首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
青藏高原东北缘岩石圈厚度与上地幔各向异性   总被引:5,自引:5,他引:0       下载免费PDF全文
利用青海地震台网和甘肃地震台网2007-2009年记录的远震波形资料,提取S波接收函数和SKS分裂参数,得到了青藏高原东北缘的三维岩石圈厚度分布和上地幔各向异性特征.S波接收函数结果表明:昆仑-阿尼玛卿缝合带以南的松潘-甘孜地块东北缘和西秦岭造山带下方岩石圈较薄,厚度为125~135 km;昆仑-阿尼玛卿缝合带以北具有较厚的岩石圈,在昆仑和祁连地块下方岩石圈厚达145~175 km,并向柴达木盆地(175~190 km)和克拉通(鄂尔多斯南部约为170 km、阿拉善南缘约为200 km)下方增厚.上地幔各向异性结果显示:东北缘地区的SKS快波偏振方向为NW-SE向,与前人得到的昆仑断裂带南侧的快波方向存在较大差异,南侧自高原内部呈顺时针旋转,表明昆仑断裂带可能为上地幔变形的转换带.SKS快、慢波延迟时间为0.8~1.9 s,且在昆仑-阿尼玛卿缝合带以北,延迟时间与岩石圈厚度呈正相关关系,推断该区各向异性主要来源于地幔盖层的初期伸展变形.  相似文献   

2.
西昆仑造山带下岩石圈地幔速度结构   总被引:13,自引:3,他引:13       下载免费PDF全文
在已完成的新疆地学断面研究计划实施中曾在西昆仑山前布置了14个宽频带地震台站.利用记录到的远震P波初至和层析成像方法,研究了西昆仑造山带下的岩石圈地幔结构特征.在已有地震学证据基础上,层析成像结果显示,西昆仑造山带下的高速岩石圈地幔可能是印度岩石圈地幔的俯冲前缘.沿东经80°深度剖面图像显示,在西昆仑造山带下的150~300km处,高速异常的岩石圈地幔前锋与低速异常的塔里木块体岩石圈地幔发生了面对面碰撞.  相似文献   

3.
佳木斯地块和松嫩地块是东北地区两个十分重要的地质构造单元,由于二者之间发育一套含有蓝片岩的俯冲增生杂岩-黑龙江杂岩(原称黑龙江群),其地质构造意义长期为人们所关注.巴彦—桦南深反射地震剖面揭示,佳木斯地块与松嫩地块之间存在明显向西俯冲的深反射信息,以壳内和幔内向西倾伏的楔状反射区为特征.壳内楔状反射区东与浅表层出露的黑龙江杂岩相连,向西倾伏延深至莫霍面,是俯冲增生杂岩在地壳深部的反映;幔内楔状反射区东起小兴安岭之下的莫霍面,向西倾伏延深至松辽盆地东缘,尖灭深度约78km,与多种方法得出的该区现今的岩石圈厚度(75~80km)基本一致.这一证据充分说明佳木斯地块的岩石圈地幔向西俯冲到松嫩地块岩石圈地幔之下.  相似文献   

4.
印度板块向欧亚俯冲前缘位于班公—怒江缝合带附近,但是印度岩石圈地幔的俯冲形态和形变过程仍然缺乏共识,在不同地区使用不同方法获得的结果之间存在明显差异.本文使用青藏高原中部INDEPTH-Ⅲ剖面远震S波波形数据,提取走时信息,通过层析成像方法获得剖面下方S波速度扰动图像.结果显示:在班公—怒江缝合带下方100至300km深度范围内存在一个高角度(约65°)北倾的S波高速体,推测可能是回退的印度岩石圈板片或/和小规模对流引起的岩石圈拆沉后残留的印度大陆岩石圈板片.  相似文献   

5.
克拉通能否长期稳定存在,主要取决于岩石圈地幔的特征和属性.中生代以来,华北岩石圈地幔的组成和性质发生了根本性转变,导致了克拉通破坏.尽管目前取得了上述共识,但是对岩石圈地幔转变形式与机制的认识仍然存在分歧.本文以华北克拉通破坏前后岩石圈地幔的特征为视角,对华北不同时代幔源岩石及地幔捕虏体的研究结果进行综述,旨在为上述问题的讨论提供新的思路.华北古生代岩石圈厚达200km,具有高度难熔、SrNd同位素富集的克拉通型岩石圈地幔特征;中生代岩石圈地幔具有易熔、同位素高度富集的特征,在空间上具有明显的不均一性和分布规律;在新生代,华北东部岩石圈厚约60~80km,具有易熔、同位素亏损的大洋型岩石圈地幔特征;中部带岩石圈厚度大于100km,岩石圈地幔具有上老下新的双层结构;西部岩石圈厚达200km,仍然保存有克拉通型古老地幔.岩石圈地幔组成的转变主要是通过橄榄岩-熔体反应的方式实现的.古生代周边板块的多次俯冲作用使华北克拉通边缘地区岩石圈地幔的组成发生了明显改变.中生代古太平洋板块俯冲作用的叠加,促成华北东部岩石圈地幔组成和性质的根本转变,导致克拉通破坏区域的面积占华北总面积的1/2以上.从克拉通破坏的峰期时间和破坏区域空间展布来看,古太平洋板块俯冲及其驱动的深部动力学过程是华北克拉通破坏的一级控制因素.造成东部岩石圈巨厚减薄的主导因素是俯冲板块回转、海沟后撤引起的大陆岩石圈伸展.俯冲板块机械侵蚀、熔流体交代作用造成的岩石圈弱化、非稳态地幔流动伴随的热-化学侵蚀和岩石圈局部拆沉共同加剧了岩石圈减薄和克拉通破坏的进程.  相似文献   

6.
中国境内天山地壳上地幔结构的地震层析成像   总被引:18,自引:5,他引:18       下载免费PDF全文
根据横跨中国境内天山的库车—奎屯宽频带流动地震台阵和区域地震台网记录的近震和远震P波走时数据,利用地震层析成像方法重建了沿该地震台阵剖面下方400 km深度范围内地壳上地幔的P波速度结构.结果表明:沿新疆库车—奎屯剖面,天山地壳具有明显的横向分块结构,且南、北天山地壳显示了较为强烈的横向变形特征,表明塔里木地块对天山地壳具有强烈的侧向挤压作用;在塔里木和准噶尔地块上地幔顶部有厚度约60~90 km的高速异常体,塔里木—南天山下方的高速异常体产生了较为明显的弯曲变形,而准噶尔—北天山下方的高速异常体向南一直俯冲到中天山南侧边界下方300 km的深度,两者形成了不对称对冲构造;在塔里木和准噶尔地块下方150~400 km深度存在上地幔低速体,其中塔里木地块一侧的上地幔低速物质上涌到南天山地块的下方;在塔里木—南天山200~300 km深度范围的上地幔存在高速异常体,它可能是地幔热物质向上迁移过程融断的塔里木岩石圈的拆离体. 上述结果表明,塔里木地块的俯冲可能涉及整个岩石圈深度,但其前缘仅限于南天山的北缘;青藏高原隆升的远程效应可能不但驱动塔里木岩石圈向北俯冲,同时还造成天山造山带南侧上地幔物质的涌入;天山造山带上地幔广泛存在的低速异常有助于其上地幔的变形,而上地幔物质的强烈非均匀性应有助于推动天山造山带上地幔小尺度地幔对流的形成;根据研究区地壳上地幔速度结构特征推断,新近纪以来天山快速隆升的主要力源来自青藏高原快速隆升的远程效应,相对软弱的上地幔为加速天山造山带的变形和隆升创造了必要条件.  相似文献   

7.
利用PASSCAL、INDEPTH Ⅱ、INDEPTH Ⅲ、HIMNT等研究计划,及中国新疆地学断面和国家973项目在青藏高原布设的流动台站记录的到时数据,以及自1990年1月到2004年2月全球地震事件的震相报告,作者对覆盖印度大陆的恒河平原和整个青藏高原的305个地震台站记录的9649个远震事件,共139021条P波初至到时资料进行了层析成像反演.结果表明:印度岩石圈地幔在不同的位置向北俯冲的形态不同,但俯冲前缘都到达羌塘地体之下.沿88°E剖面显示,厚约100 km的印度岩石圈地幔从南部的恒河平原向北一直俯冲到青藏高原之下.在主边界逆冲断裂之下100 km深度处以约22°角度开始向北俯冲,俯冲最前缘到达羌塘地体的中部地区约34°N,之后进入上地幔深处.而沿北东方向的剖面则显示,印度岩石圈地幔以近水平的角度俯冲到青藏高原之下,向北越过班公-怒江缝合带,到达33°N附近,然后以大角度近乎垂直地向下俯冲断离,并引起地幔热物质的上涌,形成羌塘地体之下大规模的低速带.  相似文献   

8.
秦岭—桐柏—大别复合造山带(以下称为秦岭大别造山带)属于中国中央造山带的一部分,由华北克拉通与扬子克拉通汇聚形成.对于秦岭大别造山带及其周缘地区的研究,可以为这一大陆碰撞造山带的形成与演化过程提供重要信息.本文整合研究区域的接收函数与背景噪声数据,采用H-κ叠加分析、接收函数与背景噪声联合反演、克希霍夫偏移成像等方法,得到了沿秦岭东西方向具有高分辨率的地壳及上地幔结构.研究结果显示:(1)莫霍面深度由西向东逐步抬升,由剖面西侧最深约55 km上升至剖面东侧最浅约30 km;莫霍面于东西秦岭之间起伏明显;桐柏以及东大别下方莫霍面局部加深.(2)西秦岭中下地壳观测到的高速异常阻隔了青藏高原东北缘地壳低速异常的向东扩张,反映了青藏高原东北缘的中下地壳流没有通过西秦岭继续向东流动.(3)西秦岭岩石圈地幔顶部高速异常延伸至100 km深度(剖面底部),桐柏—西大别岩石圈地幔顶部高速延伸至70 km深度,东大别、东秦岭岩石圈地幔顶部未见较大深度范围的高速异常.  相似文献   

9.
大兴安岭域,包括大兴安岭及其两侧盆地,穿过额尔古纳地块、兴安地块、松嫩地块和辽源地体.本文在东北地区已有的近东西向的全球地学断面(GGT)资料基础上,在大兴安岭两侧补充了2条近南北向的地球物理剖面,组构了综合地球物理栅状图;又结合区域内其他7条经综合解译的地球物理剖面,分析讨论了研究区壳幔结构特征及其地质意义.论文得到如下初步结果:(1)研究区莫霍界面以大兴安岭重力梯级带为分界,西部和东部深度有明显差异;以索伦山-西拉木伦河缝合带为界的南北岩石圈-软流圈界面(LAB)深度、软流圈有明显差异.呈现出地壳东西分带、岩石圈地幔南北分块的特征.(2)额尔古纳-兴安微板块具有较稳定的岩石圈地幔组构,与南部的中朝板块的岩石圈地幔具有较大差别;额尔古纳地块与西伯利亚板块的岩石圈特征更为接近.(3)获得古缝合带位置线索.林西以南的翁牛特下方存在明显的LAB南北向抬升,这是古亚洲洋闭合在岩石圈尺度上留下的遗迹;索伦山缝合带东延至西拉木伦河,是古亚洲洋闭合的场所.(4)大兴安岭域跨过两条板块缝合带,该区域北部与中部岩石圈组构特征相近,但它们的岩石圈地幔基底并不相同,这是在塔源-喜桂图缝合带于早古生代的拼合之后由数亿年的长期壳幔物质横向均衡作用所致.  相似文献   

10.
印度-欧亚碰撞与洋-陆碰撞的差异   总被引:1,自引:0,他引:1       下载免费PDF全文
观测的证据充分表明,印度——欧亚的缝合带雅鲁藏布江上存在自南向北的地壳俯冲带,它穿过莫霍面,深度大约达到100 km. 喜马拉雅中可能存在多重的地壳俯冲. 它们有别于海洋碰撞时所产生的整个岩石圈俯冲. 作者观测到雅鲁藏布江以北上地幔的板片构造,它可以解释为印度向欧亚俯冲时上地幔岩石圈的痕迹. 它们说明与洋——陆的俯冲不同,印度向欧亚俯冲时,地壳与上地幔岩石圈出现拆层现象. 综合现有的地壳上地幔构造,显示在不同地质年代中,印度与欧亚之间产生自南向北以及自北向南相反方向的俯冲,而且俯冲带周围出现某些速度异常区.   相似文献   

11.
藏北羌塘盆地中部莫霍面形态及其动力学成因   总被引:4,自引:4,他引:0       下载免费PDF全文
本文通过对羌塘盆地内49个临时宽频带地震观测台阵数据的接收函数分析,采用H-κ叠加和CCP 叠加成像两种方法,获得到了藏北羌塘中部莫霍面深度以及泊松比分布.作为羌塘盆地构造单元的南缘边界,班公湖-怒江缝合带下的Moho存在一个南深北浅、断距约10 km的台阶;把羌塘盆地分为两部分的羌塘中央隆起带下存在一个3 km的Moho台阶;北羌塘盆地下的Moho 平均深度约为60 km,而南羌塘约为63 km.羌塘高原下的近水平Moho结构可能是受到印度大陆北向俯冲作用下的青藏高原隆升过程中Moho再均衡所致或者与其构造演化有关.泊松比值具有明显的构造分区特征,如南羌塘下的泊松比平均为0.31,双湖缝合带下的泊松比接近正常值,为0.265,而北羌塘的泊松比平均为0.285.  相似文献   

12.
中国海陆莫霍面及深部地壳结构特征研究是东亚地区宏观构造格架研究中的重点内容之一.本文以地震测深等数据为约束信息,以重力数据为基础,通过分区计算,反演了中国海陆莫霍面深度.依据地壳性质与莫霍面深度分布特征,划分了莫霍面深度梯级带与分区,并对各分区的莫霍面分布特点进行了归纳、总结.并选取阿尔泰—巴士海峡典型剖面进行了重、震反演,建立了密度结构.剖面上莫霍面深度和深部结构能够清晰地反映中国大陆"三横、两竖、两三角"构造格架中的两横和两竖,在昆仑—秦岭—大别以北的准噶尔地块和中朝地台莫霍面深度45~50 km,而其以南至贺兰山—龙门山之间的祁连、柴达木至松潘—甘孜的莫霍面呈"W"型起伏,莫霍面深度由祁连地块北部的50 km,加深至68 km,在柴达木盆地抬升至58 km,在阿尼玛卿山莫霍面降至68 km,向南逐渐抬升至四川盆地的44 km,经大兴安岭—太行山—武陵山这一竖的台阶式抬升至华南褶皱带的35 km,在江绍—南岭以南缓慢抬升至南海北部陆架区的20~25 km.在巴士海峡处南海沿马尼拉海沟向东俯冲,莫霍面形态较复杂.同时剖面上祁连—柴达木地块的中下地壳存在一个低速、低密度体,推测其可能是由于部分熔融引起的,是青藏高原东北缘壳内物质流动的通道.  相似文献   

13.
通过分析阿尔金—龙门山地学断面的地震资料,建立了该剖面的地壳纵波速度结构。研究结果表明,阿尔金北侧的塔里木盆地地区莫霍面为50km,而在其南侧的祁连地块莫霍面突然加深至73km,在柴达木盆地莫霍面又抬升至58km左右,然后,在松潘甘孜地块莫霍面降至70km,并呈现为台阶状向龙门山方向抬升到60km左右,最低速层,而在其南部地区则没有低速层出现,推测低速层为地壳中部的局部熔融物质,阿尔金—龙门山剖面上的两个莫霍面坳陷区分别与祁连地块和松潘—甘孜地块上的两个莫霍面坳陷区相对应,指示出这个两个地块具有较深的山根,青藏高原北部的巨厚地壳很可能是由于中生代以来发生的印度板块与亚洲板块碰撞时受到来自东西及南北方向的挤压,使地壳缩短所致。  相似文献   

14.
The Eastern Kunlun Mountains play an important role in the growth and eastward extrusion of the Tibetan Plateau. Tectonic and sedimentary study of the Cenozoic Qaidam Basin, especially the southern part, provides key evidence for understanding their evolution. Here we present evidence including isopach maps, seismic sections and sedimentary analysis of single well to illustrate the sedimentary development of the basin and the structural features of its southern margin. The Qaidam Basin extended across Qiman Tagh-Eastern Kunlun Mountains in the early Cenozoic and withdrew northward at ca. 35.5 Ma, and then buckled as an EW striking elliptical depression since ca. 14.9 Ma, with the main depocenter migrating eastward. Our results support the view that the Kumukol and Hoh Xil basins joined the Qaidam Basin in the early Cenozoic time and we propose the Eastern Kunlun Mountains uplifted in the mid-Miocene.  相似文献   

15.
沿格尔木—五道梁公路测线 1979,2 0 0 1年的 2期水准观测资料表明 :1)东昆仑山及可可西里地区现今相对于柴达木盆地仍在发生继承性的隆升运动。 1979— 2 0 0 1年期间 ,昆仑山口主峰一带相对于格尔木约上升了 2 80mm ,上升速率高达 15mm/a ;五道梁相对于格尔木上升了约 2 10mm ,上升速率约 10mm/a。 2 )昆仑山口至五道梁之间的可可西里地区 ,在相对于柴达木盆地以 7mm/a的速度整体抬升的同时 ,还相对于南、北两侧的五道梁和昆仑山隆起区以 3~ 7mm/a的速度下沉。 3)格尔木—五道梁剖面垂直形变整体符合俯冲 -逆掩地壳增厚模式 ,其中 ,沿西大滩断裂、中昆仑山断裂和昆仑山北缘断裂带的逆冲推覆运动 ,占了整个东昆仑山现今构造隆起的大部分 ,其逆冲推覆运动有自南向北衰减的特点。 4 )地质调查结果表明 ,沿 2 0 0 1年 11月 14日昆仑山口西MS8.1地震 35 0km的左旋破裂带 ,可以划分出若干个不均匀错动段 ,错动量最大可达 6m ,最小只有 2m。基于Okada (1985 )位错模型的理论计算结果表明 ,地震断层不均匀左旋错动可以在昆仑山口破裂带  相似文献   

16.
鄂尔多斯地块东南缘地带Moho深度变化特征研究   总被引:7,自引:2,他引:5  
鄂尔多斯地块东南缘是主要的历史强震活跃区,曾经多次发生6级或以上的强烈地震,其边缘边界具有较强的地震活动性.本文利用该区域内分布的固定台站数据记录的大量远震体波波形资料,应用频率域反褶积方法提取远震P波接收函数,由H-κ方法测定了各台站下方的Moho深度和Vp/Vs值.研究结果表明:鄂尔多斯地块东南缘的Vp/Vs值介于1.6~1.9之间.东缘的Moho深度介于33.4~45 km之间,太原断陷盆地附近的Moho深度较浅,最浅处为33.4 km;东部北段的延怀盆地、蔚县盆地、阳原盆地和南段的临汾盆地附近Moho深度变化不大,平均深度为40 km.而在东缘东侧,因存在着山西断陷带,导致块体边缘的Moho深度要小于块体内部的Moho深度.块体南缘的Moho深度介于31.0~53.1 km之间,自东段向西段Moho深度逐渐变大,从渭河盆地附近的31.0 km增厚至秦岭造山带地段的53.1 km.总之,鄂尔多斯地块东南缘地带的Moho深度和Vp/Vs值分布具有明显的分块特征,块体内部结构比较稳定,东缘东段地壳结构相对一致,东缘东侧与西侧地壳深度具有明显的差异性,从山西断陷以东向西地壳厚度逐渐增厚,很好地对应了其地质构造特点.  相似文献   

17.
Ample observational evidence shows that there is a northward crustal subduction zone underneath the Yarlung Zangbo suture between India and Eurasia. It penetrates Moho to a depth of about 100 km. There are probably multiple such crustal subductions under the Himalayas. They are different from lithosphere subduction during oceanic collisions. The detected slabs in the upper mantle north of the Yarlung Zangbo suture can be interpreted as remains of the Indian Plate’s mantle lithosphere. In contrary to ocean-continent subduction, the mantle lithosphere is delaminated from the crust as the Indian Plate subducts underneath Eurasia. Existing structural images of the crust and upper mantle of the Tibetan Plateau reveal that there were both northward and southward subductions over different geological periods, causing some seismic velocity anomalies around those subduction zones.  相似文献   

18.
The Qinling orogen was formed as a result of the collision between the North and South China blocks. The Qinling orogen represents the location at which the southern and northern parts of the Chinese mainland collided, and it's also the intersection of the Central China orogen and the north-south tectonic belt. There is evidence of strong deformation in this orogen, and it has had a long and complex geological history. We investigated the structure of the Moho in the southern Qinling orogen using large dynamite shot imaging techniques. By integrating the analysis of the single-shot and the move-out corrections profile, we determined the structure of the Moho beneath the northern Dabashan thrust belt and the southern Qinling orogen, including the mantle suture beneath Fenghuang mountain. The Moho is divided into two parts by the mantle suture zone beneath Fenghuang mountain:(1) from Ziyang to Hanyin, the north-dipping Moho is at about45–55 km depth and the depth increases rapidly; and(2)from Hanyin to Ningshan, the south-dipping Moho is at about 40–45 km depth and shallows slowly. The mantle suture is located beneath Fenghuang mountain, and the Moho overlaps at this location: the shallower Moho is connected to the northern part of China, and the deeper Moho is connected to the southern part. This may indicate that the lithosphere in the Sichuan basin subducts to the Qinling block and that the subduction frontier reaches at least as far as Fenghuang mountain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号