首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mountainous regions are important contributors to the terrestrial organic carbon (OC) sink that affect global climate through the regulation of carbon‐based greenhouse gases. However, mountain OC dynamics are poorly quantified. We quantified OC storage in subalpine lake deltas in the Washington Central Cascades and Colorado Front Range with the objectives of determining the magnitude of transient carbon storage and understanding the differences in storage between the two ranges. We used field, laboratory, and GIS techniques to determine the magnitude of and controls on the subalpine lake delta OC pool in 26 subalpine lake deltas. Soil moisture, soil texture, mean basin slope, and delta valley confinement are significantly correlated with soil carbon on deltas. Average soil OC concentration on subalpine lake deltas ranges from 3 to 41%, and stocks range from 140 to 1256 Mg C/ha. Surprisingly, the carbon content of subalpine lake deltas is not significantly different between the two regions, despite stark contrasts in their climate, vegetation, and total ecosystem carbon stocks. We present a conceptual model that invokes geomorphic and biogeochemical processes to suggest that carbon is more likely to reach subalpine lake deltas from the upstream basin in the Colorado Front Range compared with the Washington Central Cascades, thus accounting for the similarity in OC storage between the two regions despite differences in total ecosystem carbon stocks and climate. This points to a complex interaction among carbon production, transport, and stability in each region, and supports the idea that geomorphic and biogeochemical processes determine the magnitude of transient OC storage more strongly than primary productivity or climate. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The impacts of climate extremes on the terrestrial carbon cycle:A review   总被引:2,自引:0,他引:2  
The increased frequency of climate extremes in recent years has profoundly affected terrestrial ecosystem functions and the welfare of human society. The carbon cycle is a key process of terrestrial ecosystem changes. Therefore, a better understanding and assessment of the impacts of climate extremes on the terrestrial carbon cycle could provide an important scientific basis to facilitate the mitigation and adaption of our society to climate change. In this paper, we systematically review the impacts of climate extremes(e.g. drought, extreme precipitation, extreme hot and extreme cold) on terrestrial ecosystems and their mechanisms. Existing studies have suggested that drought is one of the most important stressors on the terrestrial carbon sink, and that it can inhibit both ecosystem productivity and respiration. Because ecosystem productivity is usually more sensitive to drought than respiration, drought can significantly reduce the strength of terrestrial ecosystem carbon sinks and even turn them into carbon sources. Large inter-model variations have been found in the simulations of drought-induced changes in the carbon cycle, suggesting the existence of a large gap in current understanding of the mechanisms behind the responses of ecosystem carbon balance to drought, especially for tropical vegetation. The effects of extreme precipitation on the carbon cycle vary across different regions. In general, extreme precipitation enhances carbon accumulation in arid ecosystems, but restrains carbon sequestration in moist ecosystems. However, current knowledge on the indirect effects of extreme precipitation on the carbon cycle through regulating processes such as soil carbon lateral transportation and nutrient loss is still limited. This knowledge gap has caused large uncertainties in assessing the total carbon cycle impact of extreme precipitation. Extreme hot and extreme cold can affect the terrestrial carbon cycle through various ecosystem processes. Note that the severity of such climate extremes depends greatly on their timing, which needs to be investigated thoroughly in future studies. In light of current knowledge and gaps in the understanding of how extreme climates affect the terrestrial carbon cycle, we strongly recommend that future studies should place more attention on the long-term impacts and on the driving mechanisms at different time scales.Studies based on multi-source data, methods and across multiple spatial-temporal scales, are also necessary to better characterize the response of terrestrial ecosystems to climate extremes.  相似文献   

3.
River floodplains constitute an important element in the terrestrial sediment and organic carbon cycle and store variable amounts of carbon and sediment depending on a complex interplay of internal and external driving forces. Quantifying the storage in floodplains is crucial to understand their role in the sediment and carbon cascades. Unfortunately, quantitative data on floodplain storage are limited, especially at larger spatial scales. Rivers in the Scottish Highlands can provide a special case to study alluvial sediment and carbon dynamics because of the dominance of peatlands throughout the landscape, but the alluvial history of the region remains poorly understood. In this study, the floodplain sediment and soil organic carbon storage is quantified for the mountainous headwaters of the River Dee in eastern Scotland (663 km2), based on a coring dataset of 78 floodplain cross-sections. Whereas the mineral sediment storage is dominated by wandering gravel-bed river sections, most of the soil organic carbon storage can be found in anastomosing and meandering sections. The total storage for the Upper Dee catchment can be estimated at 5.2 Mt or 2306.5 Mg ha-1 of mineral sediment and 0.7 Mt or 323.3 Mg C ha-1 of soil organic carbon, which is in line with other studies on temperate river systems. Statistical analysis indicates that the storage is mostly related to the floodplain slope and the geomorphic floodplain type, which incorporates the characteristic stream power, channel morphology and the deposit type. Mapping of the geomorphic floodplain type using a simple classification scheme shows to be a powerful tool in studying the total storage and local variability of mineral sediment and soil organic carbon in floodplains. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.  相似文献   

5.
Using China's ground observations, e.g., forest inventory, grassland resource, agricultural statistics, climate, and satellite data, we estimate terrestrial vegetation carbon sinks for China's major biomes between 1981 and 2000. The main results are in the following: (1) Forest area and forest biomass carbon (C) stock increased from 116.5×106 ha and 4.3 Pg C (1 Pg C = 1015 g C) in the early 1980s to 142.8×106 ha and 5.9 Pg C in the early 2000s, respectively. Forest biomass carbon density increased form 36.9 Mg C/ha (1 Mg C = 106 g C) to 41.0 Mg C/ha, with an annual carbon sequestration rate of 0.075 Pg C/a. Grassland, shrub, and crop biomass sequestrate carbon at annual rates of 0.007 Pg C/a, 0.014―0.024 Pg C/a, and 0.0125―0.0143 Pg C/a, respectively. (2) The total terrestrial vegetation C sink in China is in a range of 0.096―0.106 Pg C/a between 1981 and 2000, accounting for 14.6%―16.1% of carbon dioxide (CO2) emitted by China's industry in the same period. In addition, soil carbon sink is estimated at 0.04―0.07 Pg C/a. Accordingly, carbon sequestration by China's terrestrial ecosystems (vegetation and soil) offsets 20.8%―26.8% of its industrial CO2 emission for the study period. (3) Considerable uncertainties exist in the present study, especially in the estimation of soil carbon sinks, and need further intensive investigation in the future.  相似文献   

6.
The oceans are the largest carbon pools on Earth, and play the role of a "buffer" in climate change. Blue carbon, the carbon(mainly organic carbon) captured by marine ecosystems, is one of the important mechanisms of marine carbon storage.Blue carbon was initially recognized only in the form of visible coastal plant carbon sequestration. In fact, microorganisms(phytoplankton, bacteria, archaea, viruses, and protozoa), which did not receive much attention in the past, account for more than 90% of the total marine biomass and are the main contributors to blue carbon. Chinese coastal seas, equivalent to 1/3 of China's total land area, have a huge carbon sink potential needing urgently research and development. In this paper, we focus on the processes and mechanisms of coastal ocean's carbon sequestration and the approaches for increasing that sequestration. We discuss the structures of coastal ecosystems, the processes of carbon cycle, and the mechanisms of carbon sequestration. Using the evolution of coastal ocean's carbon sinks in sedimentary records over geologic times, we also discuss the possible effects of natural processes and anthropogenic activities on marine carbon sinks. Finally, we discuss the prospect of using carbon sequestration engineering for increasing coastal ocean's carbon storage capacity.  相似文献   

7.
China is the global leader in mariculture production. Increasing sequestered marine carbon (also known as blue carbon) via mariculture activities is a promising approach for mitigating climate change and promoting the development of a low-carbon economy. Mariculture blue carbon is also considered an important component of China’s “sea granary”. In addition to shellfish and macroalgae yields, which represent carbon removed from mariculture environment, blue carbon also includes other important components, which have been largely neglected in the past, such as the carbon transformed by microbes, dissolved organic carbon (mainly referred to as recalcitrant dissolved organic carbon), and sedimentary particulate carbon. Hence, from different aspects, a comprehensive study on the formation processes and mechanisms of carbon sequestration is of great significance for comprehensively unveiling the carbon sequestration capability in coastal mariculture environment, which will contribute to the sustainable development of the fishery economy and construction of an ecological civilization. Moreover, it may add significant economic benefits to the future carbon-trading market.  相似文献   

8.
《国际泥沙研究》2019,34(6):600-607
Louisiana's chronic wetland deterioration has resulted in massive soil organic matter loss and subsequent carbon release through oxidation. To combat these losses, and reestablish ecosystem function, goods, and services, many restoration projects have been constructed or planned throughout coastal Louisiana. There are significant data gaps and conflicting results regarding wetland contributions to global warming, especially related to carbon sequestration in restored wetlands. An exceptionally large data set was used to derive carbon accumulation rates from key soil characteristics and processes. Assessments and comparisons of bulk density, organic matter, total carbon, vertical accretion (short- and longer-term), and carbon accumulation rates were made across time (chronosequence) and space (i.e., coastwide, watershed basins, and vegetation zones). Carbon accumulation rates in the Louisiana coastal zone were generally correlated to hydrogeomorphology, with higher rates occurring in zones of high river connectivity or in swamp or higher salinity tolerant marsh. On average, naturally occurring wetlands had higher carbon accumulation rates than restoration sites. Although some restoration measures were higher, and most showed increasing carbon accumulation rates over time. Results demonstrate that although wetland restoration provides many ecosystem benefits, the associated carbon sequestration may also provide useful measures for climate change management.  相似文献   

9.
Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants(including salt marsh,mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China's commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes,mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching.  相似文献   

10.
Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long‐term (> 102 years) storage. Research in ecosystem processing emphasizes the importance of organic carbon (OC) in river systems, and estimates of OC fluxes in terrestrial freshwater systems indicate that a significant portion of terrestrial carbon is stored within river networks. Studies have examined soil OC on floodplains, but research that examines the potential mechanistic controls on OC storage in riparian ecosystems and floodplains is more limited. We emphasize three primary OC reservoirs within fluvial systems: (1) standing riparian biomass; (2) dead biomass as large wood (LW) in the stream and on the floodplain; (3) OC on and beneath the floodplain surface, including litter, humus, and soil organic carbon (SOC). This review focuses on studies that have framed research questions and results in the context of OC retention, accumulation and storage within the three primary pools along riparian ecosystems. In this paper, we (i) discuss the various reservoirs for OC storage in riparian ecosystems, (ii) discuss physical conditions that facilitate carbon retention and storage in riparian ecosystems, (iii) provide a synthesis of published OC storage in riparian ecosystems, (iv) present a conceptual model of the conditions that favor OC storage in riparian ecosystems, (v) briefly discuss human impacts on OC storage in riparian ecosystems, and (vi) highlight current knowledge gaps. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We draw on published studies of floodplain organic carbon storage, wildfire-related effects on floodplains in temperate and high latitudes, and case studies to propose a conceptual model of the effects of wildfire on floodplain organic carbon storage in relation to climate and valley geometry. Soil organic carbon typically constitutes the largest carbon stock in floodplains in fire-prone regions, although downed wood can contain significant organic carbon. We focus on the influence of wildfire on soil organic carbon and downed wood as opposed to standing vegetation to emphasize the geomorphic influences resulting from wildfire on floodplain organic carbon stocks. The net effect of wildfire varies depending on site-specific characteristics including climate and valley geometry. Wildfire is likely to reduce carbon stock in steep, confined valley segments because increased water and sediment yields following fire create net floodplain erosion. The net effect of fire in partly confined valleys depends on site-specific interactions among floodplain aggradation and erosion, and, in high-latitude regions, permafrost degradation. In unconfined valleys in temperate latitudes, wildfire is likely to slightly increase floodplain organic carbon stock as a result of floodplain aggradation and wood deposition. In unconfined valleys in high latitudes underlain by permafrost, wildfire is likely in the short-term to significantly decrease floodplain organic carbon via permafrost degradation and reduce organic-layer thickness. Permafrost degradation reduces floodplain erosional resistance, leading to enhanced stream bank erosion and greater carbon fluxes into channels. The implications of warming climate and increased wildfires for floodplain organic carbon stock thus vary. Increasing wildfire extent, frequency, and severity may result in significant redistribution of organic carbon from floodplains to the atmosphere via combustion in all environments examined here, as well as redistribution from upper to lower portions of watersheds in the temperate zone and from floodplains to the oceans via riverine transport in the high-latitudes. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
The two key mechanisms for biologically driven carbon sequestration in oceans are the biological pump(BP) and the microbial carbon pump(MCP); the latter is scarcely simulated and quantified in the China seas. In this study, we developed a coupled physical-ecosystem model with major MCP processes in the South China Sea(SCS). The model estimated a SCSaveraged MCP rate of 1.55 mg C m~(-2) d~(-1), with an MCP-to-BP ratio of 1:6.08 when considering the BP at a depth of 1000 m.Moreover, the ecosystem responses were projected in two representative global warming scenarios where the sea surface temperature increased by 2 and 4°C. The projection suggested a declined productivity associated with the increased near-surface stratification and decreased nutrient supply, which leads to a reduction in diatom biomass and consequently the suppression of the BP. However, the relative ratio of picophytoplankton increased, inducing a higher microbial activity and a nonlinear response of MCP to the increase in temperature. On average, the ratio of MCP-to-BP at a 1000-m depth increased to 1:5.95 with surface warming of 4°C, indicating the higher impact of MCP in future ocean carbon sequestration.  相似文献   

13.
Today's disturbance of the global carbon cycle induced by anthropogenic processes has raised new interest in the history of the global carbon cycle and its relationship to climate and other geochemical cycles. Carbon-isotope stratigraphy proves to be most useful as a monitor of the history of the carbon-cycle during the last 200 million years. In the introductory paragraphs of this review the mode of functioning of the global carbon-cycle is summarized and the connection between carbon-cycle and carbon isotope geochemistry is documented. A case study on the disturbance of the global carbon cycle during the Aptian-Albian is presented. The disturbance of the carbon cycle lasting up to millions of years is recorded in the carbon-isotope stratigraphy of pelagic sediments. It is superimposed on high frequency sedimentological cycles, related to climate and oceanographic cycles of 20, 40 or 100 ky duration. The data reviewed suggest that the change in the global carbon system was linked to a global acceleration of geochemical cycles triggered by a long-term change in atmospheric CO2 controlled by the rate of sea-floor formation and by volcanic activity. Increased accumulation rates of terrestrial material and terrestrial organic matter in marine sediments may be used as an indicator of an intensified hydrological cycling resulting in higher water-discharge rates. An intensification of the Aptian-Albian water cycle is further reflected in continental sediments monitoring a period of elevated humidity. An increase in water discharge rates should have affected the transfer rate of dissolved nutrients from continents to oceans. Elevated concentrations of phosphorus may have led to an increase in Aptian-Albian oceanic productivity enhancing the transfer of marine organic matter from the oceanic into the sedimentary reservoir. Increased productivity, increased bulk sedimentation rates and poorly oxygenated deep-water led to increased preservation of marine and terrestrial organic matter in marine sediments. The accelerated output of marine organic carbon from the oceanic reservoir is ultimately registered in the positive carbon-isotope excursion of the marine carbonate carbon-isotope stratigraphy.  相似文献   

14.
Intertidal habitats provide numerous ecosystem services, including the sequestration and storage of carbon, a topic of great recent interest owing to land‐cover transitions and climate change. Mangrove forests and seagrass meadows form a continuum of intertidal habitats, alongside unvegetated mudflats and sandbars, however, studies that consider carbon stocks across these spatially‐linked, threatened ecosystems are limited world‐wide. This paper presents the results of a field‐based carbon stock assessment of aboveground, belowground and sediment organic carbon stock to a depth of 1 m at Chek Jawa, Singapore. It is the first study of ecosystem carbon stocks of both vegetated and unvegetated intertidal habitats in the tropics. Ecosystem carbon stocks were 497 Mg C ha‐1 in the mangrove forest and 138 Mg C ha‐1 in the seagrass meadow. Sediment organic carbon stock dominated the total storage in both habitats, constituting 62% and >99% in the mangrove forest and seagrass meadow, respectively. In the adjacent mudflat and sandbars, which had no vegetative components, sediment organic carbon stock ranged from 124–143 Mg C ha‐1, suggesting that unvegetated habitats have a carbon storage role on the same order of importance as seagrass meadows. This study reinforces the importance of sediment in carbon storage within the intertidal ecosystem, and demonstrates the need to consider unvegetated habitats in intertidal ‘blue carbon’ stock assessments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Using China's ground observations, e.g., forest inventory, grassland resource, agricultural statistics, climate, and satellite data, we estimate terrestrial vegetation carbon sinks for China's major biomes between 1981 and 2000. The main results are in the following: (1) Forest area and forest biomass car- bon (C) stock increased from 116.5×106 ha and 4.3 Pg C (1 Pg C = 1015 g C) in the early 1980s to 142.8×106 ha and 5.9 Pg C in the early 2000s, respectively. Forest biomass carbon density increased form 36.9 Mg C/ha (1 Mg C = 106 g C) to 41.0 Mg C/ha, with an annual carbon sequestration rate of 0.075 Pg C/a. Grassland, shrub, and crop biomass sequestrate carbon at annual rates of 0.007 Pg C/a, 0.014― 0.024 Pg C/a, and 0.0125―0.0143 Pg C/a, respectively. (2) The total terrestrial vegetation C sink in China is in a range of 0.096―0.106 Pg C/a between 1981 and 2000, accounting for 14.6%―16.1% of carbon dioxide (CO2) emitted by China's industry in the same period. In addition, soil carbon sink is estimated at 0.04―0.07 Pg C/a. Accordingly, carbon sequestration by China's terrestrial ecosystems (vegetation and soil) offsets 20.8%―26.8% of its industrial CO2 emission for the study period. (3) Considerable uncertainties exist in the present study, especially in the estimation of soil carbon sinks, and need further intensive investigation in the future.  相似文献   

16.
Vegetation and soil carbon storage in China   总被引:18,自引:2,他引:18  
This study estimated the current vegetation and soil carbon storage in China using a biogeochemical model driven with climate, soil and vegetation data at 0.5° latitude-longitude grid spatial resolution. The results indicate that the total carbon storage in China's vegetation and soils was 13.33 Gt C and 82.65 Gt C respectively, about 3% and 4% of the global total. The nationally mean vegetation and soil carbon densities were 1.47 kg C/m2 and 9.17 kg C/m2, respectively, differing greatly in various regions affected by climate, vegetation, and soil types. They were generally higher in the warm and wet Southeast China and Southwest China than in the arid Northwest China; whereas vegetation carbon density was the highest in the warm Southeast China and Southwest China, soil carbon density was the highest in the cold Northeast China and southeastern fringe of the Qinghai-Tibetan Plateau. These spatial patterns are clearly correlated with variations in the climate that regulates plant growth and soil organi  相似文献   

17.
Páramo soils store high amounts of organic carbon. However, the effects of climate change and changes in land cover and use (LC/LU) in this high‐elevation tropical ecosystem may cause a decrease in their carbon storage capacity. Therefore, better understanding of the factors influencing the Páramo soils' carbon storage and export is urgently needed. To fill this knowledge gap, we investigated the differences in dissolved organic carbon (DOC) content in the soil water of four LC/LU types (tussock grass, natural forest, pine plantations, and pasture) and the factors controlling its variability in the Quinuas Ecohydrological Observatory in south Ecuador. Weekly measurements of soil water DOC concentrations, meteorological variables, soil water content, and temperature from various depths and slope positions were monitored within the soils' organic and mineral horizons between October 2014 and January 2017. These data were used to generate regression trees and random forest statistical models to identify the factors controlling soil water DOC concentrations. From high to low concentrations, natural forest depict the highest DOC concentrations followed by pasture, tussock grass, and pine forest. For all LC/LU types, DOC concentrations increase with decreasing soil moisture. Our results also show that LC/LU is the most important predictor of soil water DOC concentrations, followed by sampling depth and soil moisture. Interestingly, atmospheric variables and antecedent evapotranspiration and precipitation conditions show only little influence on DOC concentrations during the monitoring period. Our findings provide unique information that can help improve the management of soil and water resources in the Páramo and other peat dominated ecosystems elsewhere.  相似文献   

18.
Land degradation is becoming a serious problem in the west coast region of India where one of the world's eight biodiversity hotspots,the‘Western Ghats’,is present.Poor land management practices and high rainfall have led to increasing problems associated with land degradation.A long-term(13-year)experiment was done to evaluate the impact of soil and water conservation measures on soil carbon sequestration and soil quality at three different depths under cashew nut cultivation on a 19%slope.Five soil and water conservation measures-continuous contour trenches,staggered contour trenches,halfmoon terraces,semi-elliptical trenches,and graded trenches all with vegetative barriers of Stylosanthes scabra and Vetiveria zizanoides and control were evaluated for their influence on soil properties,carbon sequestration,and soil quality under cashews.The soil and water conservation measures improved significantly the soil organic carbon,soil organic carbon stock,carbon sequestration rate and microbial activity compared to the control condition(without any measures).Among the measures tested,continuous contour trenches with vegetative barriers outperformed the others with respect to soil organic carbon stock,sequestration rate,and microbial activity.The lower metabolic quotient with the measures compared to the control indicated alleviation of environmental stress on microbes.Using principal component analysis and a correlation matrix,a minimum dataset was identified as the soil available nitrogen,bulk density,basal soil respiration,soil pH,acid phosphatase activity,and soil available boron and these were the most important soil properties controlling the soil quality.Four soil quality indices using two summation methods(additive and weighted)and two scoring methods(linear and non-linear)were developed using the minimum dataset.A linear weighted soil quality index was able to statistically differentiate the effect of soil and water conservation measures from that of the control.The highest value of the soil quality index of 0.98 was achieved with continuous contour trenches with a vegetative barrier.The results of the study indicate that soil and water conservation measures for cashews are a potential strategy to improve the soil carbon sequestration and soil quality along with improving crop productivity and reducing the erosion losses.  相似文献   

19.
The extensive blanket peatlands of the UK uplands account for almost half of total national terrestrial carbon storage. However, much of the blanket peat is severely eroded so that the contemporary role of the peatland system in carbon sequestration is compromised by losses of organic carbon in dissolved (DOC) and particulate (POC) form in the fluvial system. This paper presents the first detailed assessment of dissolved and organic carbon losses from a severely eroded headwater peatland (River Ashop, South Pennines, UK). Total annual fluvial organic carbon losses range from 29–106 Mg C km,‐2 decreasing from the headwaters to the main catchment outlet. In contrast to less eroded systems fluvial organic carbon flux is dominated by POC. POC:DOC ratios decrease from values of 4 in the headwaters to close to unity at the catchment outlet. These results demonstrate the importance of eroding headwater sites as sources of POC to the fluvial system. Comparison with a range of catchment characteristics reveals that drainage density is the best predictor of POC:DOC but there is scatter in the relation in the headwaters. Steep declines in specific POC yield from headwater catchments are consistent with storage of POC within the fluvial system. Key to the significance of fluvial carbon flux in greenhouse gas budgets is understanding the fate of fluvial carbon. Further work on the fate of POC and the role of floodplains in fluvial carbon cycling is urgently required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The alpine tundra on Changbai Mountain was formed as a left-over ‘island’ in higher elevations after the glacier retrieved from the mid-latitude of Northern Hemisphere to the Arctic during the fourth ice age. The alpine tundra on Changbai Mountain also represents the best-reserved tundra ecosystems and the highest biodiversity in northeast Eurasia. This paper examines the quantity of carbon assimilation, litters, respiration rate of soil, and storage of organic carbon within the alpine tundra ecosystems on Changbai Mountain. The annual net storage of organic carbon was 2092 t/a, the total storage of organic carbon was 33457 t, the annual net storage of organic carbon in soil was 1054 t/a, the total organic carbon storage was 316203 t, and the annual respiration rate of soil was 92.9% and was 0.52 times more than that of the Arctic. The tundra-soil ecosystems in alpine Changbai Mountain had 456081 t of carbon storage, of which, organic carbon accounted for 76.7% whereas the mineral carbon accounted for 23.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号