首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A comparison of stygofauna communities inside and outside groundwater bores   总被引:6,自引:2,他引:6  
Sampling stygofauna is both time consuming and labour intensive. The challenge is to get samples from as many bores as possible within a limited time. The essential assumption for this is that faunal communities inside bores are comparable and representative of the communities outside.To compare relative abundance, taxonomic richness and community composition of the fauna inside groundwater bores to the fauna of the surrounding aquifer, 20 monitoring bores in Palatinate, southwestern Germany, were sampled twice in 1 month. Initially, a sample of 4 l of water was collected from the bottom of each bore. A further sample of 51 l was collected from the groundwater surrounding the bore using a pneumatic piston pump with double packer sampler.Water chemistry inside and outside the bore was similar, but the relative amounts of sediments within the bores were higher compared to those from outside. Relative abundances of fauna inside the bores were higher than in the aquifer, but taxonomic composition was similar with the exception of the proportions of nematodes and amphipods, which were higher inside. As a result, the proportions of cyclopoids were lower inside. Higher nematode proportions are explained partially by the nearly complete extraction of bore sediment. A “habitat heterogeneity effect” states that in heterogeneous aquifers with few suitable habitats, faunal distribution is supposed to be extremely patchy. Thus, detritus accumulates in bores, attracting animals and providing “habitat islands” in the groundwater. This effect could explain the higher amphipode proportions inside the bores, which were generally more frequently populated than the surrounding groundwater. As a consequence, fauna is thought to be nearly absent from groundwater, where suitable habitats are lacking. In those sparsely populated aquifers, samples representative of the aquifer taxonomic richness and composition can only be collected by removing large volumes of water, or by sampling the bottom of bores. These findings also suggest that the use of unbaited colonisation chambers or traps in the groundwater, which are comparable with bores, would seem to be a promising approach.  相似文献   

2.
Unbaited phreatic traps are a promising new method for sampling subterranean limnofauna. The aim of this study is to evaluate whether such trap systems are suitable to gather representative samples of the physico-chemical parameters and the invertebrate fauna of the aquifer. Fifteen traps, installed in five groundwater bores, and four traps located in the hyporheic zone, were sampled twice monthly over a 1 year period (June 2003–June 2004). Water samples were removed in three separated fractions (hose, trap and aquifer water), analysed for physico-chemical and faunal characteristics and compared with one another. The study was carried out in the Nakdong River floodplain, Korea. Physico-chemical characteristics of trap and aquifer were similar, but differed greatly from the hose samples. Abundances of fauna inside the traps were higher than in the aquifer, whereas there were no differences in taxonomic composition of the trap and aquifer samples. Biases of abundances suspected due to the use of traps were negligible in the groundwater, though it is recommended that comparisons between groundwater and hyporheic abundances ascertained by traps be handled cautiously.  相似文献   

3.
In the sediments of a southwestern German headwater, pumping and two types of unbaited traps were compared with respect to their suitability for the sampling of interstitial meiofauna. The aim of the study was to discover whether the type-2 trap, having been developed for universal use, could be utilised in the hyporheic zone, as well as in groundwater. Trap samples demonstrate both greater abundance and taxonomic richness than those samples obtained by pumping, though very few differences could be detected between the two types of trap. The taxonomic composition, however, was found to be very similar for all three sampling methods. Other researchers also observed a high similarity of stygofaunal communities between pumped groundwater and the water of the bores, which act as traps. This would imply that not only do trap samples as well or better reflect community structure of the surrounding sediment than does pumping, but also that the type-2 trap is, indeed, suitable for the sampling of meiofauna in both the hyporheic zone and in groundwater.  相似文献   

4.
Groundwater bores act as traps. Net samplers are regularly used for sampling this type of trap for fauna. To enable direct comparisons of faunal communities in groundwater bores and stream sediments, stream sediment tubes were built similar to groundwater bores and were sampled with net samplers for fauna. These stream sediment tubes consisted of a tube anchored in the stream sediment, also called interstitial space. To test the efficacy of this trap method in stream sediments, it was compared to another type of trap, Hahn's trap. Faunal communities sampled by a net in the stream sediment tubes did not differ hugely from fauna in Hahn's trap samples. Physical and chemical factors of sampled water in both the stream sediment tubes, the surrounding interstitial sediments and the second type of traps, Hahn's traps, showed that water in both the tubes and Hahn's traps was closely related to interstitial water. The net sampler is inexpensive and easy to handle. It is suggested that sampling stream tubes with nets may be an appropriate method for long‐term monitoring studies.  相似文献   

5.
Hans Jürgen Hahn   《Limnologica》2005,35(4):248-261
(1) A new method of sampling stygofauna is presented, along with some data derived from applications in the field. Numerous bores were sampled for fauna, water and bacteria, down to a depth of 7.50 m. Two or 3 unbaited traps were fixed to a central pole within the bore. The traps consist of an inert plastic chamber with holes in the upper parts and gaskets near the bottom and near the lid of each trap. The content of the traps was emptied monthly using a pump.

(2) While the taxonomic composition of the trap samples seemed to be comparable to the surrounding groundwater, estimation of abundances in the traps might differ, with a potential over-estimation in the traps, in particular in sparsely populated aquifers. Detailed comparative studies on the performance of the method are, as yet, lacking.

(3) Trap data of invertebrate communities reflect hydraulic changes, and highest abundances and taxa richness were found near the water table. They decreased rapidly with depth, implying that small-scale stratified sampling is possible.

(4) The technique is cheap, reliable, simple and rapid to use, and allows simultaneous sampling of hydro-chemical, faunal and microbial samples. The method seems to be suitable for a wide range of sub-surface waters, where the water table is shallower than 8 m.

Keywords: Stygofauna; Groundwater; Phreatic traps; Sampling method; Hydrological exchange  相似文献   


6.
In the STAR/AQEM protocol microhabitats covering less than 5% of the sampling area were neglected. Driven by an ongoing discussion on the importance of these underrepresented microhabitats we tested the influence of sampling them. We investigated 48 streams representing 14 different stream types from all over Germany. Macroinvertebrates of underrepresented microhabitats were sampled in addition to the STAR/AQEM protocol. To ensure the method remains feasible in routine monitoring programmes the total sampling and sorting effort of additional sampling was limited to 20 min. Particularly those taxa were picked, which were not recognised during the routine STAR/AQEM sorting.To identify the effect of additional sampling on stream assessment results, we calculated the stream type-specific Multimetric Index (MMI) with the “main” and the “main+additional” data for each sample. The mean and median difference in MMI values between “main” and “main+additional” samples was 0.02 and 0.01, respectively. In seven of 48 samples (14.6%) a different ecological quality class was calculated with the “main+additional” dataset. Regarding common metrics within the MMI as well as intercalibration metrics differences between “main” and “main+additional” samples were analysed. The values differed most in richness metrics (e.g., number of EPTCBO Taxa, number of Trichoptera Taxa). The results of the present study show that additional sampling of underrepresented microhabitats could alter multimetric assessment results.  相似文献   

7.
Shallow groundwater temperature response to climate change and urbanization   总被引:4,自引:0,他引:4  
Groundwater temperatures, especially in shallow (quaternary) aquifers respond to ground surface temperatures which in turn depend on climate and land use. Groundwater temperatures, therefore, are modified by climate change and urban development. In northern temperate climate regions seasonal temperature cycles penetrate the ground to depths on the order of 10–15 m. In this paper, we develop and apply analytic heat transfer relationships for 1-D unsteady effective diffusion of heat through an unsaturated zone into a flowing aquifer a short distance below the ground surface. We estimate how changes in land use (urban development) and climate change may affect shallow groundwater temperatures. We consider both long-term trends and seasonal cycles in surface temperature changes. Our analysis indicates that a fully urbanized downtown area at the latitude of Minneapolis/St. Paul is likely to have a groundwater temperature that is nearly 3 °C warmer than an undeveloped agricultural area at the same geographic location. Pavements are the main cause of this change. Data collected by the Minnesota Pollution Control Agency (MPCA) in the St. Cloud, MN area confirm that land use influences groundwater temperatures. Ground surface temperatures are also projected to rise in response to global warming. In the extreme case of a doubling of atmospheric carbon dioxide (2 × CO2 climate scenario), groundwater temperatures in the Minneapolis/St. Paul metropolitan area could therefore rise by up to 4 °C. Compounding a land use change from “undeveloped” to “fully urbanized” and a 2 × CO2 climate scenario, groundwater temperatures are projected to rise by about 5 °C at the latitude of Minneapolis/St. Paul.  相似文献   

8.
The Chilean lake district includes diverse lentic ecosystems along ca. 700 km of the country (36°–43°S), including the “Nahuelbutan lakes”, “Araucanian lakes” and “Chiloe lakes”. This area is recognized as an important “hot spot” of benthic freshwater biodiversity in Southern South America. In Chilean temperate lakes, increased nutrient loads of P and N caused eutrophication, particularly in the Nahuelbutan Lakes. The freshwater Hyriidae mussel Diplodon chilensis (Gray, 1828) which is one of the most abundant species in Chilean temperate lakes, is known to be very susceptible to eutrophication. This species presents a clear reduction in its geographic ranges and is considered to be a threatened species in many Chilean lakes. In this study, we used a correlative approach to determine how eutrophication-driven changes in the food supply and in geographical parameters of different Chilean lakes affected the shell growth rates of D. chilensis. The results obtained from sclerochronological analyses of the mussel shells suggest an association with a group of environmental variables, including geographical types (negative), such as latitude and altitude, and limnological types (positive), especially phosphorous and turbidity. However, the D. chilensis populations under extreme conditions of turbidity in eutrophic and hypertrophic lakes are extinct or nearly so. The high positive correlation of the mean D. chilensis growth rates with orthophosphate (R=0.76; P<0.05), in relation to dissolved inorganic nitrogen, suggests that P is the major limiting factor of the primary productivity in Chilean temperate lakes. We discuss some implications of our results in terms of the conservation of biodiversity in temperate lake ecosystems at different taxonomic levels.  相似文献   

9.
Groundwater management decisions are often founded upon estimates of aquifer hydraulic properties, recharge and the rate of groundwater usage. Too often hydraulic properties are unavailable, recharge estimates are very uncertain, and usage is unmetered or infrequently metered over only recent years or estimated using numerical groundwater models decoupled from the drivers of drawdown. This paper extends the HydroSight groundwater time-series package ( http://peterson-tim-j.github.io/HydroSight/ ) to allow the joint estimation of gross recharge, transmissivity, storativity, and daily usage at multiple production bores. A genetic evolutionary scheme was extended from estimating time-series model parameters to also estimating time series of usage that honor metered volumes at each production bore and produces (1) the best fit with the observed hydrograph and (2) plausible estimates of actual evapotranspiration and hence recharge. The reliability of the approach was rigorously tested. Repeated calibration of models for four bores produced estimates of transmissivity, storativity, and mean recharge that varied by a factor of 0.22-0.32, 0.13-0.2, and 0.03-0.48, respectively, when recharge boundary effects were low and the error in monthly, quarterly, and biannual metered usage was generally <10%. Application to the 30 observation bores within the Warrion groundwater management area (Australia), produced a coefficient of efficiency of ≥0.80 at 22 bores and ≥0.90 at 12 bores. The aquifer transmissivity and storativity were reasonably estimated, and were consistent with independent estimates, while mean gross recharge may be slightly overestimated. Overall, the approach allows greater insights from the available data and provides opportunity for the exploration of usage and climatic scenarios.  相似文献   

10.
We assess the effects of taxonomic resolution (genus-family levels) on the ecological assessment of 39 highly heterogeneous ponds located in north-western Spain.Non-metric multidimensional scaling (MDS) and one-way analysis of similarities (ANOSIM) were used to investigate the effects of taxonomic resolution on the macroinvertebrate assemblage structure. The Mann Whitney U-test and discrimination efficiency were used to assess the ability of nine diversity measures (total richness, rarefied richness samples of 25, 50 and 100 individuals, Margalef's index, Pielou's evenness, Shannon-Weaver's index, Simpson's index and percent dominant taxon) to discriminate between acceptable (best available and good conditions) and unacceptable (moderate, poor and very poor) conditions using three levels of taxonomic resolution: (i) family, (ii) family plus subfamilies of benthic non-biting midges and (iii) genus level.Based on non-metric MDS, the macroinvertebrate assemblages of ponds of acceptable (A) and unacceptable (N) conditions were statistically undistinguishable, both at genus and family levels. On the other hand, based on several community metrics (total richness, Margalef index, etc.) the two sets of samples were statistically different, although only when the genus or the subfamily level was used and after Bonferroni correction. These results suggest that the structure of macroinvertebrate assemblages by itself is more sensitive than the specific composition in distinguishing the fauna living in acceptable and unacceptable conditions. Moreover, dealing with families including many taxa generally showing different tolerance to disturbance may lead to misclassification of ponds. We agree, however, that the two approaches, i.e. assemblage composition and diversity measures, are conceptually different and hence they should be used in combination for a better understanding of the response of single metrics.  相似文献   

11.
The study of groundwater hydrogeochemistry of the Paleozoic Basses-Laurentides sedimentary rock aquifer system in Québec produced a large geochemical dataset. Groundwater samples were collected at 153 sites over a 1500 km2 study area and analyzed for major and minor ions. The large number of data can lead to difficulties in the integration, interpretation and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and principal components analysis (PCA), were applied to a subgroup of the dataset to evaluate their usefulness to classify the groundwater samples, and to identify geochemical processes controlling groundwater geochemistry. This subgroup consisted of 144 samples and 14 parameters (Ca2+, Mg2+, Na+, K+, , Cl, , Fe2+, Mn2+, Br, Sr2+, F, Ba2+, HS). Seven geochemically distinct clusters, C1–C7, resulted from the HCA. Samples from clusters C3, C4, C6 and C7 are mostly located in preferential recharge areas. The majority of these samples have Ca–Mg–HCO3 recharge groundwater (C3, C6, C7) and Na–HCO3 evolved groundwater (C4). Samples from the other three clusters (C1, C2, C5) are characteristic of an aquifer system under confined conditions. The majority of these samples have Na–HCO3 evolved groundwater (C1, C5) and Na–Cl ancient groundwater that exhibits elevated concentrations in Br (C2). In addition to recognizing the importance of hydrogeological conditions on groundwater geochemistry, the distribution of clusters also showed the importance of the geological formations on minor and trace elements, such as Fe2+, Mn2+, Sr2+, F and Ba2+. The first five components of the PCA account for 78.3% of the total variance in the dataset. Component 1 is defined by highly positive loadings in Na+, Cl and Br and is related to groundwater mixing with Champlain Sea water and solute diffusion from the marine clay aquitard. The high positive loadings in Ca2+ and Mg2+ of component 2 suggest the importance of dissolution of carbonate rocks in this aquifer system. From their characteristic loadings, the first two components are defined as the “salinity” and “hardness” components, respectively. Components 3–5 are related to more local and geological effects. The integration of the HCA and the PCA, with conventional classification of groundwater types, as well as with the hydrogeological and geological contexts, allowed the division of the region into four main geochemical areas, providing an improved regional picture of the aquifer system dynamics and hydrogeochemical evolution of groundwater. The following factors were recognized as influencing the evolution of groundwater identified in every geochemical area: (1) geological characteristics including sedimentary rock type and till mineralogy; (2) hydrogeological characteristics represented by the level of confinement and the hydraulic gradient; and (3) the geological history including the latest glaciation and the Champlain Sea invasion. With its integrated approach, this hydrogeochemical study contributes to the characterization and understanding of complex groundwater flow systems, and provides an example of the long-term geochemical evolution of hydrogeological systems after a major perturbation, in this case seawater invasion.  相似文献   

12.
Hans W. Paerl   《Limnologica》1999,29(3):249
Coastal waters comprise only about 15% of the world's ocean area, yet account for nearly half of its primary and secondary production (Wollast 1991). This disparity can in part be traced to anthropogenic nutrient, specifically nitrogen (N), loading. Regionally, N-sensitive coastal waters are experiencing unprecedented nutrient-driven eutophication, deteriorating water quality (i.e. hypoxia, anoxia, toxicity), habitat loss and declines in desirable fish stocks and yields. In most coastal regions externally-supplied “new” nutrient inputs are growing, diversifying and changing as a result of urbanization, industrial and agricultural development. In some cases (e.g. Eastern Europe), declining economic condition shave led to a reversal of this scenario. A need exists to identify key nutrient sources (and changes therein) supporting eutrophication and its socio-economic consequences. While we are addressing and managing terrestrial (i.e. point and non-point source runoff) “new” nutrient inputs, key “out of sight out of mind” anthropogenic nutrient sources and their effects on eutrophication remain poorly understood and managed. These include atmospheric deposition and groundwater, which can account for as much as half the “new” N entering North American (U.S. Atlantic East Coast) and European (Baltic Sea) coastal waters. Here, I will examine these emerging nutrient sources and their roles in shallow coastal biogeochemical and trophodynamics alterations. Technological and conceptual tools and approaches aimed at improving our functional understanding of these and other “new” nutrient-eutrophication interactions are discussed.  相似文献   

13.
Five geothermal waters from the Mons area (southern Belgium) have been studied: one natural hot spring at Stambruges, one stagnant warm water from the “inclined tunnels” at Baudour, and three thermal waters from the drillholes at St. Ghislain, Ghlin and Douvrain, originating from the carbonate/anhydrite-bearing Visean strata, at depths of ca. 2600, 1550 and 1300 m, respectively.Multielement chemical analysis of the filtered water and its suspended matter > 0.4 μm) was carried out by instrumental neutron activation.Temperature in depth, calculated using the silica (chalcedony) chemical geothermometer, ranged from 75 to 88°C, in good agreement with experimentally determined values. Na/K and Na/K/Ca geothermometers yieilded erratic results, as expected from the geological environment in the aquifer.From the analytical data it can be calculated that the thermal waters of St. Ghislain, Ghlin and Douvrain are not only saturated with respect to chalcedony, but also to anhydrite, calcite, fluorite, barite, strontianite, and possibly zinc silicate, iron (III) hydroxide or siderite, albite, microcline, gibbsite and kaolinite. They are oversaturated with respect to muscovite. Data are also presented for the other thermal waters, and a cold spring water (Claire Fontaine, Stambruges).The similar trace-element composition of the thermal waters can be explained by percolation of the water in the same distant recharge zone, from where it descends, becomes heated at depth and rises along collapse breccia, and locally (Baudour, Stambruges) along fissures. The uptake of higher amounts of Ca, Mg, Sr and sulfate in St. Ghislain and Ghlin, as compared to Douvrain and Baudour is correlated with the boundary between the “non-dissolved” and “dissolved” evaporitic zones. This boundary is situated between St. Ghislain and Douvrain, and is roughly parallel with the direction of the groundwater flow (WNW).  相似文献   

14.
Measurements of groundwater–surface water exchange at three wetland stream sites were related to patterns in benthic productivity as part of the US Geological Survey's Northern Temperate Lakes–Water, Energy and Biogeochemical Budgets (NTL–WEBB) project. The three sites included one high groundwater discharge (HGD) site, one weak groundwater discharge (WGD) site, and one groundwater recharge (GR) site. Large upward vertical gradients at the HGD site were associated with smallest variation in head below the stream and fewest gradient reversals between the stream and the groundwater beneath the stream, and the stream and the adjacent streambank. The WGD site had the highest number of gradient reversals reflecting the average condition being closest to zero vertical gradient. The duration of groundwater discharge events was related to the amount of discharge, where the HGD site had the longest strong-gradient durations for both horizontal and vertical groundwater flow. Strong groundwater discharge also controlled transient temperature and chemical hyporheic conditions by limiting the infiltration of surface water. Groundwater–surface water interactions were related to highly significant patterns in benthic invertebrate abundance, taxonomic richness, and periphyton respiration. The HGD site abundance was 35% greater than in the WGD site and 53% greater than the GR site; richness and periphyton respiration were also significantly greater (p≤0.001, 31 and 44%, respectively) in the HGD site than in the GR site. The WGD site had greater abundance (27%), richness (19%) and periphyton respiration (39%) than the GR site. This work suggests groundwater–surface water interactions can strongly influence benthic productivity, thus emphasizing the importance of quantitative hydrology for management of wetland-stream ecosystems in the northern temperate regions.  相似文献   

15.
Standard methodologies for sampling the physicochemical conditions of groundwater recommend purging a bore for three bore volumes to avoid sampling the stagnant water within a bore and instead gain samples representative of the aquifer. However, there are currently no methodological standards addressing the amount of purging required to gain representative biological samples to assess groundwater bacterial and viral abundances. The objective of this study was to examine how bacterial and viral abundances change during the purging of bore volumes. Six bores infiltrating into unconfined aquifers were pumped for five or six bore volumes each and bacteria and virus‐like particles (VLPs) were enumerated from each bore volume using flow cytometry. In examination of the individual bores trends in bacterial abundances were observed to increase, decrease, or remain constant with each purged bore volume. Furthermore, triplicates taken at each bore volume indicated substantial variations in VLP and bacterial abundances that are often larger than the differences between bore volumes. This indicates a high level of small scale heterogeneity in microbial community abundance in groundwater samples, and we suggest that this may be an intrinsic feature of bore biology. The heterogeneity observed may be driven by bottom up processes (variability in the distribution of organic and inorganic nutrients), top‐down processes (grazing and viral lysis), physical heterogeneities in the bore, or technical artifacts associated with the purging process. We suggest that a more detailed understanding of the ecology underpinning this variability is required to adequately describe the microbiological characteristics of groundwater ecosystems.  相似文献   

16.
17.
Many subsurface waters are considered groundwater but are influenced in shallow depths by hyporheic, parafluvial and/or soil interception water to such a degree that groundwater fauna (stygofauna) communities may be significantly altered. Recharge, even if spatially and temporally distinct, delivers input of dissolved oxygen, organic matter (OM), and nutrients that caters sustainably for ubiquists such as stygophiles and hyporheic fauna, but renders the life of uncompetitive stygobites difficult or impossible. The impact of recharge at shallow groundwater thus needs to be taken into account when determining groundwater fauna reference communities and when evaluating monitoring studies.One of the main characteristics of groundwater is low OM concentration. In contrast, high OM concentrations are typical of hyporheic or parafluvial waters, which are enriched by OM from the river, the riparian soils and from interflow, and which contribute significantly to river OM balance. Consequently, for ecological studies on subsurface waters, both the origin of the water and OM, and the intensity of surface water interactions should be considered. Here, we discuss how groundwater spatial and temporal heterogeneity translates into faunal distribution patterns. In terms of the origin of water and OM, and from an ecological point of view, we need to distinguish between (i) shallow groundwater characterized by infiltrating precipitation and soil recharge, (ii) shallow groundwater interacting with surface water bodies such as continuously flowing and ephemeral streams and rivers, and (iii) “old” groundwater which has no recent connections to the surface and is thus largely secluded from input of nutrients and carbon. Water in the first two groups is characterized by high amounts of OM of varying quality, while water in the third group is characterized by low amounts of low quality OM. Consequently, stygophiles dominate in groups 1 and 2, with hyporheic fauna taking up a considerable proportion in group 2, while stygobites only dominate in group 3. Thus, for studies aiming to assess impacts on groundwater, only sampling sites of the third group should be used for reference sites as these are the most likely sites to have little surface impact and a stygofauna representative of the deeper aquifer.  相似文献   

18.
Biodiversity, abundance and taxonomic composition of shallow-water zoobenthos were studied in the W?oc?awek Dam Reservoir (the lower Vistula River, central Poland). The following habitats located near the shore were studied: (1) sandy bottom in the flooded part of the reservoir; (2) sandy bottom close to the main riverine flow in the reservoir and (3) organic-rich bottom covered by a thick layer of plant remnants in a shallow, isolated cove. In each habitat we investigated two sites (ca. 0.5 and 1 m depth). Also examined was the bottom of a phytolittoral site (sandy bottom, with elodeids and nympheids, 1 m depth), located in the flooded zone. In general, the bottom fauna was highly diverse and abundant in these habitats. The highest biodiversity (38 taxa, Shannon-Wiener index=4.3) was found on the bottom rich in organic matter. However, the zoobenthos abundance in this habitat was comparatively low, probably due to periodical oxygen deficiencies. The highest density of bottom fauna (>30,000 individuals per m2), accompanied by its high biodiversity, occurred at the phytolittoral site. The benthic community of the organic-rich sediments was the most distinct, with many taxa occurring exclusively in this area. The composition of the bottom fauna, from the two sandy habitats and phytolittoral, also differed from one another. The differences in taxonomic composition between the shallower and deeper sites were less pronounced. Lower densities at the shallower sandy sites and a very high variability of taxonomic composition among particular samples from these sites indicated lower stability of their environmental conditions. These were certainly due to water level fluctuations and/or destructive wave action. On the other hand, no such differences were found between the sites of various depths from the organic-rich sediments, showing that this substratum provided better protection against adverse hydrodynamical factors.  相似文献   

19.
1988-2016年洞庭湖大型底栖动物群落变化及驱动因素分析   总被引:1,自引:0,他引:1  
洞庭湖是我国第二大淡水湖泊,其水文条件对湖泊湿地生态系统健康的维系发挥着不可替代的作用.近年来,水环境恶化日益威胁湖区水生态系统健康.然而,有关底栖动物水生态健康评价的研究仍然停留在物种群落结构方面,缺乏底栖动物群落功能对水污染响应的研究,尤其在较长时间尺度上.因而,本研究分析了19882016年近30 a来洞庭湖的水质和底栖动物群落数据,探寻底栖动物群落功能对水环境恶化的响应规律.结果表明,洞庭湖水体总氮浓度是威胁底栖动物物种和功能群落变动的主要因素.此外,不断恶化的水环境驱动底栖动物物种和功能群落结构改变,表现为敏感水生昆虫的比例下降,寡毛类、小型软体动物比例的上升,并伴随着体长为1.00~1.99 cm、背扁型、侧扁型、不移动等功能性状类别比例的下降.同时,水环境恶化降低物种丰富度、功能丰富度和劳氏二次熵多样性.基于距离的冗余分析结果显示,水体氮营养盐、重金属离子和有机污染物共同驱动底栖动物物种群落结构的变异,而营养盐类与无/有机污染物决定着其功能群落结构的变异.鉴于洞庭湖水质不断恶化的状况,本研究建议采取一系列措施,包括合理管控湖区周边废水直排入湖、取缔湖区内的非法采砂以及调控枯水季洞庭湖水位等.生物监测和评价方面,建议将底栖动物物种和功能群落一并纳入评价体系,且优先选用物种丰富度、功能丰富度和劳氏二次熵指数评估换水周期较短的大型浅水湖泊水质变化对底栖动物物种和功能多样性的影响.  相似文献   

20.
土层特性变异性对场地传递函数的影响   总被引:2,自引:0,他引:2  
选取日本Kik-Net强震数据库中软(FKSH14)、硬(FKSH12)两类场地,建立场地概率模型。应用Monte Carlo技术随机生成50组场地剖面,分别计算场地的传递函数STF及STF标准差,讨论场地土层厚度、剪切波速,以及两者组合工况对场地传递函数的标准差的影响。结果显示:对于硬土场地,场地特征频率标准差相对于软土场地较大,且剪切波速变异性的影响略大于土层厚度变异性的,两者组合工况的影响最大;而对于软土场地,土层厚度、剪切波速变化工况下,场地特征频率的标准差相当,略低于两者组合工况;对于软、硬两类场地,土层厚度与剪切波速两者组合工况下的STF标准差略大于单一量变化工况,但3种工况下的场地STF标准差相差不明显;场地STF标准差在场地自振频率附近的频率段取值较大,极值点与场地STF的极值点相对应;基于实际地震记录的场地传递函数标准差高于模拟的结果,但是两者极值点对应的频率范围吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号