首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
To advance and optimize secondary and tertiary oil recovery techniques, it is essential to know the areal propagation and distribution of the injected fluids in the subsurface. We investigate the applicability of controlled‐source electromagnetic methods to monitor fluid movements in a German oilfield (Bockstedt, onshore Northwest Germany) as injected brines (highly saline formation water) have much lower electrical resistivity than the oil within the reservoir. The main focus of this study is on controlled‐source electromagnetic simulations to test the sensitivity of various source–receiver configurations. The background model for the simulations is based on two‐dimensional inversion of magnetotelluric data gathered across the oil field and calibrated with resistivity logs. Three‐dimensional modelling results suggest that controlled‐source electromagnetic methods are sensitive to resistivity changes at reservoir depths, but the effect is difficult to resolve with surface measurements only. Resolution increases significantly if sensors or transmitters can be placed in observation wells closer to the reservoir. In particular, observation of the vertical electric field component in shallow boreholes and/or use of source configurations consisting of combinations of vertical and horizontal dipoles are promising. Preliminary results from a borehole‐to‐surface controlled‐source electromagnetic field survey carried out in spring 2014 are in good agreement with the modelling studies.  相似文献   

2.
Steel well casings in or near a hydrocarbon reservoir can be used as source electrodes in time‐lapse monitoring using grounded line electromagnetic methods. A requisite component of carrying out such monitoring is the capability to numerically model the electromagnetic response of a set of source electrodes of finite length. We present a modelling algorithm using the finite‐element method for calculating the electromagnetic response of a three‐dimensional conductivity model excited using a vertical steel‐cased borehole as a source. The method is based on a combination of the method of moments and the Coulomb‐gauged primary–secondary potential formulation. Using the method of moments, we obtain the primary field in a half‐space due to an energized vertical steel casing by dividing the casing into a set of segments, each assumed to carry a piecewise constant alternating current density. The primary field is then substituted into the primary–secondary potential finite‐element formulation of the three‐dimensional problem to obtain the secondary field. To validate the algorithm, we compare our numerical results with: (i) the analytical solution for an infinite length casing in a whole space, excited by a line source, and (ii) a three‐layered Earth model without a casing. The agreement between the numerical and analytical solutions demonstrates the effectiveness of our algorithm. As an illustration, we also present the time‐lapse electromagnetic response of a synthetic model representing a gas reservoir undergoing water flooding.  相似文献   

3.
Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high‐resolution and super‐stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration‐scale seismic data. We now demonstrate the high‐resolution and the super‐stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal‐to‐noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super‐stacking and greatly exceeds the classical signal‐to‐noise enhancement factor of . High‐resolution and super‐stacking are properties also enjoyed by seismic interferometry and reverse‐time migration with the exact velocity model.  相似文献   

4.
In marine controlled‐source electromagnetic (CSEM) surveys the subsurface is explored by emitting low‐frequency signals from an electric dipole source close to the sea‐bed. The main goal is often to detect and describe possible thin resistive layers beneath the sea‐bed. To gain insight into how CSEM signals propagate, it is informative to study a stratified model. The electromagnetic field is then given in terms of integrals over TE‐ and TM‐polarized plane‐wave constituents. An asymptotic evaluation of the field integrals for large propagation distances results in explicit spatial expressions for the field components and the derived expressions can be used to analyse how the CSEM signals propagate. There are two major signal pathways in a standard CSEM model. One of these pathways is via the thin resistive layer and the resulting response is accounted for by a pole in the reflection response for the TM mode. The signal is propagating nearly vertically down to the resistor from the source, then guided while attenuated along the reservoir, before propagating nearly vertically up to the receiver. The response is slightly altered by the sea‐bed interface and further modified in shallow water due to multiple reflections between the sea‐surface and sea‐bed at both the source and receiver sides. The other major signal pathway is via the resistive air half‐space, the so‐called airwave. The airwave is generated by the TE mode and interacts with the subsurface via vertically propagating signals reflected between the sea‐surface and subsurface at both the source and receiver sides.  相似文献   

5.
This paper presents the first controlled‐source electromagnetic survey carried out in the German North Sea with a recently developed seafloor‐towed electrical dipole–dipole system, i.e., HYDRA II. Controlled‐source electromagnetic data are measured, processed, and inverted in the time domain to estimate an electrical resistivity model of the sub‐seafloor. The controlled‐source electromagnetic survey targeted a shallow, phase‐reversed, seismic reflector, which potentially indicates free gas. To compare the resistivity model to reflection seismic data and draw a combined interpretation, we apply a trans‐dimensional Bayesian inversion that estimates model parameters and uncertainties, and samples probabilistically over the number of layers of the resistivity model. The controlled‐source electromagnetic data errors show time‐varying correlations, and we therefore apply a non‐Toeplitz data covariance matrix in the inversion that is estimated from residual analysis. The geological interpretation drawn from controlled‐source electromagnetic inversion results and borehole and reflection seismic data yield resistivities of ~1 Ωm at the seafloor, which are typical for fine‐grained marine deposits, whereas resistivities below ~20 mbsf increase to 2–4 Ωm and can be related to a transition from fine‐grained (Holocene age) to unsorted, coarse‐grained, and compacted glacial sediments (Pleistocene age). Interface depths from controlled‐source electromagnetic inversion generally match the seismic reflector related to the contrast between the different depositional environments. Resistivities decrease again at greater depths to ~1 Ωm with a minimum resistivity at ~300 mbsf where a seismic reflector (that marks a major flooding surface of late Miocene age) correlates with an increased gamma‐ray count, indicating an increased amount of fine‐grained sediments. We suggest that the grain size may have a major impact on the electrical resistivity of the sediment with lower resistivities for fine‐grained sediments. Concerning the phase‐reversed seismic reflector that was targeted by the survey, controlled‐source electromagnetic inversion results yield no indication for free gas below it as resistivities are generally elevated above the reflector. We suggest that the elevated resistivities are caused by an overall decrease in porosity in the glacial sediments and that the seismic reflector could be caused by an impedance contrast at a thin low‐velocity layer. Controlled‐source electromagnetic interface depths near the reflector are quite uncertain and variable. We conclude that the seismic interface cannot be resolved with the controlled‐source electromagnetic data, but the thickness of the corresponding resistive layer follows the trend of the reflector that is inclined towards the west.  相似文献   

6.
A fully three‐dimensional finite‐element algorithm has been developed for simulating controlled‐source electromagnetic surveys. To exploit the advantages of geometric flexibility, frequency‐domain Maxwell's equations of the secondary electric field were discretised using edge‐based finite elements while the primary field was calculated analytically for a horizontally layered‐earth model. The resulting system of equations for the secondary field was solved using a parallel version of direct solvers. The accuracy of the algorithm was successfully verified by comparisons with integral‐equations and iterative solutions, and the applicability to models containing large conductivity contrasts was verified against published data. The advantages of geometry‐conforming meshes have been demonstrated by comparing different mesh systems to simulate an inclined sheet model. A comparison of the performance between direct and iterative solvers demonstrated the superior efficiency of direct solvers, particularly for multisource problems.  相似文献   

7.
We present results of synthetic time‐lapse and real repeatability multi‐transient electromagnetic surveys over the North Sea Harding field. Using Archie's law to convert porosity and fluid saturation to resistivity we created 3D isotropic models of the reservoir resistivity at different stages of production from the initial state in 1996 through to complete hydrocarbon production by 2016 and, for each stage, we simulated an east‐west transient electromagnetic survey line across Harding. Unconstrained 1D full‐waveform Occam inversions of these synthetic data show that Harding should be detectable and its lateral extent reasonably well‐defined. Resistivity changes caused by hydrocarbon production from initial pre‐production state to production of the oil rim in 2011 are discernible as are significant changes from 2011–2016 during the modelled gas blowdown phase. The 2D repeatability surveys of 2007 and 2008 tied two wells: one on and the other off the structure. Between the two surveys the segment of the field under investigation produced 3.9 million barrels of oil – not enough to generate an observable time‐lapse electromagnetic anomaly with a signal‐to‐noise ratio of 40 dB. Processing of the 2007 and 2008 data included deconvolution for the measured source current and removal of spatially‐correlated noise, which increased the signal‐to‐noise ratio of the recovered impulse responses by about 20 dB and resulted in a normalized root‐mean‐square difference of 3.9% between the data sets. 1D full‐waveform Occam inversions of the real data showed that Harding was detectable and its lateral extent was also reasonably well‐defined. The results indicate that the multi‐transient electromagnetic method is suitable for exploration, appraisal and monitoring hydrocarbon production.  相似文献   

8.
We developed a new marine controlled‐source electromagnetic receiver for detecting methane hydrate zones and oil and gas reservoirs on the seafloor, which is not imaged well by seismic reflection surveys. To determine the seafloor structure, the electromagnetic receiver should have low noise, power consumption, clock drift error, and operating costs while being highly reliable. Because no suitable receiver was available in our laboratory, we developed a new marine controlled‐source electromagnetic receiver with these characteristics; the receiver is equipped with acoustic telemetry modem and an arm‐folding mechanism to facilitate deployment and recovering operations. To demonstrate the applicability of our new receiver, we carried out a field experiment offshore of Guangzhou in the South China Sea, where methane hydrates have been discovered. We successfully obtained controlled‐source electromagnetic data along a profile about 13 km long. All six new receivers were recovered, and high‐quality electromagnetic data were obtained. Relatively high apparent resistivity values were detected. The results of the offshore field experiment support the claim that the electromagnetic data obtained using the new receiver are of sufficient quality for the survey target.  相似文献   

9.
The recent use of marine electromagnetic technology for exploration geophysics has primarily focused on applying the controlled source electromagnetic method for hydrocarbon mapping. However, this technology also has potential for structural mapping applications, particularly when the relative higher frequency controlled source electromagnetic data are combined with the lower frequencies of naturally occurring magnetotelluric data. This paper reports on an extensive test using data from 84 marine controlled source electromagnetic and magnetotelluric stations for imaging volcanic sections and underlying sediments on a 128‐km‐long profile. The profile extends across the trough between the Faroe and Shetland Islands in the North Sea. Here, we focus on how 2.5D inversion can best recover the volcanic and sedimentary sections. A synthetic test carried out with 3D anisotropic model responses shows that vertically transverse isotropy 2.5D inversion using controlled source electromagnetic and magnetotelluric data provides the most accurate prediction of the resistivity in both volcanic and sedimentary sections. We find the 2.5D inversion works well despite moderate 3D structure in the synthetic model. Triaxial inversion using the combination of controlled source electromagnetic and magnetotelluric data provided a constant resistivity contour that most closely matched the true base of the volcanic flows. For the field survey data, triaxial inversion of controlled source electromagnetic and magnetotelluric data provides the best overall tie to well logs with vertically transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data a close second. Vertical transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data provided the best interpreted base of the volcanic horizon when compared with our best seismic interpretation. The structural boundaries estimated by the 20‐Ω·m contour of the vertical resistivity obtained by vertical transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data gives a maximum geometric location error of 11% with a mean error of 1.2% compared with the interpreted base of the volcanic horizon. Both the model study and field data interpretation indicate that marine electromagnetic technology has the potential to discriminate between low‐resistivity prospective siliciclastic sediments and higher resistivity non‐prospective volcaniclastic sediments beneath the volcanic section.  相似文献   

10.
Time‐domain marine controlled source electromagnetic methods have been used successfully for the detection of resistive targets such as hydrocarbons, gas hydrate, or marine groundwater aquifers. As the application of time‐domain marine controlled source electromagnetic methods increases, surveys in areas with a strong seabed topography are inevitable. In these cases, an important question is whether bathymetry information should be included in the interpretation of the measured electromagnetic field or not. Since multi‐dimensional inversion is still not common in time‐domain marine controlled source electromagnetic methods, bathymetry effects on the 1D inversion of single‐offset and multi‐offset joint inversions of time‐domain controlled source electromagnetic methods data are investigated. We firstly used an adaptive finite element algorithm to calculate the time‐domain controlled source electromagnetic methods responses of 2D resistivity models with seafloor topography. Then, 1D inversions are applied on the synthetic data derived from marine resistivity models, including the topography in order to study the possible topography effects on the 1D interpretation. To evaluate the effects of topography with various steepness, the slope angle of the seabed topography is varied in the synthetic modelling studies for deep water (air interaction is absent or very weak) and shallow water (air interaction is dominant), respectively. Several different patterns of measuring configurations are considered, such as the systems adopting nodal receivers and the bottom‐towed system. According to the modelling results for deep water when air interaction is absent, the 2D topography can distort the measured electric field. The distortion of the data increases gradually with the enlarging of the topography's slope angle. In our test, depending on the configuration, the seabed topography does not affect the 1D interpretation significantly if the slope angle is less or around 10°. However, if the slope angle increases to 30° or more, it is possible that significant artificial layers occur in inversion results and lead to a wrong interpretation. In a shallow water environment with seabed topography, where the air interaction dominates, it is possible to uncover the true subsurface resistivity structure if the water depth for the 1D inversion is properly chosen. In our synthetic modelling, this scheme can always present a satisfactory data fit in the 1D inversion if only one offset is used in the inversion process. However, the determination of the optimal water depth for a multi‐offset joint inversion is challenging due to the various air interaction for different offsets.  相似文献   

11.
We consider the problem of simultaneously estimating three parameters of multiple microseimic events, i.e., the hypocenter, moment tensor, and origin time. This problem is of great interest because its solution could provide a better understanding of reservoir behavior and can help to optimize the hydraulic fracturing process. The existing approaches employing spatial source sparsity have advantages over traditional full‐wave inversion‐based schemes; however, their validity and accuracy depend on the knowledge of the source time‐function, which is lacking in practical applications. This becomes even more challenging when multiple microseimic sources appear simultaneously. To cope with this shortcoming, we propose to approach the problem from a frequency‐domain perspective and develop a novel sparsity‐aware framework that is blind to the source time‐function. Through our simulation results with synthetic data, we illustrate that our proposed approach can handle multiple microseismic sources and can estimate their hypocenters with an acceptable accuracy. The results also show that our approach can estimate the normalized amplitude of the moment tensors as a by‐product, which can provide worthwhile information about the nature of the sources.  相似文献   

12.
Very early times in the order of 2–3 μs from the end of the turn‐off ramp for time‐domain electromagnetic systems are crucial for obtaining a detailed resolution of the near‐surface geology in the depth interval 0–20 m. For transient electromagnetic systems working in the off time, an electric current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled by the geometry of the transmitter loop, we denote it the ‘Coil Response’. The modelling of a helicopter‐borne time‐domain system by an equivalent electronic circuit shows that the time decay of the coil response remains identical whatever the position of the receiver loop, which is confirmed by field measurements. The modelling also shows that the coil response has a theoretical zero location and positioning the receiver coil at the zero location eliminates the coil response completely. However, spatial variations of the coil response around the zero location are not insignificant and even a few cm deformation of the carrier frame will introduce a small coil response. Here we present an approach for subtracting the coil response from the data by measuring it at high altitudes and then including an extra shift factor into the inversion scheme. The scheme is successfully applied to data from the SkyTEM system and enables the use of very early time gates, as early as 2–3 μs from the end of the ramp, or 5–6 μs from the beginning of the ramp. Applied to a large‐scale airborne electromagnetic survey, the coil response compensation provides airborne electromagnetic methods with a hitherto unseen good resolution of shallow geological layers in the depth interval 0–20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.  相似文献   

13.
Microseismic monitoring has proven invaluable for optimizing hydraulic fracturing stimulations and monitoring reservoir changes. The signal to noise ratio of the recorded microseismic data varies enormously from one dataset to another, and it can often be very low, especially for surface monitoring scenarios. Moreover, the data are often contaminated by correlated noises such as borehole waves in the downhole monitoring case. These issues pose a significant challenge for microseismic event detection. In addition, for downhole monitoring, the location of microseismic events relies on the accurate polarization analysis of the often weak P‐wave to determine the event azimuth. Therefore, enhancing the microseismic signal, especially the low signal to noise ratio P‐wave data, has become an important task. In this study, a statistical approach based on the binary hypothesis test is developed to detect the weak events embedded in high noise. The method constructs a vector space, known as the signal subspace, from previously detected events to represent similar, yet significantly variable microseismic signals from specific source regions. Empirical procedures are presented for building the signal subspace from clusters of events. The distribution of the detection statistics is analysed to determine the parameters of the subspace detector including the signal subspace dimension and detection threshold. The effect of correlated noise is corrected in the statistical analysis. The subspace design and detection approach is illustrated on a dual‐array hydrofracture monitoring dataset. The comparison between the subspace approach, array correlation method, and array short‐time average/long‐time average detector is performed on the data from the far monitoring well. It is shown that, at the same expected false alarm rate, the subspace detector gives fewer false alarms than the array short‐time average/long‐time average detector and more event detections than the array correlation detector. The additionally detected events from the subspace detector are further validated using the data from the nearby monitoring well. The comparison demonstrates the potential benefit of using the subspace approach to improve the microseismic viewing distance. Following event detection, a novel method based on subspace projection is proposed to enhance weak microseismic signals. Examples on field data are presented, indicating the effectiveness of this subspace‐projection‐based signal enhancement procedure.  相似文献   

14.
A towed streamer electromagnetic system capable of simultaneous seismic and electromagnetic data acquisition has recently been developed and tested in the North Sea. We introduce a 3D inversion methodology for towed streamer electromagnetic data that includes a moving sensitivity domain. Our implementation is based on the 3D integral equation method for computing responses and Fréchet derivatives and uses the re‐weighted regularized conjugate gradient method for minimizing the objective functional with focusing regularization. We present two model studies relevant to hydrocarbon exploration in the North Sea. First, we demonstrate the ability of a towed electromagnetic system to detect and characterize the Harding field, a medium‐sized North Sea hydrocarbon target. We compare our 3D inversion of towed streamer electromagnetic data with 3D inversion of conventional marine controlled‐source electromagnetic data and observe few differences between the recovered models. Second, we demonstrate the ability of a towed streamer electromagnetic system to detect and characterize the Peon discovery, which is representative of an infrastructure‐led shallow gas play in the North Sea. We also present an actual case study for the 3D inversion of towed streamer electromagnetic data from the Troll field in the North Sea and demonstrate our ability to image all the Troll West Oil and Gas Provinces and the Troll East Gas Province. We conclude that 3D inversion of data from the current generation of towed streamer electromagnetic systems can adequately recover hydrocarbon‐bearing formations to depths of approximately 2 km. We note that by obviating the need for ocean‐bottom receivers, the towed streamer electromagnetic system enables electromagnetic data to be acquired over very large areas in frontier and mature basins for higher acquisition rates and relatively lower cost than conventional marine controlled‐source electromagnetic methods.  相似文献   

15.
This paper presents the theory to eliminate from the recorded multi‐component source, multi‐component receiver marine electromagnetic measurements the effect of the physical source radiation pattern and the scattering response of the water‐layer. The multi‐component sources are assumed to be orthogonally aligned above the receivers at the seabottom. Other than the position of the sources, no source characteristics are required. The integral equation method, which for short is denoted by Lorentz water‐layer elimination, follows from Lorentz' reciprocity theorem. It requires information only of the electromagnetic parameters at the receiver level to decompose the electromagnetic measurements into upgoing and downgoing constituents. Lorentz water‐layer elimination replaces the water layer with a homogeneous half‐space with properties equal to those of the sea‐bed. The source is redatumed to the receiver depth. When the subsurface is arbitrary anisotropic but horizontally layered, the Lorentz water‐layer elimination scheme greatly simplifies and can be implemented as deterministic multi‐component source, multi‐component receiver multidimensional deconvolution of common source gathers. The Lorentz deconvolved data can be further decomposed into scattering responses that would be recorded from idealized transverse electric and transverse magnetic mode sources and receivers. This combined electromagnetic field decomposition on the source and receiver side gives data equivalent to data from a hypothetical survey with the water‐layer absent, with idealized single component transverse electric and transverse magnetic mode sources and idealized single component transverse electric and transverse magnetic mode receivers. When the subsurface is isotropic or transverse isotropic and horizontally layered, the Lorentz deconvolution decouples into pure transverse electric and transverse magnetic mode data processing problems, where a scalar field formulation of the multidimensional Lorentz deconvolution is sufficient. In this case single‐component source data are sufficient to eliminate the water‐layer effect. We demonstrate the Lorentz deconvolution by using numerically modeled data over a simple isotropic layered model illustrating controlled‐source electromagnetic hydrocarbon exploration. In shallow water there is a decrease in controlled‐source electromagnetic sensitivity to thin resistors at depth. The Lorentz deconvolution scheme is designed to overcome this effect by eliminating the water‐layer scattering, including the field's interaction with air.  相似文献   

16.
In present‐day land and marine controlled‐source electromagnetic (CSEM) surveys, electromagnetic fields are commonly generated using wires that are hundreds of metres long. Nevertheless, simulations of CSEM data often approximate these sources as point dipoles. Although this is justified for sufficiently large source‐receiver distances, many real surveys include frequencies and distances at which the dipole approximation is inaccurate. For 1D layered media, electromagnetic (EM) fields for point dipole sources can be computed using well‐known quasi‐analytical solutions and fields for sources of finite length can be synthesized by superposing point dipole fields. However, the calculation of numerous point dipole fields is computationally expensive, requiring a large number of numerical integral evaluations. We combine a more efficient representation of finite‐length sources in terms of components related to the wire and its end points with very general expressions for EM fields in 1D layered media. We thus obtain a formulation that requires fewer numerical integrations than the superposition of dipole fields, permits source and receiver placement at any depth within the layer stack and can also easily be integrated into 3D modelling algorithms. Complex source geometries, such as wires bent due to surface obstructions, can be simulated by segmenting the wire and computing the responses for each segment separately. We first describe our finite‐length wire expressions and then present 1D and 3D examples of EM fields due to finite‐length sources for typical land and marine survey geometries and discuss differences to point dipole fields.  相似文献   

17.
Topography and severe variations of near‐surface layers lead to travel‐time perturbations for the events in seismic exploration. Usually, these perturbations could be estimated and eliminated by refraction technology. The virtual refraction method is a relatively new technique for retrieval of refraction information from seismic records contaminated by noise. Based on the virtual refraction, this paper proposes super‐virtual refraction interferometry by cross‐correlation to retrieve refraction wavefields by summing the cross‐correlation of raw refraction wavefields and virtual refraction wavefields over all receivers located outside the retrieved source and receiver pair. This method can enhance refraction signal gradually as the source–receiver offset decreases. For further enhancement of refracted waves, a scheme of hybrid virtual refraction wavefields is applied by stacking of correlation‐type and convolution‐type super‐virtual refractions. Our new method does not need any information about the near‐surface velocity model, which can solve the problem of directly unmeasured virtual refraction energy from the virtual source at the surface, and extend the acquisition aperture to its maximum extent in raw seismic records. It can also reduce random noise influence in raw seismic records effectively and improve refracted waves’ signal‐to‐noise ratio by a factor proportional to the square root of the number of receivers positioned at stationary‐phase points, based on the improvement of virtual refraction's signal‐to‐noise ratio. Using results from synthetic and field data, we show that our new method is effective to retrieve refraction information from raw seismic records and improve the accuracy of first‐arrival picks.  相似文献   

18.
In shallow water the frequency domain controlled source electromagnetic method is subject to airwave saturation that strongly limits the sensitivity to resistive hydrocarbon targets at depth. It has been suggested that time‐domain CSEM may offer an improved sensitivity and resolution of these deep targets in the presence of the airwave. In order to examine and test these claims, this work presents a side‐by‐side investigation of both methods with a main focus on practical considerations, and how these effect the resolution of a hydrocarbon reservoir. Synthetic noisy data for both time‐domain and frequency domain methods are simulated using a realistic frequency dependent noise model and frequency dependent scaling for representative source waveforms. The synthetic data studied here include the frequency domain response from a compact broadband waveform, the time‐domain step‐response from a low‐frequency square wave and the time‐domain impulse response obtained from pseudo‐random binary sequences. These data are used in a systematic resolution study of each method as a function of water‐depth, relative noise and stacking length. The results indicate that the broadband frequency domain data have the best resolution for a given stacking time, whereas the time‐domain data require prohibitively longer stacking times to achieve similar resolution.  相似文献   

19.
电磁场数值模拟的背景场/异常场算法是三维正演的有效策略之一,优点为采用解析法计算电磁场背景场代替场源项、克服了场源奇异性,缺点为不适用于发射源布置于起伏地表或背景模型复杂的情形.总场算法是直接对电磁场总场开展数值模拟,其难点是有效加载场源、保证近区与过渡区数值解精度.本文以水平电偶源形式分段加载接地长导线源,并以电场总场Helmholtz方程为矢量有限元法控制方程,实现了基于非结构化四面体网格剖分的接地长导线源频率域电磁法三维正演.通过与均匀全空间中水平电偶源产生的电场解析解对比,验证了本文算法的正确性,并分析了四面体外接圆半径与其最短棱边的最大比值和四面体二面角最小值对数值解精度的影响规律.通过与块状高导体地电模型的积分方程法、有限体积法和基于磁矢量势Helmholtz方程的有限元法数值解对比,进一步验证了本文算法正确性,同时说明了非结构化四面体网格能够更加精细地剖分电性异常体,利于获得精确数值解.  相似文献   

20.
A multichannel borehole‐to‐surface controlled‐source electromagnetic experiment was carried out at the onshore CO2 storage site of Hontomín (Spain). The electromagnetic source consisted of a vertical electric dipole located 1.5 km deep, and the electric field was measured at the surface. The subsurface response has been obtained by calculating the transfer function between the transmitted signal and the electric field at the receiver positions. The dataset has been processed using a fast processing methodology, appropriate to be applied on controlled‐source electromagnetics (CSEM) data with a large signal‐to‐noise ratio. The dataset has been analysed in terms of data quality and repeatability errors, showing data with low experimental errors and good repeatability. We evaluate if the induction of current along the casing of the injection well can reproduce the behaviour of the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号