力墙,它将暗支撑引入双肢墙的两个墙肢,将内置带剪力钉钢板连梁作为剪力墙洞口连梁,墙身由高阻尼混凝土浇筑而成.本文对这种新型联肢剪力墙结构进行了低周反复加载实验与数值模拟,较系统地分析了该新型剪力墙结构的承载力、延性、耗能、破坏机制、破坏特征以及刚度衰减过程等性能.结果表明:与现有暗支撑混凝土联肢剪力墙相比,混合暗支撑高阻尼混凝土联肢剪力墙开裂强度、极限承载力、耗能能力及变形能力均有一定程度的提高,显示了良好的抗震性能;当剪力墙连梁跨高比越小,混合暗支撑高阻尼混凝土剪力墙的抗震性能越好.  相似文献   

7.
利用有限元软件ADINA建立了改进焊接箍筋钢板-混凝土组合连梁数值计算模型,分别对嵌有8mm、10mm和12mm厚度钢板的钢筋混凝土-钢板组合连梁的抗震性能进行计算分析。结果表明:3种钢板厚度对连梁混凝土的破坏过程和范围影响不大。而钢板本身的损伤较小,表明具有进一步承载和变形的能力;计算得出的滞回曲线形状饱满,试件有较好的延性与耗能能力。墙肢部分的箍筋轴向应变值处于较低的水平,能保证对边缘构件中受力纵筋的约束作用。  相似文献   

8.
震后可恢复性(Earthquake Resilience)已经成为了建筑结构体系的重要评价标准之一。作为高层建筑结构中最主要的抗侧力构件,钢筋混凝土剪力墙在近几次大地震中暴露出了震后可恢复性方面的缺陷。主要表现为连梁损伤严重、难以修复;剪力墙底部钢筋屈曲、混凝土压溃、剪切破坏明显,同样难以修复。针对上述两点问题,本文分别研究了剪切型金属阻尼器连梁和塑性铰支墙两种构件,建立两类构件的设计方法和简化数值模型。在此基础上运用连续化方法对铰支墙-框架结构体系中塑性铰支墙和消能连梁的强度和刚度需求进行了讨论。本文的主要研究内容如下:(1)对国内多组普通RC连梁和剪力墙构件试验的结果进行了统计分析,其结果显示了两类RC构件的变形能力与设计参数之间的关联存在较明显的离散性。(2)提出了带缝钢板阻尼器及跨中布置该阻尼器的剪切型消能连梁。本文进行了大剪跨比(r=3.0)的普通RC连梁和剪切型消能连梁的对比试验研究,结果显示,普通RC连梁和消能连梁试件的实测峰值荷载和名义屈服剪力值相差在4%以内。消能连梁阻尼器可以更早地进入屈服耗能状态,避免连梁混凝土部分遭受严重损伤。消能连梁变形的80%以上集中在阻尼器内,充分发挥了位移相关型阻尼器的耗能能力。阻尼器连接构造存在滑移,一定程度上影响了阻尼器性能的发挥。最后,建立了消能连梁的简化数值模型并验证了其适用性。(3)针对剪力墙底部墙肢复杂的弯剪耦合作用机制,提出了抗弯/抗剪功能分离的塑性铰支墙并建立了相应的承载力和刚度设计公式。塑性铰支墙与普通RC剪力墙的对比试验证明,本文提出的设计方法可以更准确地获得塑性铰支墙不同性能目标下的力学性能;塑性铰支墙具有更强的变形和耗能能力;塑性铰支墙的总变形中,弯曲变形占有绝对比重,避免了铰支墙发生剪切型破坏,保证了"强剪弱弯"的性能,从而避免了底部墙肢的不可修复损伤。(4)对塑性铰支墙的主要设计参数进行了研究,给出了相关建议。建立塑性铰支墙的简化数值模型。其中,采用在纤维模型的截面附加剪切恢复力本构来模拟RC剪力墙的方法,以及采用零长单元模拟阻尼器连接段非线性行为的方法均根据试验结果进行了准确性验证。在此基础上研究了塑性铰支墙几何参数(墙肢宽高比r、铰支座高度比μ)、轴压比ν、阻尼器核心段初始刚度K_(ed)对墙肢力学性能的影响,参数分析的结果显示,阻尼器性能的发挥主要受几何参数的影响,建议将塑性铰支墙布置在结构底部加强层范围内,高宽比r≤1.0,同时,铰支座的布置高度不宜超过铰支墙高度的60%。在满足阻尼器极限变形要求的前提下,通过选择更大的高度比μ和初始轴向刚度K_(ed)更大的阻尼器,可以使塑性铰支墙获得更高的承载力和刚度。(5)采用连续化设计,对铰支墙结构和铰支墙-框架结构在3种常见类型的水平荷载作用下的效应进行分析。结果表明,连续化设计方法可以得到铰支墙结构的结构响应,内力和变形计算公式中均显出铰支墙所在层的性能对结构响应的影响比较明显。  相似文献   

9.
在大连国际会议中心核心筒墙体抗震设计中,采用了一种钢管混凝土叠合边框墙肢内藏钢板、连梁内藏钢桁架的组合双肢剪力墙。为研究其抗震性能,进行了1个1/7缩尺的这种新型组合双肢剪力墙模型的低周反复荷载试验,分析了其承载力、延性、刚度及其退化、滞回特性、耗能能力和破坏特征,重点研究了钢管混凝土叠合边框、墙肢内藏钢板、连梁内藏钢桁架之间的共同工作性能。研究表明:内藏钢板-钢桁架可显著提高钢管混凝土叠合边框双肢剪力墙的承载力和延性性能;钢管混凝土叠合边框可充分发挥其承载力高、不易开裂、延性好的优势。文中提出了该新型组合双肢剪力墙的承载力计算模型,计算结果与实测结果符合较好。  相似文献   

10.
连梁是剪力墙结构中重要的耗能构件,小跨高比连梁通常具有延性差,耗能能力薄弱等缺陷,不能起到保护墙肢的作用。半通缝连梁可有效改善小跨高比连梁的延性[1]。为进一步探究带有半通缝连梁的剪力墙结构的抗震性能,包括:延性系数、耗能能力等抗震性能参数,以及验证半通缝连梁剪力墙结构的破坏机理。基于有限元软件ABAQUS建立3种不同连梁形式的单片双肢剪力墙结构数值模型,对结构的低周反复试验进行仿真,以分析3种截面形式连梁的单片双肢剪力墙结构在低周往复荷载作用下的承载能力、耗能能力和延性。研究表明:半通缝连梁剪力墙结构可以兼顾双连梁剪力墙结构的延性和深连梁剪力墙结构的开裂前刚度,耗能性能与双连梁剪力墙结构相近,承载力较双连梁剪力墙结构高,抗震性能良好。  相似文献   

11.
为改善高层建筑联肢剪力墙抗震性能,消除传统连梁阻尼器残余位移较大或等效阻尼比较小等问题,设计了一种兼具耗能和自复位功能的形状记忆合金粘弹性连梁阻尼器(Shape Memory Alloy Viscoelastic Coupling Beam Damper,SVCBD),给出了新型连梁阻尼器的构造形式和工作原理。利用拉普拉斯变换得到的粘弹性材料粘性系数以及超弹性形状记忆合金(Shape Memory Alloy,SMA)本构模型,基于ABAQUS仿真平台建立了SVCBD精细有限元模型;对SVCBD滞回特性进行了模拟分析,并与普通粘弹性阻尼器进行了对比。考虑了SMA丝束初始预应力度、横截面总面积和粘弹性材料层剪切面积等参数对SVCBD滞回特性的影响。分析结果表明:与普通粘弹性连梁阻尼器(Viscoelastic Coupling Beam Damper,VCBD)相比,SVCBD滞回曲线更加饱满,耗能能力更强,残余位移减小,初始刚度也大大提高,具有很好的耗能和复位效果;SMA丝束初始预应力大小、横截面面积(即配置数量)和粘弹性材料层剪切面积均对SVCBD的耗能和复位能力具有明显的影响。  相似文献   

12.
为了研究装配式混凝土金属消能减震连接体系的抗震性能,对金属消能减震连接体系和普通预制装配式框架进行了数值仿真分析,分析了消能器不同设计参数对该体系抗震性能的影响。分析结果表明:金属消能减震连接体系的抗震性能优于普通预制装配式框架,屈服位移有显著提高,较好的延缓了梁端的破坏,对梁端保护作用明显,并且有效的解决了梁端后浇区施工困难的问题;金属消能器腹板高度越小耗能效果越好,但初始刚度及承载力也越小;翼缘板厚度越小消能器越早屈服耗能,但过小的翼缘板厚度会导致耗能能力不足,并且应变过大会导致其与梁柱连接部位被破坏;随着消能器高度的增加,构件跨中弯矩越大,也越早屈服耗能,但过大的消能器高度会导致其弯曲变形严重。  相似文献   

13.
陈清祥  潘琪 《地震学刊》2012,(4):436-443
由于受制于计算机软件中的消能减震单元,目前尚无较适用的静力分析方法应用于消能减震结构在多遇地震和罕遇地震下的结构分析。有关含消能减震部件的结构分析,主要以动力时程分析和动力弹塑性时程分析方法为主,因此具有较大的难度和需要很长的分析时间。为了推进结构消能减震于工程项目上的应用,缩短分析上的繁杂程序,依据《建筑抗震设计规范》,配合美国FEMA 356规范,提出一套消能减震结构在多遇地震下的等值线性分析方法和在罕遇地震下的静力非线性推覆分析方法(pushover analysis)。此方法适用于位移型阻尼器和防屈曲支撑,不但可使消能减震结构的结构分析简化,并可避免计算机软件的限制,且在不含阻尼器元素的计算机软件上,依然可做消能减震结构在多遇地震和罕遇地震下的结构分析。并介绍了此分析方法在消能减震结构的结构分析中的应用,以证明其可行性。  相似文献   

14.
安装形状记忆合金阻尼器的剪力墙结构抗震性能分析   总被引:1,自引:0,他引:1  
为减轻钢筋混凝土剪力墙连梁的地震后永久性损伤,同时保持连梁的耗能机制,本文提出在剪力墙连梁中安装新型形状记忆合金(Shape Memory Alloy,简称SMA)阻尼器,并研究该阻尼器对剪力墙结构地震响应的减震效果。通过一幢12层剪力墙结构地震反应的时程分析,研究了SMA阻尼器的附加刚度比和屈服位移比两项特征参数对结构地震反应控制效果的影响规律。计算分析结果表明,当附加刚度比为0.04~0.05,屈服位移比为0.4~0.5时,可以获得较好的减震效果。  相似文献   

15.
为保护地震作用下历史遗迹帕特农神庙多鼓石柱,提出将破损的石鼓替换为填充颗粒的空鼓,以减轻多鼓石柱动力响应。本文基于PFC3D与FLAC3D软件,实现了离散-有限耦合作用,模拟了附有颗粒阻尼器帕特农神庙多鼓型石柱,研究了颗粒阻尼器对帕特农神庙石柱的减震效果,并分析地震强度、频率、阻尼器位置等因素对减震效果的影响。研究结果表明,将颗粒阻尼器替换破损的空鼓,PFC3D与FLAC3D耦合计算结果与试验结果基本一致,减震效果显著,说明耦合分析方法研究颗粒阻尼器抗震性能具有较高的可靠性;地震强度不同时,分层颗粒阻尼器仍可较好地耗散能量;颗粒阻尼器对结构的减震性能受激励频率的影响显著,频率越高,减震效果越好;颗粒阻尼器布置在古柱中上部减震效果优于布置在古柱下部。  相似文献   

16.
A tuned-mass damper is a small damped spring-mass system which vibrates in resonance with the main structure to which it is attached so as to be able to dissipate vibration energy and reduce the structural response. In this paper, explicit forms of Green's function for the transient response of main structures equipped with the tuned-mass damper and subjected to support excitation are derived by perturbation techniques and provide an insight into the characteristics of the damper. It is found that there exists a critical damping level for the tuned-mass damper. If the damper damping is higher than this critical damping level, increasing the damper damping will enhance the structural response. When the damper damping is below this critical value, something called ‘beat phenomenon’ occurs where the structure will have a smaller response in the first beat cycle, but have a higher rebound in the following beat cycles.  相似文献   

17.
By advancing the technologies regarding seismic control of structures and development of earthquake resistance systems in the past decades application of different types of earthquake energy dissipation system has incredibly increased. Viscous damper device as a famous and the simplest earthquake energy dissipation system is implemented in many new structures and numerous number of researches have been done on the performance of viscous dampers in structures subjected to earthquake. The experience of recent severe earthquakes indicates that sometimes the earthquake energy dissipation devices are damaged during earthquakes and there is no function for structural control system. So, damage of earthquake energy dissipation systems such as viscous damper device must be considered during design of earthquake resistance structures.This paper demonstrates the development of three-dimensional elasto-plastic viscous damper element consisting of elastic damper in the middle part and two plastic hinges at both ends of the element which are compatible with the constitutive model to reinforce concrete structures and are capable to detect failure and damage in viscous damper device connections during earthquake excitation. The finite element model consists of reinforced concrete frame element and viscous damper element is developed and special finite element algorithm using Newmark׳s direct step-by-step integration is developed for inelastic dynamic analysis of structure with supplementary elasto-plastic viscous damper element. So based on all the developed components an especial finite computer program has been codified for “Nonlinear Analysis of Reinforced Concrete Buildings with Earthquake Energy Dissipation System”. The evaluation of seismic response of structure and damage detection in structural members and damper device was carried out by 3D modeling, of 3 story reinforced concrete frame building under earthquake multi-support excitation.  相似文献   

18.
Sliding base‐isolation systems used in bridges reduce pier drifts, but at the expense of increased bearing displacements under near‐source pulse‐type earthquakes. It is common practice to incorporate supplemental passive non‐linear dampers into the isolation system to counter increased bearing displacements. Non‐linear passive dampers can certainly reduce bearing displacements, but only with increased isolation level forces and pier drifts. The semi‐active controllable non‐linear dampers, which can vary damping in real time, can reduce bearing displacements without further increase in forces and pier drifts; and hence deserve investigation. In this study performance of such a ‘smart’ sliding isolation system, used in a 1:20 scaled bridge model, employing semi‐active controllable magneto‐rheological (MR) dampers is investigated, analytically and experimentally, under several near‐fault earthquakes. A non‐linear analytical model, which incorporates the non‐linearities of sliding bearings and the MR damper, is developed. A Lyapunov control algorithm for control of the MR damper is developed and implemented in shake table tests. Analytical and shake table test results are compared. It is shown that the smart MR damper reduces bearing displacements further than the passive low‐ and high‐damping cases, while maintaining isolation level forces less than the passive high‐damping case. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
为验证液体黏滞阻尼器(FVD)与摩擦摆支座(FPB)组合在大跨长联减隔震体系梁桥中的应用效果,以一联(50+8×100+50) m预应力混凝土连续梁桥为工程背景,建立全桥有限元模型,通过输入场地地震安评报告提供的50年超越概率为2%的三条人工模拟地震波,开展单独及组合使用液体黏滞阻尼器和摩擦摆支座的大跨长联梁桥减隔震研究,从能量耗散的角度揭示液体黏滞阻尼器与摩擦摆支座组合在大跨长联减隔震体系梁桥中的联合作用机理。结果表明,大跨长联梁桥仅使用黏滞阻尼器,其长周期特性激发黏滞阻尼器充分发挥耗能,但无法避免对固定墩的地震损伤;仅使用摩擦摆支座隔震在纵(横)向强震下会引起支座位移超限;摩擦摆支座与黏滞阻尼器组合的减震机理为摩擦摆支座提供墩梁间的弱连接,激发墩梁间的相对速度,促进黏滞阻尼器(速度型)充分发挥阻尼耗能作用。另外,组合减震方案中摩擦摆支座为辅助耗能装置,黏滞阻尼器为主要耗能装置,且主控梁体位移;相比仅使用摩擦摆支座隔震,由于黏滞阻尼器激发的阻尼力增强了墩梁间约束,这种组合减隔震可能使结构输入能量增加,从而导致地震反应加剧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号