首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
UppermantleflowbeneaththeNorthwestofChinaanditslithosphericdynamicsJIAN-HUAHUANGI(黄建华);XIA-HUACHANGI(常筱华)andRONG-SHANFUI傅容珊)(...  相似文献   

2.
Based on the data of geo-temperature and thermophysical parameters of rocks in the Kuqa Depression and the Tabei Uplift, northern flank of the Tarim Basin, in terms of the analytical solution of 1-D heat transfer equation, the thermal structure of the lithosphere under this region is determined. Our results show that the average surface heat flow of the northern flank of the Tarim Basin is 45 mW/m2, and the mantle heat flow is between 20 and 23 mW/m2; the temperature at crust-mantle boundary (Moho) ranges from 514℃ to 603℃ and the thermal lithosphere where the heat conduction dominates is 138-182 km thick. Furthermore, in combination with the P wave velocity structure resulting from the deep seismic sounding profile across this region and rheological modeling, we have studied the local composition of the lithosphere and its rheological profile, as well as the strength distribution. We find that the rheological stratification of the lithosphere in this region is apparent. The lowermost of the lower crust is ductile; however,the uppermost of the mantle and the upper and middle parts of the crust are both brittle layers,which is typically the so-called sandwich-like structure. Lithospheric strength is also characterized by the lateral variation, and the uplift region is stronger than the depression region. The lithospheric strength of the northem flank of the Tarim Basin decreases gradually from south to north; the Kuqa Depression has the lowest strength and the south of the Tabei Uplift is strongest.The total lithospheric strength of this region is 4.77× 1012-5.03 × 1013 N/m under extension, and 6.5 × 1012-9.4× 1013 N/m under compression. The lithospheric brittle-ductile transition depth is between 20 km and 33 km. In conclusion, the lithosphere of the northern flank of the Tarim Basin is relatively cold with higher strength, so it behaves rigidly and deforms as a whole, which is also supported by the seismic activity in this region. This rigidity of the Tarim lithosphere makes it little deform interior, but only into flexure under the sedimentation and tectonic loading associated with the rapid uplift of the Tianshan at its northern margin during the Indian-Eurasian continental collision following the Late Eocene. Finally, the influences of factors, such as heat flow, temperature,crustal thickness, and especially basin sediment thickness, on the lithospheric strength are discussed here.  相似文献   

3.
A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus–Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate–deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (∼55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram–Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.  相似文献   

4.
3-D rheological structure is mainly the spatial distribution of lithospheric strength or viscos-ity, its strength and viscosity are indispensable parameters in quantitative study of the lithosphere deformation. Plate tectonics theory initially divided the…  相似文献   

5.
东北地区重力均衡异常特征的初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文利用地面实测重力资料和地形高程资料,采用普拉特-海福特(Pratt-ttayford)重力均衡理论模型,取1°×1°方格网,通过使用现成改正表格查取改正值与个别计算点用理论公式计算作校核的方法,计算了我国东北地区75个计算点的均衡重力异常值;并对局部第四系覆盖较厚地区作了第四系密度改正;在此基础上,构制了我国东北N39°—49°,E121°—131°大部分地区的均衡重力异常图;结合区域布格重力异常和区域空间重力异常特征以及莫霍界面的起伏特点作了对比分析和讨论  相似文献   

6.
The Southern Granulite Terrain of India, formed through an ancient continental collision and uplift of the earth’s surface, was accompanied by thickening of the crust. Once the active tectonism ceased, the buoyancy of these deep crustal roots must have supported the Nilgiri and Palani-Cardamom hills. Here, the gravity field has been utilized to provide new constraints on how the force of buoyancy maintains the state of isostasy in the Southern Granulite Terrain. Isostatic calculations show that the seismically derived crustal thickness of 43–44 km in the Southern Granulite Terrain is on average 7–8 km more than that required to isostatically balance the present-day topography. This difference cannot be solely explained applying a constant shift in the mean sea level crustal thickness of 32 km. The isostatic analysis thus indicates that the current topography of the Southern Granulite Terrain is overcompensated, and about 1.0 km of the topographic load must have been eroded from this region without any isostatic readjustment. The observed gravity anomaly, an order of magnitude lower than that expected (−125 mGal), however, shows that there is no such overcompensation. Thermal perturbations up to Pan-African, present-day high mantle heat flow and low Te together negate the possible resistance of the lithosphere to rebound in response to erosional unloading. To isostatically compensate the crustal root, compatible to seismic Moho, a band of high density (2,930 kg m−3) in the lower crust and low density (3,210 kg m−3) in the lithospheric mantle below the Southern Granulite Terrain is needed. A relatively denser crust due to two distinct episodes of metamorphic phase transitions at 2.5 Ga and 550 Ma and highly mobilized upper mantle during Pan-African thermal perturbation reduced significantly the root buoyancy that kept the crust pulled downward in response to the eroded topography.  相似文献   

7.
We computed P and S receiver functions to investigate the lithospheric structure beneath the northwest Iran and compute the Vp/Vs ratio within the crust of this seismologically active area. Our results enabled us to map the lateral variations of the Moho as well as those of the lithosphere–asthenosphere boundary (LAB) beneath this region. We selected data from teleseismic events (Mb > 5.5, epicentral distance between 30° and 95° for P receiver functions and Mb > 5.7, epicentral distance between 60° and 85° for S receiver functions) recorded from 1995 to 2008 at 8 three-component short-period stations of Tabriz Telemetry Seismic Network. Our results obtained from P receiver functions indicate clear conversions at the Moho boundary. The Moho depth was firstly estimated from the delay time of the Moho converted phase relative to the direct P wave. Then we used the H-Vp/Vs stacking algorithm of Zhu and Kanamori to estimate the crustal thickness and Vp/Vs ratio underneath the stations with clear Moho multiples. We found an average Moho depth of 48 km, which varies between 38.5 and 53 km. The Moho boundary showed a significant deepening towards east and north. This may reveal a crustal thickening towards northeast possibly due to the collision between the Central Iran and South Caspian plates. The obtained average Vp/Vs ratio was estimated to be 1.76, which varies between 1.73 and 1.82. The crustal structure was also determined by modeling of P receiver functions. We obtained a three-layered model for the crust beneath this area. The thickness of the layers is estimated to be 6–11, 18–35, and 38–53 km, respectively. The average of the shear wave velocity was calculated to be 3.4 km/s in the crust and reaches 4.3 km/s below the Moho discontinuity. The crustal thickness values obtained from P receiver functions are in good agreement with those derived by S receiver functions. In addition, clear conversions with negative polarity were observed at ~8.7 s in S receiver functions, which could be related to the conversion at the LAB. This may show a relatively thin continental lithosphere of about 85 km implying that the lithosphere was influenced by various geodynamical reworking processes in the past.  相似文献   

8.
Seismotectonic regionalization of the Kamchatka subduction zone was carried out by retrospective analysis of the temporal sequence and locations of earthquake occurrence and an examination of relationships between the earthquake hypocenters and morphostructures in the continental slope of eastern Kamchatka. Ten segments separated with earthquake-generating strike-slip faults have been identified in the overthrusting (overhanging) margin of the Sea-of-Okhotsk plate in the zone where the Pacific and the Sea-of-Okhotsk plates interact orthogonally. Two to three earthquake-generating thrust blocks have been identified within these segments. This type of subduction is consistent with the keyboard-block model of L.I. Lobkovskii and B.V. Baranov. We put forward a model involving segmentation and generation of thrust blocks due to nonuniform coupling between the subducted Pacific plate and the overhanging Sea-of-Okhotsk plate. According to this model, both segmentation and the formation of thrust blocks are caused by nonuniform plate coupling due to unevenness in the relief of the plunging plate. The thrusts have relief expression as underwater highs and terraces, which indicate that a tsunami-generating earthquake can occur at this location. The highest rate of occurrence for magnitude 7 or greater earthquakes is found at the sharp bend of the Pacific plate, where the subduction angle is 10°–12° instead of 50°–51°, corresponding to a frontal (tectonic) arc, which can be traced by a positive free-air gravity anomaly and by an isostatic anomaly.  相似文献   

9.
Using observational data of geomagnetic total intensity from 13 stations in the Beijing-Tianjin region, 3 stations in the western Yunnan region of China, and 6 stations in California of U. S. A., the daily variations and their spectra of geomagnetic total intensity were analyzed and compared. The results show that the morphology, the range and spectrum of daily variations in geomagnetic total intensity are basically the same within the local extent of 100–200 km and are different in the large extent of 500 km. The latitude factor of the daily variation range of geomagnetic total intensity is about 1–2 nT/degree within the latitude extent of 25°–40°. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 83–89, 1992. This work is supported by the State Seismological Bureau and the Chinese Joint Seismological Science Foundation, and U.S. Geological Survey.  相似文献   

10.
Decelerating generation of preshocks in a narrow (seismogenic) region and accelerating generation of other preshocks in a broader (critical) region, called decelerating–accelerating seismic strain (D-AS) model has been proposed as appropriate for intermediate-term earthquake prediction. An attempt is made in the present work to identify such seismic strain patterns and estimate the corresponding probably ensuing large mainshocks (M ≥ 7.0) in south Japan (30–38° N, 130–138° E). Two such patterns have been identified and the origin time, magnitude, and epicenter coordinates for each of the two corresponding probably ensuing mainshocks have been estimated. Model uncertainties of predicted quantities are also given to allow an objective forward testing of the efficiency of the model for intermediate-term earthquake prediction.  相似文献   

11.
In the Bohai Bay Basin and its adjacent regions(112°―124°E,34°―42°N),there exists abundant gas-petroleum while modern inter-plate seismic activity is robust.Although the tectonic structure of this region is very complicated,plenty of geological,geophysical and geochemical data and results are obtained through previous researches.On the basis of absorbing previous results,especially various kinds of geological and geophysical results,we collect and process the arrival time of P-wave phases of local events and tele-seismic events recorded by the station within this region from 1978 to 2004,build the responding initial model,and image the velocity structure of the crust and upper mantle of this region via tomography.The perturbation images of various depths and velocity profiles imply that the velocity structure of the crust and upper mantle in the Bohai Bay Basin and its adjacent regions is mainly influenced by the surface tectonic units,and is characterized by "Stripped along east-west,and zoned along south-north";some large-scaled faults penetrate Moho and lithosphere,and provide the channels for the basic lava or hot mass upwelling from the mantle.  相似文献   

12.
Seismicity parameters for important urban agglomerations in India   总被引:1,自引:0,他引:1  
India’s urban population has increased in the recent times. An earthquake near an urban agglomeration has the potential to cause severe damage. In this article, seismicity parameters for region surrounding important urban agglomerations in India are estimated. A comprehensive earthquake catalogue for the region (6°E–42°E latitude and 60°N–100°N longitude) including historic and pre-historic events has been compiled from various sources. To estimate the parameters, past earthquake data in a control region of radius 300 km has been assembled to quantify the seismicity around each urban agglomeration. The collected earthquake data is first evaluated for its completeness. From combined (historical and instrumental) data, the seismicity parameters b-value, seismic activity rate, λ and maximum expected magnitude (m max ) have been obtained from the methodology proposed by Kijko and Graham (1998). The obtained activity rates indicate that region surrounding Guwahati urban agglomeration is the most seismically active region followed by Srinagar, Patna, Amritsar and Chandigarh.  相似文献   

13.
The sea-surface height anomalies derived from Simple Ocean Data Assimilation (SODA) during 1958–2001, Topex/Poseidon satellite during 1993–2001 and the SODA heat content anomalies (125 m depth) during 1958–2001 are filtered into annual and biennial Rossby wave components using a two-dimensional Finite Impulse Response filter. The filtered Rossby wave components (both annual and biennial) in the southern Pacific and Indian Oceans have considerable strength and variability. The propagation of annual and biennial Rossby waves in the Indonesian through-flow region [12.5°S–7.5°S] of the Indian Ocean is in phase with the southern Pacific Ocean waves. So it is speculated that the Pacific Ocean influences the Indian Ocean, especially through the region 17.5°S to 7.5°S and thus the southern Pacific Rossby waves could be an unexplored contributor to the Indian Ocean Rossby waves. We also carried out Fast Fourier Transform (FFT) and wavelet analysis on the tide gauge sea-level data along the Australian coast to support our claim. Filtered annual and biennial components of SODA heat content anomalies (125 m depth) also support these findings.  相似文献   

14.
We investigated whether accelerated seismic strain release precedes large earthquakes occurring in and around the Sistan Suture Zone, Eastern Iran. Online catalogs of teleseismic events occurring post-1960 within the region 27.0°–37.0°N, 55.0°–65.0°E, report five M w > 7.0 earthquakes, namely, 1968 Dasht-e-Bayaz, 1978 Tabas, 1979 Khuli-Buniabad, 1981 Sirch and 1997 Zirkuh-e-Q’aenat events. We defined four earthquake test episodes, 1968–1978, 1978–1981, 1979–1981, and 1981–1997, with all catalogued intermediate events having magnitudes within 2.0 units that of the final large event. Using the 1968 event as the starting point, we investigated possible increased moderate earthquake activity patterns prior to the large events of 1978, 1981 and 1997 by examining if the cumulative Benioff strain released from such preceding events followed a power law time-to-failure. Our investigation seem to suggest that the 1978, 1981 and 1997 events (i) followed a period of accelerated moderate earthquake activity and (ii) the radius of their optimal critical region, R, scaled with their magnitude, M, according to the scaling law log R ∝ 0.36 M. Our suggestions conform to those proposed by similar investigations in varied seismotectonic regimes.  相似文献   

15.
Using the data of the topside ionosphere sounding from the Intercosmos-19 satellite, longitudinal variations in foF2 at low latitudes at the daytime hours are considered. It is obtained that these variations in particular days in the majority of cases have a regular wave-like character with periods of about 75°–100° in longitude and amplitudes on the average of 2–4 MHz. In other words, along the valley and crests of the equatorial anomaly, a structure with four maximums and four minimums which have a tendency to be located near certain longitudes (the same in all seasons) is observed. The variations in foF2 along the crests of the equatorial anomaly are usually in anti-phase to variations along its valley. Comparing the characteristics of this wavelike structure at the daytime and nighttime hours, we obtained that the average positions of its extremes at the nighttime hours are shifted eastwards by 10°–50° relative to the daytime extremes. As a cause of formation of such a structure, high harmonics of atmospheric tides are assumed which, uplifting from below to heights of the E region, via the electric currents in this region influence the longitudinal structure of the electrodynamic plasma drift over the equator and by that impact the structure of the entire daytime low-latitude ionosphere.  相似文献   

16.
Frequency analysis of the Sumatra-Andaman earthquake of 2004, one of the most significant and best-recorded earthquakes, is based on spectral seismograms obtained from their broadband seismograms. The Sumatra-Andaman earthquake is found to have a wide-range frequency content of P-wave radiation during the rupturing process. On the basis of stacking spectral seismograms we distinguished four time events of the rupturing process of a total length of about 540 s. The frequency, f max, is the highest for the first event (0.163 Hz in time interval 0–88 s), lowest for the second — which is the strongest (0.075 Hz in time interval 88–204 s). For third and fourth events frequencies are similar (0.089 and 0.082 Hz in time intervals 204–452 and 452–537 s, respectively). The frequency also shows an azimuthal dependence (±0.02 Hz). Azimuths for which the frequency, f max, has maximum and minimum values are 203–222° and 23–42°, respectively. These observations are discussed in relation to previously published papers on this topic.  相似文献   

17.
Northeast India and adjoining regions (20°–32° N and 87°–100° E) are highly vulnerable to earthquake hazard in the Indian sub-continent, which fall under seismic zones V, IV and III in the seismic zoning map of India with magnitudes M exceeding 8, 7 and 6, respectively. It has experienced two devastating earthquakes, namely, the Shillong Plateau earthquake of June 12, 1897 (M w 8.1) and the Assam earthquake of August 15, 1950 (M w 8.5) that caused huge loss of lives and property in the Indian sub-continent. In the present study, the probabilities of the occurrences of earthquakes with magnitude M ≥ 7.0 during a specified interval of time has been estimated on the basis of three probabilistic models, namely, Weibull, Gamma and Lognormal, with the help of the earthquake catalogue spanning the period 1846 to 1995. The method of maximum likelihood has been used to estimate the earthquake hazard parameters. The logarithmic probability of likelihood function (ln L) is estimated and used to compare the suitability of models and it was found that the Gamma model fits best with the actual data. The sample mean interval of occurrence of such earthquakes is estimated as 7.82 years in the northeast India region and the expected mean values for Weibull, Gamma and Lognormal distributions are estimated as 7.837, 7.820 and 8.269 years, respectively. The estimated cumulative probability for an earthquake M ≥ 7.0 reaches 0.8 after about 15–16 (2010–2011) years and 0.9 after about 18–20 (2013–2015) years from the occurrence of the last earthquake (1995) in the region. The estimated conditional probability also reaches 0.8 to 0.9 after about 13–17 (2008–2012) years in the considered region for an earthquake M ≥ 7.0 when the elapsed time is zero years. However, the conditional probability reaches 0.8 to 0.9 after about 9–13 (2018–2022) years for earthquake M ≥ 7.0 when the elapsed time is 14 years (i.e. 2009).  相似文献   

18.
IntroductionThe development and occurrence of macroseismic activity come from the specific structUreenvironment and stress condition. So the space-time distribUtion of strong quakes appears to bevery inhomogeneous. Earthquakes with Ms27.0 in a seismicity period presented often a speeding-up pattern with time in different seismic provinces. That is, the cumulative frequency of earthquakes with Ms27.0 increase with exponent N(t)=ae', in a seismicity period (ZHANG, FU, 1989).It means that t…  相似文献   

19.
In this study an attempt has been made to examine the evolutionary features of the dynamic and thermodynamic characteristics of the marine atmosphere over the South-East Arabian Sea near 9.22°N, 74.51°E just two to three days prior to the onset of southwest monsoon over Kerala during 2003 and seek the linkages with the large-scale flow in the lower and middle troposphere at that time over the region. The marine meteorological data collected onboard ORV Sagarkanya as part of the experiment ARMEX-2003 for 4–8 June, 2003 are used. The monsoon onset over Kerala occurred on 8 June, 2003. The observed changes in the marine atmospheric boundary layer (MABL) characteristics just two days prior to the onset are discussed. It is observed that the MABL increased in height up to 4 km on 6 June from an initial height 2.8 km on 5 June. The top of the MABL dried up (Relative Humidity RH ~ 30–40%) with weak and variable winds throughout the day on 6 June while the air at 850 hPa is relatively humid (RH ~ 50–80%) but not saturated. A sequential increase in RH is associated with a change in the winds from southwesterly to westerly from 6 June onwards until the onset date. The changes in the lower and middle troposphere flow patterns over the Arabian Sea and Indian region are highlighted.  相似文献   

20.
The garnet-muscovite geothermometer was refined through empirical calibration by using natural rocks metamorphosed under the physical conditions of 238—1306 MPa and 490—700℃. Input temperatures and pressures were determined through simultaneously applying the garnet-biotite geothermometer and the garnet-biotite-plagioclase-quartz barometer, assuming that all FeO in muscovite and garnet be ferrous. Garnet was treated as the asymmetric quaternary solid solution, and muscovite as the symmetric binary solid solution. Input muscovite compositions include Fe atoms between 0.03—0.19 and Mg atoms between 0.04—0.16 on the basis of 11 oxygen atoms, and input garnet compositions include spessartine fractions between 0.01—0.289, grossular fractions between 0.028—0.273, and the Fe/Mg ratio between 3.387-18.986. The resulting garnet-muscovite geothermometer reproduces temperatures within (50℃ compared with the garnet-biotite thermometer. Total random error of ±37℃ of the new thermometer may stem from the pressure uncertainty of ±200 MPa, and uncertainties of ±5% of Fe and Mg components in muscovite, and ±5% of Fe, Mg, Mn and Ca components in garnet, altogether. When there exist 10%, 20%, 30%, 40% and 50% Fe3+ in muscovite, respectively, the computed garnet-muscovite temperatures will be 1—6℃, 2—12℃, 3—16℃, 5—24℃ and 7—29℃, respectively, lower than those obtained when assuming that all FeO be ferrous. The new garnet-muscovite geothermometer can efficiently reflect temperature change of typical prograde sequences and contact aureole rocks, and may be applied to low- to high-grade and low- to high-pressure metamorphic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号