首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
2006-2017年乌梁素海夏季水体营养状态及影响因子   总被引:1,自引:0,他引:1  
全栋  史小红  赵胜男  张生  刘晶晶 《湖泊科学》2019,31(5):1259-1267
为探明草型湖泊乌梁素海水体营养状态及演变趋势,明确水体富营养化的关键影响因子,本文采用2006-2017年每年7月份湖泊水质监测数据,利用综合营养指数法评价了湖泊不同区域监测点的水体营养状态,模拟分析了湖泊水体营养状态的演变过程及趋势特征,定性分析了湖泊富营养的关键影响因子.研究结果表明:乌梁素海湖区北部、西部和南部监测点处于轻度富营养状态的极限概率分别为0.588、0.633和0.329,而湖泊的中部和东部监测点处于中营养状态的极限概率分别为0.810和0.536,说明乌梁素海湖区北部、西部和南部区域夏季水体营养状态将呈现向轻度富营养化演变的趋势,而湖区中部和东部区域则呈现向中营养化演变的趋势.水环境因子中水体理化指标对湖泊富营养化起决定性作用,且盐度指标响应概率高达55%,是水体理化指标中第1位影响因子,同时pH值与水深指标也是影响乌梁素海水体富营养化程度的重要因子.  相似文献   

2.
基于2011—2020年乌梁素海水质监测数据,将综合营养指数法、PCA排序法和ArcGIS克里金插值法有机结合,综合评价2011—2020年乌梁素海水体富营养化程度年际时空变化特征,厘清引起水体富营养化发生变化的关键性驱动因子。研究结果表明:(1)乌梁素海水体总磷和总氮的峰值出现在平水期,氨氮的峰值在枯水期,CODMn的峰值在丰水期,水质整体以地表Ⅲ类水为主。(2)2011—2020年湖体水质经历了由轻度富营养-中营养-轻度富营养-中营养的变化过程,综合营养状态指数在60~70(中度富营养)的湖区面积占比由21.49%逐渐消失,综合营养状态指数在30~50(中营养)的湖区面积占比由23.84%扩增到44.87%。(3)乌梁素海生态补水量与总氮、总磷、CODMn和综合营养状态指数呈负相关,是影响湖泊水体营养化的另一个关键性驱动因子。  相似文献   

3.
全栋  张生  史小红  孙标  宋爽  郭子扬 《湖泊科学》2020,32(6):1610-1619
为探明寒旱区浅水型湖泊乌梁素海水环境因子对水体营养状态的影响程度,以2013—2018年1月和7月湖泊水环境监测数据为基础,对具有典型代表性监测点的水体营养状态与水环境因子(盐度、pH值和水深)之间建立向量自回归模型(VAR)模型,通过方差分解方法分析水环境因子对水体营养状态的贡献水平,同时界定出水体营养状态处于最佳水平条件下的水环境因子的适宜范围.结果表明:水环境因子对水体营养状态的方差贡献初期表现显著而后趋于稳定,且盐度、pH值和水深指标的综合方差贡献率最高可达66.62%;并以全湖94.4%的水体面积不呈现富营养化状态作为标准界定出乌梁素海水体处于最佳营养状态水平条件下盐度、pH值和水深指标的适宜范围,分别为0.06~2.68 g/L、7.50~8.63和1.76~3.50 m,且湖泊在此营养水平条件下全湖盐度、pH值和水深指标的均值分别为1.55 g/L、8.15和2.33 m.因此,可以通过人类活动调控湖泊水环境因子值,并实施以水养湖的策略来推动湖泊水体营养状态向良性发展.  相似文献   

4.
北京城市湖泊富营养化评价与分析   总被引:24,自引:1,他引:23  
荆红卫  华蕾  孙成华  郭婧 《湖泊科学》2008,20(3):357-363
根据2006年对北京市区不同功能重点湖泊水体进行的逐月监测,采用综合营养状态指数法,对湖泊富营养化现状进行了评价。结果表明,水源湖泊目前处于中营养状态,但在夏秋季由于温度和光照等气象条件的影响,可接近轻富营养;重要景观湖泊处于轻一中度富营养;一般景观湖泊处于中度一重度富营养状态。湖泊富营养程度随季节变化明显:盛夏和初秋形成高峰,冬、春季最低,总磷、总氮含量与叶绿素a呈显著正相关关系,尤其总磷与叶绿素a的相关性更加显著。由于城市排水管网不健全,雨污分流不彻底,暴雨期大量溢流生活污水直接向湖泊补水河道中排放;湖泊补水沿线降雨径流产生的非点源污染较严重;加上污水处理厂再生水水质较差,加重了补给湖泊富营养程度。  相似文献   

5.
太湖梅梁湾富营养化过程的同位素地球化学证据   总被引:4,自引:0,他引:4  
以浅水湖泊太湖为研究对象,通过湖泊水体、水生生物同位素以及相应湖泊水体营养指标的比较分析,并根据梅梁湾钻孔沉积物TN,TP,TOC,C/N,δ15N,δ13C等多项指标记录,恢复了湖泊富营养化过程.研究结果表明,不同湖区植物碳、氮同位素值和水体NH4+的δ15N值变化反映了植物组成和营养水平的差异.梅梁湾水体NH4+的δ15N和水环境参数不同月份的变化反映了外部营养载荷的输入对湖泊环境有明显的影响.1950~1990年湖泊沉积物有机质碳、氮同位素同步变化的趋势说明湖泊初级生产力的增长和湖泊逐渐富营养化的过程,而1990年之后二者之间反相关关系的出现表明在富营养条件下,大量浮游植物生长对富15N的无机氮的吸收及表层沉积物有机质分解和反硝化作用,代表湖泊富营养化加剧.以同位素示踪,并结合元素地球化学指标变化,将太湖梅梁湾富营养化过程分为三阶段,以20世纪50年代和20世纪90年代为营养状态的转换时段,揭示了人类活动不断加强的影响,与近50年来的湖泊环境监测结果一致.  相似文献   

6.
为探究寒旱区浅湖冰封期分层动态与其对湖泊新陈代谢速率的影响,于2016-2019年对乌梁素海气象与冰雪条件、冰下水体环境开展原位观测,分析水温和溶解氧变化特征、冰下混合层的出现与发展动态及其对代谢速率的影响.结果显示:观测期内乌梁素海整体水温较高(可接近10℃),冻结期水温结构主要由稳定的上部逆温层和下部弱逆温层构成,...  相似文献   

7.
鄱阳湖外围湖泊水体营养波动周年特征的比较湖沼学研究   总被引:7,自引:3,他引:4  
近年来,我国最大淡水湖泊湿地鄱阳湖的水体富营养化趋势明显且日益受到各方关注,而对鄱阳湖湖体外围各类浅水湖泊富营养化情况及其动态却了解颇少.为深入了解鄱阳湖外围不同湖泊的富营养化现状、季节动态及驱动机制,于2014-2015年对毗邻鄱阳湖南岸的南昌市大小不同的3个城市或城郊浅水湖泊(青山湖、瑶湖、军山湖)水质参数和营养状态进行周年观测.结果表明,青山湖、瑶湖和军山湖的高锰酸盐指数范围分别在2.6~4.5、2.1~4.6和1.6~1.9mg/L之间,仅军山湖目前未受到有机物污染影响,3个湖泊两两之间均呈极显著差异.青山湖和瑶湖水体总氮(TN)、总磷(TP)浓度远高于湖泊富营养化转换的阈值(TN:0.20 mg/L,TP:0.02 mg/L),且TP污染最为严重,仅达到地表水Ⅳ~劣Ⅴ类标准.在3个湖泊中,水体氮主要以可溶性态氮的形态占优势,水体磷形态除了军山湖外,另外2个湖泊主要以颗粒态磷占优势.青山湖、瑶湖和军山湖的叶绿素a(Chl.a)浓度范围分别为34.65~184.48、7.66~120.67和2.42~17.41μg/L,各湖泊的Chl.a浓度均在冬季达到最低值,且军山湖与其他2个湖泊的Chl.a浓度均呈极显著性差异,青山湖与瑶湖无显著差异.基于综合营养状态指数法对3个湖泊的营养状态进行评价发现,青山湖富营养化程度最高,已达到轻-中度富营养的稳定富营养状态;其次为瑶湖,营养状态不稳定,在中营养-轻度富营养-中度富营养水平之间巨幅波动;军山湖相对最低,全年整体处于贫营养-中营养状态之间,处于波动上升的趋中营养状态.同时发现3个湖泊的水体富营养化程度的年内波动依赖于不同的水温环境,水温是以上3个亚热带浅水湖泊富营养化程度年内季度波动的重要影响因子之一.Pearson相关分析还发现,3个湖泊的Chl.a浓度均与水柱TN和TP浓度呈显著正相关,其中青山湖和军山湖的水柱Chl.a浓度与总溶解性氮和总溶解性磷浓度均呈极显著正相关关系.整体来说,水柱氮是影响3个湖泊水环境特征的主导因子之一,磷是2个富营养化湖泊的主导影响因子,在富营养化湖泊控制和削减磷营养盐输入的同时,应考虑如何有效降低氮的输入,并着力控制中温季节(水温为15~25℃)的营养输入和快速富营养化风险防控;中营养湖泊(军山湖)应在控制磷的输入和消减水柱氮上进行系统调控,尤其重视高温季节(水温25℃)的防控与预警,这将对鄱阳湖外围浅水湖泊的水环境保护和治理提供重点方向与新型管理思路.  相似文献   

8.
湖北长湖富营养化状况及时空变化(2012-2013年)   总被引:4,自引:1,他引:3  
为评估长湖水体富营养化程度,2012-2013年分4个季度对全湖区20个采样点的物理、化学和生物要素进行监测,在评价水质现状的基础上采用综合营养状况指数法和浮游植物细胞丰度指数法综合评价水体营养状况,并应用典型相关分析(CCA)方法揭示水体富营养化状况与湖泊理化要素之间的典型相关性.结果显示:4个季节长湖全湖区的水质均处于地表水IV类~劣V类水标准;综合营养状态指数值在49.54~82.55之间,浮游植物细胞丰度在2.88×106~61.73×106cells/L之间,均显示其处于富营养化状态;长湖富营养化状况的分布呈现一定的时空差异性;CCA分析显示,长湖理化要素变量可解释68.6%的水体富营养化状况变量的变异,影响其富营养化状况的主要理化因素有水体总磷、总氮、溶解氧、亚硝态氮、硝态氮浓度,水深和沉积物总磷、总氮含量.长湖水体富营养化主要是由于外源的磷污染,其次是氮污染,富营养化最严重的夏、秋季浮游植物的生长主要受氮营养限制,而冬、春季则部分受磷营养限制,部分属于过渡类型.因此,建议大力削减围网/围栏养殖量,同时考虑结合水生植物栽种等生态工程建设措施以降低长湖水体发生严重富营养化的风险,并进一步改善长湖的水质现状.  相似文献   

9.
湖泊富营养化综合评价方法   总被引:81,自引:9,他引:72  
蔡庆华 《湖泊科学》1997,9(1):89-94
从对湖泊富营养化评价的一般方法入手,综述了国内外有关湖泊富养化综合评价的一些方法,提出:营养状态指数法由于可对湖泊营养状态进行连续的数值化的分级,从而为湖泊富营养化机理的定量研究提供了坚实的基础,应是今后湖泊富营养化评价中的主要方法。  相似文献   

10.
运用湖泊营养状态指数判断湖泊的富营养化状态,并根据湖泊的水质、沉积物和水生生物群落的现状和特点,运用主观赋权法中的层次分析法和客观赋权法中的熵权法结合模糊综合评价法,对长江中游地区江汉湖群37个湖泊的水生态系统进行健康状态评价.对湖泊富营养化的调查结果表明,海口湖处于中营养状态,18个湖泊处于富营养化状态,18个湖泊处于超富营养化状态.湖泊生态系统健康评价的研究结果表明,37个湖泊中,处于健康状况"优"的湖泊只有海口湖,处于健康状况"良"的湖泊有5个,分别为东西汊湖、花马湖、梁子湖、童家湖和涨渡湖,其余31个湖泊均处于健康状况"差"的状态.经过与湖泊营养状态指数的对照,本研究结果表明,由主观赋权的专家评分的层次分析法结合模糊综合评价法对江汉湖群湖泊水生态健康状态的评价效果相比客观赋权的熵权模糊综合评价法更贴合实际.  相似文献   

11.
丰水期鄱阳湖水体中氮、磷含量分布特征   总被引:12,自引:7,他引:5  
以2011年7月份鄱阳湖实测数据为参考,对鄱阳湖丰水期总氮(TN)、总磷(TP)空间分布特征及其影响因素进行了分析,并就鄱阳湖氮、磷营养盐结构特征及其与叶绿素a的相关性进行了探讨.结果表明:鄱阳湖氮、磷含量已经达到了发生富营养化的条件,且TN含量呈现由东向西、由南向北逐渐降低的趋势;TP在几个主要的采砂区,尤其是南北湖交界处污染最严重.鄱阳湖以磷限制为主,氮污染相对比较严重,且氮、磷不是鄱阳湖藻类生长的限制性因素.TN同时受悬浮泥沙和水流作用的影响,在上游航道受水流影响较大,在入江水道则主要受陆源污染的影响.TP含量则主要受悬浮泥沙和采砂活动的影响,受水流作用影响相对较小.  相似文献   

12.
乌梁素海冰封期湖泊冰盖组构特征对污染物分布的影响   总被引:1,自引:1,他引:0  
为探究富营养化浅水湖泊季节性冰盖污染物分布规律,于2013-2014年冰封期,钻取乌梁素海湖泊冰盖冰芯试样,观测冰厚并对冰芯晶体结构、气泡含量、污染物浓度(总氮、总磷和COD_(Cr))进行分析.结果表明:冰盖可分为4层,中间2层冰晶体粒径较大且气泡含量较少,为冰盖热力生长区.冰盖以柱状晶体居多,粒径随深度增加而增加,气泡含量随冰盖密度增加而减少.冰盖结构特征与污染物分布具有相关关系,冰芯密度及气泡分布与总氮、总磷和COD_(Cr)相关关系分别为0.8965、0.8718、0.8184,并建立多元回归模型揭示冰封期湖泊水质特征,为季节性湖泊冰盖研究及冰封期湖泊水资源规划和管理提供理论依据.  相似文献   

13.
张程  黄文峰  李瑞  杨惠杰  赵雯  林战举 《湖泊科学》2022,34(4):1186-1196
伴随结冰过程的盐分排出是驱动冰封浅湖营养盐动态变化的关键过程,影响湖泊水质、环境与生态演变.为探究湖冰冻融过程如何改变寒区浅湖营养盐条件,采用自制定向冻结装置开展了无机氮磷营养盐溶液(NH3-N、NO-2-N、NO-3-N、PO3-4-P)的室内冻结试验,结合现场采样分析评估了冻结排出效应对典型浅湖氮磷营养盐的影响.结果表明:营养盐浓度、盐度(以NaCl表征)是影响冻结排出效率的关键因素;随营养盐浓度的升高,冰内营养盐浓度升高,但冻结分离系数减小;若盐度升高,冰内营养盐浓度和分离系数均增大,主要与未冻卤水泡的形成有关;3种形态的无机氮、磷酸根的分离系数均存在明显差异.将试验结果应用于内蒙古乌梁素海结冰期氮磷营养分析,计算表明湖冰冻结排盐过程不仅造成湖水各类营养盐浓度升高,同时改变无机氮素构成、氮磷比等营养结构状态;特别是若湖泊盐度发生变化,氮磷营养盐的冻结排出效率及其差异性均会显著改变,增加冰封期湖泊营养条件的时空变异性.本文结果可广泛应用于定量评价冰层冻融过程对冬季湖泊营养条件的影响,有助于理解冰封期浮游植物群落演变的内在驱动力.  相似文献   

14.
与非冰封期水体相比,冰封期湖泊初级生产力的研究较为薄弱,一方面在于完整冰封期的调查观测数据仍然较少,而完整的冰下初级生产力变化过程对于理解冰下生态系统对环境因子的响应至关重要,另一方面物理过程与冰下生态的联系仍然有待明确。本研究于2021 2022年冬季期间在大辽河口沿岸的含章湖开展野外调查,通过垂向归纳模型(vertically generalized production model,VGPM)计算了冰下初级生产力,分析了冰封期中初级生产力完整的变化过程,并探讨了冰封期初级生产力的关键物理驱动因素。结果表明:冰封期初级生产力呈现波动爬升的趋势,平均值为0.20 g C/(m2·d);整个冰封期可以划分为3个时期,即结冰期、缓慢融冰期和快速融冰期,不同时期初级生产力的关键驱动因子不同,在结冰期水温是控制初级生产力的关键因素,在缓慢融冰期冰水界面光合有效辐射强度(photosynthetically active radiation,PAR)是控制初级生产力的关键因素,在快速融冰期水温和冰水界面PAR同时控制初级生产力。在结冰期冰下水体富营养化程度逐渐增加,在融冰期初级生产力随着升温和...  相似文献   

15.
郭洪涛  曹特  倪乐意 《湖泊科学》2008,20(2):221-227
本实验分别选用武汉东湖中营养和富营养湖区的湖水和底泥,并在水柱中添加氮或磷以设置高营养、中营养、中营养添加磷、中营养添加氮等四种营养环境.测定这四种营养条件下栽培苦草(Vallisneria natans)的生长和生化指标变化,探讨不同营养环境对苦草生长的影响机制.实验结果表明,苦草的生物量、叶数和新芽数等生长指标在中营养环境最高,中营养环境添加磷次之,中营养环境添加氮较低,在高营养环境最低;苦草可溶性糖和游离氨基酸含量在高营养环境中最高,在中营养环境、中营养环境添加磷和中营养环境添加氮等处理间没有明显差异.结果分析表明,高营养环境影响苦草的碳氮代谢水平并抑制苦草生长,这可能是由于苦草过量富集高营养环境中的氮素造成的;中营养环境中氮的升高会在一定程度上抑制苦草的生长,而磷的升高对苦草生长没有明显抑制作用.  相似文献   

16.
Between 1989 and 1998 the small eutrophic stratified Lake Belau was investigated intensively and multidisciplinarily. This article is a short, comprehensive summary and re‐evaluation of the hydrochemistry of the lake, with focus on nitrogen and phosphorus. In several aspects the lake can be regarded as a typical example of the glacial north German lakes. The 1960's and 1970's are characterised by heavy nutrient inputs and fast eutrophication. During the last two decades the external nutrient load, especially the phosphorus load into Lake Belau was significantly reduced. But phosphorus‐rich sediments and large areas with summerly anoxic sediment surface conditions cause intensive release of phosphorus from older deeper sediment layers. Annual budgets reveal that despite an average sediment accumulation of 3 mm a?1 the lake has lost its function as net phosphorus sink and it is very likely that internal eutrophication by the sediments will keep the lake in its eutrophic state during the next decades. Despite that, monthly budgets of five vertical layers show that the main phosphorus supplier for the phosphorus depleted epilimnion during summer is the creek Alte Schwentine. The annual nitrogen budget indicates groundwater and interflow water as well as atmospheric input as additional important nitrogen sources. 36% (98 μmol m ?2 h?1 N) of all nitrogen input is lost to atmosphere mainly due to denitrification. The example of a heavy storm shows that about 10% of the annual nitrogen loss to the atmosphere can take place during a single day and in form of ammonia. The storm further made obvious that these unpredictable events can have strong impact on nutrient cycling and ecology in Lake Belau and the lake can become an unexpected nutrient source for downstream systems.  相似文献   

17.
不合理的灌溉、施肥和耕作是导致乌梁素海流域农业面源污染的主要根源,乌梁素海作为我国北方地区重要的生态安全屏障,多年来面临着湖泊水环境污染、水生态退化等问题,科学开展湖泊水环境综合治理首先要解决流域内农业面源污染问题. 研究通过修改土壤水平衡、溶质平衡、地下水平衡和作物生长等模块对SWAT 2012原始版本进行改进,并采用改进的SWAT模型构建了乌梁素海流域分布式水文模型,利用实测径流、硝态氮与总磷排放量、地下水埋深以及作物产量校正和验证模型. 基于现状情景,以玉米、葵花和小麦3种主要作物为研究对象,设置了削减灌水量、施肥量及调整耕作方式3种农田管理情景. 基于改进SWAT模型不同情景的模拟结果,计算分析各管理情景下的硝态氮与总磷负荷及对各作物产量的影响. 结果表明,改进SWAT模型具有良好的模拟效果. 不同作物削减5%夏灌水量增产最多达8.41%~10.32%,削减10%秋浇水量均明显减少硝态氮和总磷负荷. 不同作物营养物负荷均随着氮磷施肥削减比例的增大呈现逐渐降低的趋势,但下降曲线逐渐趋于平缓; 各作物产量随氮磷施肥削减比例的增加呈先增加后减少的趋势,其中玉米、小麦氮磷施肥削减比例达20%时产量开始下降,葵花氮磷施肥削减比例达25%时产量开始下降. 不同作物营养物负荷与小麦产量均随耕作方式混合深度与混合效率参数的增大逐渐减小,而玉米和葵花产量则随耕作参数增大逐渐增加. 综合分析,削减5%夏灌水量+削减20%氮磷施肥比例+模板犁耕作组合玉米产量增幅最大达36.5%;削减10%秋浇水量+削减25%氮磷施肥比例+模板犁耕作组合葵花硝态氮负荷降幅最大达42.1%;削减5%夏灌水量+削减20%氮磷施肥比例+免耕组合小麦产量增幅最大达29.1%;而削减5%秋浇水量+削减20%氮磷施肥比例+常规春耕组合小麦硝态氮负荷减少最大达27.2%,总磷负荷减少最大达18.5%. 本研究可为降低流域内面源污染、提高作物产量及减少乌梁素海营养物入湖负荷农业管理措施的实施提供理论依据.  相似文献   

18.
研究南四湖消落带底泥有机磷赋存形态及分布特征,有利于全面揭示湖区各形态磷迁移转化规律,对南四湖富营养化防控及南水北调东线调水水质保障具有重要的科学意义。以南四湖消落带底泥为研究对象,采用改进Hedley连续分级提取法测定底泥中各形态有机磷含量,通过紫外可见分光光谱与三维荧光光谱技术表征底泥有机分子结构特征及稳定性,反映消落带有机磷结构及稳定性差异,运用Pearson相关性分析及主成分分析解析底泥各形态磷与其他理化指标的相关性。研究结果表明,南四湖消落带底泥总磷含量均值为679.90 mg/kg,其中有机磷(OP)占比20.03%~45.69%。各赋存形态有机磷含量及相对比例大小依次为:残渣态有机磷(67.58%)>钙结合态有机磷(16.61%)>铁/铝结合态有机磷(7.62%)>碳酸氢钠提取态有机磷(5.97%)>水提取态有机磷(2.22%)。南四湖消落带底泥OP含量及形态主要受内源影响,主要来自内源性微生物代谢。南四湖消落带西岸底泥磷释放风险高于东岸和南岸消落带。相关性分析发现,消落带底泥pH与磷含量显著负相关,表明随着底泥碱性的增强可能导致底泥磷向水体中释放的风险更高;底泥有机质与OP显著正相关,表明有机质可能是OP的重要载体;主成分分析发现底泥各形态磷呈正相关性,表明消落带底泥各形态磷具有同源性。研究结果可为南四湖湖区内源磷释放控制及富营养化风险防控提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号