首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study presents baseline data for future geochemical monitoring of the active Tacaná volcano–hydrothermal system (Mexico–Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500–2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal (T from 25.7°C to 63.0°C) HCO3–SO4 waters are thought to have formed by the absorption of a H2S/SO2–CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as −128 and −19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of −3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio (R A)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 R A, respectively). The L/S (5.9 ± 0.5) and (L + S)/M ratios (9.2 ± 0.7) for the same gases are almost identical to the ones calculated for gases in El Salvador, suggesting an enhanced slab contribution as far as the northern extreme of the Central American Volcanic Arc, Tacaná.  相似文献   

2.
The Luliang and Baoshan basins are two small ba- sins in Yunnan Province. In the recent ten years or so, there have been found a number of natural gas pools of commercial importance in the two basins. Although the gas pools are small in size, the natural …  相似文献   

3.
 Volcanic gas and condensate samples were collected in 1993–1994 from fumaroles of Koryaksky and Avachinsky, basaltic andesite volcanoes on the Kamchatka Peninsula near Petropavlovsk–Kamchatsky. The highest-temperature fumarolic discharges, 220  °C at Koryaksky and 473  °C at Avachinsky, are water-rich (940–985 mmol/mol of H2O) and have chemical and isotopic characteristics typical of Kamchatka–Kurile, high- and medium-temperature volcanic gases. The temperature and chemical and water isotopic compositions of the Koryaksky gases have not changed during the past 11 years. They represent an approximate 2 : 1 mixture of magmatic and meteoric end members. Low-temperature, near-boiling-point discharges of Avachinsky Volcano are water poor (≈880 mmol/mol); Their compositions have not changed since the 1991 eruption, and are suggested to be derived from partially condensed magmatic gases at shallow depth. Based on a simple model involving mixing and single-step steam separation, low water and high CO2 contents, as well as the observed Cl concentration and water isotopic composition in low-temperature discharges, are the result of near-surface boiling of a brine composed of the almost pure condensed magmatic gas. High methane content in low-temperature Avachinsky gases and the 220  °C Koryaksky fumarole, low C isotopic ratio in CO2 at Koryaksky (–11.8‰), and water isotope data suggest that the "meteoric" end member contains considerable amounts of the regional methane-rich thermal water discovered in the vicinity of both volcanoes. Received: 2 May 1996 / Accepted: 5 November 1996  相似文献   

4.
Geochemical studies on cold meteoric waters, post-1980 hot spring waters, fumarole emissions from the dacite dome, and volcanic rocks at Mount St. Helens (MSH) from 1985 to 1989 show that magmatic volatiles are involved in the formation of a new hydrothermal system. Hot spring waters are enriched in 18O by as much as 2 and display enrichments in D relative to cold waters. A well-defined isotopic trend is displayed by the isotopic composition of a>400°C fumarole condensate collected from the central crater in 1980 (-33 D, +6 18O), of condensate samples collected on the dome, and of cold meteoric and hot spring waters. The trend indicates that mixing occurs between local meteoric water and magmatic water degassing from the dacite dome. Between 30 and 70% magmatic water is present in the dome fumarole discharges and 10% magnatic water has been added to the waters of the hydrothermal system. Relations between Cl, SO4 and HCO3 indicate that the hot spring waters are immature volcanic waters formed by reaction of rocks with waters generated by absorption of acidic volcanic fluids. In addition, the B/Cl ratios of the spring waters are similar to the B/Cl ratios of the fumarole condensates (0.02), values of 13C in the HCO3 of the hot springs (-9.5 to-13.5) are similar to the magmatic value at MSH (-10.5), and the 3He/4He ratio, relative to air, in a hot spring water is 5.7, suggesting a magmatic origin for this component.managed by Martin Marietta Energy Systems, Inc., under contract DE-AC05-84OR21400 with the US Department of Energy  相似文献   

5.
Detailed geochemistry supported by geologic mapping has been used to investigate Sulphur Springs, an acid-sulfate hot spring system that issues from the western flank of the resurgent dome inside Valles Caldera. The most intense activity occurs at the intersection of faults offsetting caldera-fill deposits and post-caldera rhyolites. Three geothermal wells in the area have encountered pressures <1 MPa and temperatures of 200°C at depths of 600 to 1000 m. Hot spring and fumarole fluids may discharge at boiling temperatures with pH 1.0 and SO4 8000 mg/l. These conditions cause argillic alterations throughout a large area.Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280°C. Comparison of 13C and 18O between CaCO3 from well cuttings and CO2 from fumarole steam indicates a fractionation temperature between 200 and 300°C by decarbonation of hydrothermally altered Paleozoic limestone and vein calcite in the reservoir rocks. Tritium concentrations obtained from steam condensed in a mudpot and deep reservoir fluids (Baca #13, 278°C) are 2.1 and 1.0 T.U. respectively, suggesting the steam originates from a reservoir whose water is mostly >50 yrs old. Deuterium contents of fumarole steam, deep reservoir fluid, and local meteoric water are practically identical even though 18O contents range through 4‰, thus, precipitation on the resurgent dome of the caldera could recharge the hydrothermal system by slow percolation. From analysis of D and 18O values between fumarol steam and deep reservoir fluid, steam reaches the surface either (1) by vaporizing relatively shallow groundwater at 200°C or (2) by means of a two-stage boiling process through an intermediate level reservoir at roughly 200°C.Although many characteristics of known vapor-dominated geothermal systems are found at Sulphur Springs, fundamental differences exist in temperature and pressure of our postulated vapor-zone. We propose that the reservoir beneath Sulphur Springs is too small or too poorly confined to sustain a “true” vapor-dominated system and that the Sulphur Springs system may be a “dying” vapor-dominated system that has practically boiled itself dry.  相似文献   

6.
 The 1982 eruption of El Chichón volcano ejected more than 1 km3 of anhydrite-bearing trachyandesite pyroclastic material to form a new 1-km-wide and 300-m-deep crater and uncovered the upper 500 m of an active volcano-hydrothermal system. Instead of the weak boiling-point temperature fumaroles of the former lava dome, a vigorously boiling crater spring now discharges  / 20 kg/s of Cl-rich (∼15 000 mg/kg) and sulphur-poor ( / 200 mg/kg of SO4), almost neutral (pH up to 6.7) water with an isotopic composition close to that of subduction-type magmatic water (δD=–15‰, δ18O=+6.5‰). This spring, as well as numerous Cl-free boiling springs discharging a mixture of meteoric water with fumarolic condensates, feed the crater lake, which, compared with values in 1983, is now much more diluted (∼3000 mg/kg of Cl vs 24 030 mg/kg), less acidic (pH=2.6 vs 0.56) and contains much lower amounts of S ( / 200 mg/kg of SO4, vs 3550 mg/kg) with δ34S=0.5–4.2‰ (+17‰ in 1983). Agua Caliente thermal waters, on the southeast slope of the volcano, have an outflow rate of approximately 100 kg/s of 71  °C Na–Ca–Cl water and are five times more concentrated than before the eruption (B. R. Molina, unpublished data). Relative N2, Ar and He gas concentrations suggest extensional tectonics for the El Chichón volcanic centre. The 3He/4He and 4He/20Ne ratios in gases from the crater fumaroles (7.3Ra, 2560) and Agua Caliente hot springs (5.3Ra, 44) indicate a strong magmatic contribution. However, relative concentrations of reactive species are typical of equilibrium in a two-phase boiling aquifer. Sulphur and C isotopic data indicate highly reducing conditions within the system, probably associated with the presence of buried vegetation resulting from the 1982 eruption. All Cl-rich waters at El Chichón have a common source. This water has the appearence of a "partially matured" magmatic fluid: condensed magmatic vapour neutralized by interaction with fresh volcaniclastic deposits and depleted in S due to anhydrite precipitation. Shallow ground waters emerging around the volcano from the thick cover of fresh pumice deposits (Red waters) are Ca–SO4–rich and have a negative oxygen isotopic shift, probably due to ongoing formation of clay at low temperatures. Received: 21 July 1997 / Accepted: 4 December 1997  相似文献   

7.
During the 22nd Chinese Antarctic Research Expedition (CHINARE-22), the atmospheric gas samples above the oceanic surface and near the surface were collected on the track for the scientific ship “Xuelong” and on Millor Peninsula of eastern Antarctica, respectively, using the Tedlar gas bags. Every day the sampling times were 10:00 and 22:00 (local time), respectively. In the laboratory, high-precision measurement of the isotopic compositions for N2O in these gas samples was conducted using Thermo Finnigan MAT-253 Isotopic Mass Spectrometer with a fully automated interface for the pre-GC concentration (PreCon) of trace gases. The temporal and spatial variations of δ 15N and δ 18O in atmospheric N2O were analyzed. The mean δ 15N and δ 18O-N2O values above the oceanic surface were (7.21±0.50)‰ and (44.52±0.52)‰, respectively. From 30°N to Antarctica, the δ 15N (6.05‰–7.88‰) linearly increased with the rate of about 0.01‰ with the latitude while the δ 18O (43.05‰–48.78‰) showed a large fluctuation. The δ 15N negatively correlated with air temperature and N2O concentration, and slightly positively correlated with δ 18O. The summertime variations of δ 15N and δ 18O-N2O appeared the same trend on Millor Peninsula of eastern Antarctica. They significantly positively correlated with each other and negatively with N2O concentration. The δ 15N and δ 18O-N2O at different sites averaged (7.42±0.35)‰ and (44.69±0.49)‰, respectively, slightly higher than those above the oceanic surface, significantly higher than those of atmospheric N2O in the low-latitude regions of Northern Hemisphere. The predominant factors affecting the spatial variations of δ 15N and δ 18O values were also discussed. The isotopic data given in this study can help to investigate the global and regional N2O budgets. Supported by the National Natural Science Foundation of China (Grant Nos. 40676005 and 40406001)  相似文献   

8.
 Two geochemical surveys carried out in March 1991 and September 1992 revealed the existence of a hydrothermal system in the southern portion of Montserrat Island, below Soufrière Hills Volcano. This conclusion is supported by the presence of: (a) the thermal springs of Plymouth which are fed by deep Na–Cl waters (Cl concentration ∼25 000 mg/kg, temperature ca. 250  °C) mixed with shallow steam-heated waters; (b) the four fumarolic fields of Galway's Soufrière, Gages Upper Soufrière, Gages Lower Soufrière, and Tar River Soufrière, where acid to neutral, steam-heated waters are present together with several fumarolic vents, discharging vapors formed through boiling of hydrothermal aqueous solutions. Involvement of magmatic fluids in the recharge of the hydrothermal aquifers is suggested by: (a) the high 3He/4He ratios of fumarolic fluids, i.e., 8.2 RA at Galway's Soufrière and 5.9 RA at Gages Lower Soufrière; (b) the δD and δ18O values of Na–Cl thermal springs and steam condensates, indicating the involvement of arc-type magmatic water in the formation of deep geothermal liquids; and (c) the CH4/CO2 ratios of fumarolic fluids, which are lower than expected for equilibrium with the FeO–FeO1.5 hydrothermal rock buffer, but being shifted towards the SO2–H2S magmatic gas buffer. Received: 26 March 1996 / Accepted: 19 July 1996  相似文献   

9.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

10.
Hydrogen and oxygen isotope studies were carried out on mineral separates from high to ultrahigh pressure metamorphic rocks at Huangzhen and Shuanghe in the eastern Dabie Mountains, East China. The δ18O values of eclogites cover a wide range of −5‰ to+9‰, but the δD values of micas fall within a narrow range of −85% to −70‰. Both equilibrium and disequilibrium oxygen isotope fractionations were observed between quartz and the other minerals, with reversed fractionations between omphacite and garnet in some eclogite samples. The δ18 O values of −5‰ to −1‰ for some of the eclogites represent the oxygen isotope compositions of their protoliths which underwent meteoric water-rock interaction prior to plate subduction. The preservation of oxygen isotope heterogeneity in the eclogites implies a channelized flow of fluids during progressive metamorphism caused by rapid subduction. Retrograde metamorphism has caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions. Project supported by the Chinese Ministry of Science and Technology (Grant No. 95-Pre-39), the National Natural Science Foundation of China (Grant Nos. 49794042, 49473173 and 49453003) and the Chinese Academy of Sciences (Grant No. KZ951-A1-401-5)  相似文献   

11.
The distribution of two formation pathways of biogenic methane, acetate fermentation and reduction of CO2, has been extensively studied. In general, CO2 reduction is the dominate pathway in marine envi- ronment where acetate is relatively depleted because of SRB consuming. While in terrestrial freshwater or brackish environment, acetate fermentation is initially significant, but decreases with increasing buried depth. In this paper, character of biogenic gases is profiled in the XS3-4 well of the Sebei 1 gas field in the Sanhu depression, Qaidam Basin. It indicates that those two pathways do not change strictly with increasing buried depth. CO2 reduction is important near the surface (between 50 m and 160 m), and at the mesozone (between 400 and 1650 m). While acetate fermentation is the primary pathway at two zones, from 160 to 400 m and from 1650 to 1700 m. δ 13C of methane generated in those two acetate fermentation zones varies greatly, owing to different sediment circumstances. At the sec- ond zone (160-400 m), δ 13C1 ranges from ?65‰ to ?30‰ (PDB), because the main deposit is mudstone and makes the circumstance confined. At the fourth zone of the well bottom (1650-1700 m), δ 13C1 is lighter than ?65‰ (PDB). Because the deposit is mainly composed of siltstone, it well connects with outer fertile groundwater and abundant nutrition has supplied into this open system. The high con- centration of acetate is a forceful proof. δ 13C of methane would not turn heavier during fermentation, owing to enough nutrition supply. In spite of multi-occurrence of acetate fermentation, the commercial gas accumulation is dominated by methane of CO2-reduction pathway. A certain content of alkene gases in the biogenic gases suggests that methanogensis is still active at present.  相似文献   

12.
Expeditions to Muztagata (in the eastern Pamirs) during the summer seasons of 2002 and 2003 collected precipitation samples and measured their oxygen isotopes. The δ 18O in precipitation displays a wide range, varying from −17.40‰ to +1.33‰ in June-September 2002 and from −22.31‰ to +4.59‰ in May-August 2003. The δ 18O in precipitation correlates with the initial temperature of precipitation during the observing periods. The positive correlation between δ 18O and temperature suggests that δ 18O can be used as an indicator of temperature in this region. The δ 18O values in fresh-snow samples collected from two snow events at different elevations on the Muztagata Glacier show a strong “altitude effect”, with a ratio of nearly −0.40% per 100 m from 5500 m to 7450 m.  相似文献   

13.
Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China   总被引:3,自引:0,他引:3  
This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha- nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode- gradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ 13C1 value ranges from -110‰ to -50‰ for microbial gases but from -50‰ to -35‰ (even heavier) f...  相似文献   

14.
Lastarria volcano (25°10′ S, 68°31′ W; 5,697 m above sea level), located in the Central Andes Volcanic Zone (northern Chile), is characterized by four distinct fumarolic fields with outlet temperatures ranging between 80°C and 408°C as measured between May 2006–March 2008 and April–June 2009. Fumarolic gasses contain significant concentrations of high temperature gas compounds (i.e., SO2, HCl, HF, H2, and CO), and isotopic ratios (3He/4He, δ13C–CO2, δ18O–H2O, and δD–H2O) diagnostic of magmatic gas sources. Gas equilibria systematics, in both the H2O-H2-CO2-CO-CH4 and alkane–alkene C3 system, suggest that Lastarria fumarolic gasses emanate from a superheated vapor that is later cooled and condensed at relatively shallow depths. This two-stage process inhibits the formation of a continuous aquifer (e.g., horizontal liquid layer) at relatively shallow depth. Recent developments in the magmatic gas system may have enhanced the transfer and release of heat causing shallow aquifer vaporization. The consequent pressure increase and aquifer vaporization likely triggered the inflation events beginning in 2003 at the Lastarria volcano.  相似文献   

15.
The Archean atmospheric oxygen concentration and sulfur cycle was long debated. The banded iron formation (BIF) is a special type of the sedimentary formation, which has truly recorded the atmospheric and oceanic conditions at that time. In this study, the composition of multiple sulfur isotope (δ 34S/δ 33S/δ 32S) for sulfides bedded in the Archean (~2.7 Ga) BIFs, in Anshan-Benxi area of Liaoning Province has been measured. The value of △33S varies from -0.89‰ to 1.21‰, which shows very obvious mass-independent fractionation (MIF) signatures. These non-zero △33S values indicate that the Archean sulfur cycles are different from what it is today, which have been deeply influenced by gas phase photochemical reactions. Algoma-type BIFs which are closely related to the volcanic activity have negative △33S value, however, Superior-type BIFs which are far away from the volcanic center have positive △33S value. The δ 34S varies in a large range from -22.0‰ to 11.8‰, which indicates that the bacteria reduction activity has already existed at that time, and that the oceanic sulfate concentration has at least reached 1 mmol/L in local areas. Combined with the contemporaneous existence of the hematite, magnetite and the occurrence and preservation of the sulfur MIF, it can be inferred that the Archean atmospheric oxygen level must be at 10-2―10-3 of the present atmospheric level (PAL).  相似文献   

16.
Hydrochemical (major and some minor constituents), stable isotope ( and , δ13CTDIC total dissolved inorganic carbon) and dissolved gas composition have been determined on 33 thermal discharges located throughout Sicily (Italy) and its adjacent islands. On the basis of major ion contents, four main water types have been distinguished: (1) a Na-Cl type; (2) a Ca-Mg > Na-SO4-Cl type; (3) a Ca-Mg-HCO3 type and (4) a Na-HCO3 type water. Most waters are meteoric in origin or resulting from mixing between meteoric water and heavy-isotope end members. In some samples, δ18O values reflect the effects of equilibrium processes between thermal waters and rocks (positive 18O-shift) or thermal waters and CO2 (negative 18O-shift). Dissolved gas composition indicates the occurrence of gas/water interaction processes in thermal aquifers. N2/O2 ratios higher than air-saturated water (ASW), suggest the presence of geochemical processes responsible for dissolved oxygen consumption. High CO2 contents (more than 3000 cc/litre STP) dissolved in the thermal waters indicate the presence of an external source of carbon dioxide-rich gas. TDIC content and δ13CTDIC show very large ranges from 4.6 to 145.3 mmol/Kg and from –10.0‰ and 2.8‰, respectively. Calculated values indicate the significant contribution from a deep source of carbon dioxide inorganic in origin. Interaction with Mediterranean magmatic CO2 characterized by heavier carbon isotope ratios ( value from -3 to 0‰ vs V-PDB (CAPASSO et al., 1997, GIAMMANCO et al., 1998; INGUAGGIATO et al., 2000) with respect to MORB value and/or input of CO2-derived from thermal decomposition of marine carbonates have been inferred.  相似文献   

17.
 Numerous measurements of CO2 degassing from the soil, carried out with the accumulation chamber method, indicate that in the period April–July 1995 the upper part of the Fossa cone released a total output of 200 t d–1 of CO2, which corresponds to approximately 1000 t d–1 of steam. These large amounts of fluids are of the same order of magnitude as those released by the high temperature fumarolic field located inside the crater. The spatial distribution of soil gas fluxes shows that the main structures releasing CO2 are the inner slopes of the crater and a NW–SE line, located NE of the crater rim, which correspond to the main direction of Vulcano Island active faults. The comparison of the φCO2 maps with the soil temperature distribution, derived from both direct measurements and airborne infrared images, indicates the occurrence of extensive condensation of fumarolic steam within the upper part of the Fossa cone, whose total amount is comparable to the rainfall budget. Part of the condensate which originates from this process contributes to the recharge of the phreatic aquifer of Porto Plain, modifying the chemical and isotopic composition of the groundwater. Received: 1 September 1995 / Accepted: 8 January 1996  相似文献   

18.
 The purpose of this work was to study jointly the volcanic-hydrothermal system of the high-risk volcano La Soufrière, in the southern part of Basse-Terre, and the geothermal area of Bouillante, on its western coast, to derive an all-embracing and coherent conceptual geochemical model that provides the necessary basis for adequate volcanic surveillance and further geothermal exploration. The active andesitic dome of La Soufrière has erupted eight times since 1660, most recently in 1976–1977. All these historic eruptions have been phreatic. High-salinity, Na–Cl geothermal liquids circulate in the Bouillante geothermal reservoir, at temperatures close to 250  °C. These Na–Cl solutions rise toward the surface, undergo boiling and mixing with groundwater and/or seawater, and feed most Na–Cl thermal springs in the central Bouillante area. The Na–Cl thermal springs are surrounded by Na–HCO3 thermal springs and by the Na–Cl thermal spring of Anse à la Barque (a groundwater slightly mixed with seawater), which are all heated through conductive transfer. The two main fumarolic fields of La Soufrière area discharge vapors formed through boiling of hydrothermal aqueous solutions at temperatures of 190–215  °C below the "Ty" fault area and close to 260  °C below the dome summit. The boiling liquid producing the vapors of the Ty fault area has δD and δ18O values relatively similar to those of the Na–Cl liquids of the Bouillante geothermal reservoir, whereas the liquid originating the vapors of the summit fumaroles is strongly enriched in 18O, due to input of magmatic fluids from below. This process is also responsible for the paucity of CH4 in the fumaroles. The thermal features around La Soufrière dome include: (a) Ca–SO4 springs, produced through absorption of hydrothermal vapors in shallow groundwaters; (b) conductively heated, Ca–Na–HCO3 springs; and (c) two Ca–Na–Cl springs produced through mixing of shallow Ca–SO4 waters and deep Na–Cl hydrothermal liquids. The geographical distribution of the different thermal features of La Soufrière area indicates the presence of: (a) a central zone dominated by the ascent of steam, which either discharges at the surface in the fumarolic fields or is absorbed in shallow groundwaters; and (b) an outer zone, where the shallow groundwaters are heated through conduction or addition of Na–Cl liquids coming from hydrothermal aquifer(s). Received: 9 November 1998 / Accepted: 15 July 1999  相似文献   

19.
Serious interest has been directed toward natural gas hydrate as a potential energy resource; factor in global climate change, and submarine geohazard since naturally occurring gas-hydrate deposits were found in the 1960s. Hydrate Ridge, Cascadia convergent mar- gin, is characterized by abundant methane hydrates at and below the seafloor, active venting of fluids and gases, chemosynthetic communities, and some of the highest methane oxidation rates ever found in the ma-rine environment. All of…  相似文献   

20.
After the March–April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380±45 metric tons/day (T/D) on 7/24/86 to 27±6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870°C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870°C with an oxygen fugacity near the Ni–NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3–6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9–84.8 mol% H2O). Values of D and 18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390°–642°C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%–97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107–102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200°–650°C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号