首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, we have considered the reflection and refraction of a plane wave at an interface between two half-spaces. The lower half-spaces is composed of highly anisotropic triclinic crystalline material and the upper half-space is homogeneous and isotropic. It has been assumed that due to incidence of a plane quasi-P (qP) wave, three types of waves, namely, quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH), will be generated in the lower half space whereas P and S waves will be generated in the upper half space. The phase velocities of all the quasi waves have been calculated. It has been assumed that the direction of particle motion is neither parallel nor perpendicular to the direction of propagation. Some specific relations have been established between directions of motion and propagation, respectively. The expressions for reflection coefficients of qP, qSV, qSH and refracted coefficients of P and SV waves are obtained. Results of reflection and refraction coefficients are presented.  相似文献   

2.
The only restriction on the values of the elasticity parameters is the stability condition. Within this condition, we examine the Christoffel equation for nondetached qP slowness surfaces in transversely isotropic media. If the qP slowness surface is detached, each root of the solubility condition corresponds to a distinct smooth wavefront. If the qP slowness surface is nondetached, the roots are elliptical but do not correspond to distinct wavefronts; also, the qP and qSV slowness surfaces are not smooth.  相似文献   

3.
In this paper, we consider wave propagation in a layered medium. Using the Baker‐Campbell‐Hausdorff series, we expand the logarithm of a propagator matrix in series of frequency. The series coefficients allow us to extend the effective Backus medium for low frequencies. The proposed technique is applied to vertical propagation in a periodically layered and binary medium as well as for a gradient medium. The velocity dispersion equations are derived for these media. We also consider the layered medium with monoclinic anisotropy. We illustrate the accuracy of the proposed method on synthetic and well‐log data.  相似文献   

4.
The reflectivity method plays an important role in seismic modelling. It has been used to model different types of waves propagating in elastic and anelastic media. The diffusive–viscous wave equation was proposed to investigate the relationship between frequency dependence of reflections and fluid saturation. It is also used to describe the attenuation property of seismic wave in a fluid‐saturated medium. The attenuation of diffusive–viscous wave is mainly characterised by the effective attenuation parameters in the equation. Thus, it is essential to obtain those parameters and further characterise the features of the diffusive–viscous wave. In this work, we use inversion method to obtain the effective attenuation parameters through quality factor to investigate the characteristics of diffusive–viscous wave by comparing with those of the viscoacoustic wave. Then, the reflection/transmission coefficients in a dip plane‐layered medium are studied through coordinate transform and plane‐wave theory. Consequently, the reflectivity method is extended to compute seismograms of diffusive–viscous wave in a dip plane multi‐layered medium. Finally, we present two models to simulate the propagation of diffusive–viscous wave in a dip plane multi‐layered medium by comparing the results with those in a viscoacoustic medium. The numerical results demonstrate the validity of our extension of reflectivity method to the diffusive–viscous medium. The numerical examples in both time domain and time–frequency domain show that the reflections from a dip plane interface have significant phase shift and amplitude change compared with the results of horizontal plane interface due to the differences in reflection/transmission coefficients. Moreover, the modelling results show strong attenuation and phase shift in the diffusive–viscous wave compared to those of the viscoacoustic wave.  相似文献   

5.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.  相似文献   

6.
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium‐large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time‐consuming. Alternatively, frequency‐domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM‐421 and EM4Soil inversion software package are used to develop a quasi two‐ (2D) and quasi three‐dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium‐large scale drivers including local wave climate and morphology along this wave‐dominated beach. Further research is required to elucidate the influence of spring‐neap tidal cycles, contrasting beach morphological states and sea level rise.  相似文献   

7.
To better understand (and correct for) the factors affecting the estimation of attenuation (Q), we simulate subsurface wave propagation with the Weyl/Sommerfeld integral. The complete spherical wavefield emanating from a P‐wave point source surrounded by a homogeneous, isotropic and attenuative medium is thus computed. In a resulting synthetic vertical seismic profile, we observe near‐field and far‐field responses and a 90° phase rotation between them. Depth dependence of the magnitude spectra in these two depth regions is distinctly different. The logarithm of the magnitude spectra shows a linear dependence on frequency in the far‐field but not in those depth regions where the near‐field becomes significant. Near‐field effects are one possible explanation for large positive and even negative Q‐factors in the shallow section that may be estimated from real vertical seismic profile data when applying the spectral ratio method. We outline a near‐field compensation technique that can reduce errors in the resultant Q estimates.  相似文献   

8.
The dynamic response of a semi‐infinite fluid‐filled borehole embedded in an elastic half‐space under a concentrated normal surface load is analysed in the long‐wavelength limit. The solution of the problem is obtained with integral transforms in the form of a double integral with respect to the slowness and frequency. The partial P‐ and SVwave responses are further transformed to path integrals along Cagniard paths in the complex slowness plane. Unlike the traditional Cagniard‐de Hoop technique based on the Laplace transform of time dependence, this paper is based on the Fourier transform. The tube‐wave response is presented as a causal integral over a slowness range. The resultant representation in the time‐domain is suitable for the numerical evaluation of the complete response in the fluid‐filled borehole, especially at large distances. Asymptotic analysis of seismic phases arising in the borehole is performed on the basis of the obtained solution. The complete asymptotic wavefield consists in P and SVwaves, the Rayleigh wave and the low‐frequency Stoneley (tube) wave. Pressure synthetics obtained by the use of the asymptotic formulas are shown to be in good agreement with straightforward calculations.  相似文献   

9.
10.
Numerical investigations on one-dimensional nonlinear acoustic wave with third and fourth order nonlinearities are presented using high-order finite-difference (HFD) operators with a simple flux-limiter (SFL) algorithm. As shown by our numerical tests, the HFDSFL method is able to produce more stable, accurate and conservative solutions to the nonlinear acoustic waves than those computed by finite-difference combined with the flux-corrected-transport algorithm. Unlike the linear acoustic waves, the nonlinear acoustic waves have variable phase velocity and waveform both in time-space (t-x) domain and frequency-wavenumber (f-k) domain; of our special interest is the behaviour during the propagation of nonlinear acoustic waves: the waveforms are strongly linked to the type of medium nonlinearities, generation of harmonics, frequency and wavenumber peak shifts. In seismic sense, these characteristics of nonlinear wave will introduce new issues during such seismic processing as Normal Moveout and f-k filter. Moreover, as shown by our numerical experiment for a four-layer model, the nonlinearities of media will introduce extra velocity errors in seismic velocity inversion.  相似文献   

11.
The presence of triplications (caustics) can be a serious problem in seismic data processing and analysis. The traveltime curve becomes multi‐valued and the geometrical spreading correction factor tends to zero due to energy focusing. We analyse the conditions for the qSV‐wave triplications in a homogeneous transversely isotropic medium with vertical symmetry axis. The proposed technique can easily be extended to the case of horizontally layered vertical symmetry axis medium. We show that the triplications of the qSV‐wave in a multilayered medium imply certain algebra. We illustrate this algebra on a two‐layer vertical symmetry axis model.  相似文献   

12.
The propagation of acoustic waves through a periodic layered medium is analyzed by an eigenvalue decomposition of the propagator matrix. This reveals how the velocity and attenuation of the layered medium vary as function of the periodic structure, material parameters and frequency. There are two important parameters which control the wave propagation in the periodic medium: the reflection coefficient and the ratio between one‐way traveltimes of the two parts of the cyclic layered medium. For low frequencies (large values of wavelength to layer thickness), the layered structure behaves as an effective medium, then there is a transition zone, and for higher frequencies (small values of wavelength to layer thickness) the medium is described by the time‐average velocity. In this paper we mostly concentrate on the transition zone between an effective medium and time‐average medium regimes. The width of the transition zone increases with larger values of the reflection coefficient. The transition zone corresponds to a blocking regime for which the transmission response of the layered structure is close to zero. For even higher frequencies, the time‐average medium is replaced by a new transition zone, and then again a time‐average medium. This pattern is periodically repeated with higher frequencies. For small values of the reflection coefficient, the transition between effective medium and time‐average medium occurs around a value of wavelength to layer thickness equal to 4.  相似文献   

13.
For non‐linear kinematic inversion of elastic anisotropy parameters and related investigations of the sensitivity of seismic data, the derivatives of the wavespeed (phase velocity and group velocity) with respect to the individual elastic moduli are required. This paper presents two analytic methods, called the eigenvalue and eigenvector methods, to compute the derivatives of the wavespeeds for wave propagation in a general anisotropic medium, which may be defined by up to 21 density‐normalized elastic moduli. The first method employs a simple and compact form of the eigenvalue (phase velocity) and a general form of the group velocity, and directly yields general expressions of the derivatives for the three wave modes (qP, qS1, qS2). The second method applies simple eigenvector solutions of the three wave modes and leads to other general forms of the derivatives. These analytic formulae show that the derivatives are, in general, functions of the 21 elastic moduli as well as the wave propagation direction, and they reflect the sensitivity of the wavespeeds to the individual elastic moduli. Meanwhile, we give results of numerical investigations with some examples for particular simplified forms of anisotropy. They show that the eigenvalue method is suitable for the qP‐, qS1‐ and qS2‐wave computations and mitigates the singularity problem for the two quasi‐shear waves. The eigenvector method is preferable to the eigenvalue method for the group velocity and the derivative of the phase velocity because it involves simpler expressions and independent computations, but for the derivative of the group velocity the derivative of the eigenvector is required. Both methods tackle the singularity problem and are applicable to any degree of seismic anisotropy for all three wave modes.  相似文献   

14.
Naturally fractured reservoirs are becoming increasingly important for oil and gas exploration in many areas of the world. Because fractures may control the permeability of a reservoir, it is important to be able to find and characterize fractured zones. In fractured reservoirs, the wave‐induced fluid flow between pores and fractures can cause significant dispersion and attenuation of seismic waves. For waves propagating normal to the fractures, this effect has been quantified in earlier studies. Here we extend normal incidence results to oblique incidence using known expressions for the stiffness tensors in the low‐ and high‐frequency limits. This allows us to quantify frequency‐dependent anisotropy due to the wave‐induced flow between pores and fractures and gives a simple recipe for computing phase velocities and attenuation factors of quasi‐P and SV waves as functions of frequency and angle. These frequency and angle dependencies are concisely expressed through dimensionless velocity anisotropy and attenuation anisotropy parameters. It is found that, although at low frequencies, the medium is close to elliptical (which is to be expected as a dry medium containing a distribution of penny‐shaped cracks is known to be close to elliptical); at high frequencies, the coupling between P‐wave and SV‐wave results in anisotropy due to the non‐vanishing excess tangential compliance.  相似文献   

15.
本文在前人工作的基础上,建立了一种基于Shannon奇异核的交错网格褶积微分算子方法.文中不仅详细讨论了影响算子精度的各种因素,同时也着重分析了其在弹性波模拟中的频散关系和稳定性条件.通过和交错网格有限差分算子比较,发现该算子即使在高波数域也具有较高的精度.均匀介质中的数值试验也表明,该方法9点格式就基本上达到了解析解精度.而分层均匀介质和复杂介质中的地震波数值模拟也同时证实了该方法精度高,稳定性好,是一种研究复杂介质中地震波传播的有效数值方法.  相似文献   

16.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

17.
Anisotropy is often observed due to the thin layering or aligned micro‐structures, like small fractures. At the scale of cross‐well tomography, the anisotropic effects cannot be neglected. In this paper, we propose a method of full‐wave inversion for transversely isotropic media and we test its robustness against structured noisy data. Optimization inversion techniques based on a least‐square formalism are used. In this framework, analytical expressions of the misfit function gradient, based on the adjoint technique in the time domain, allow one to solve the inverse problem with a high number of parameters and for a completely heterogeneous medium. The wave propagation equation for transversely isotropic media with vertical symmetry axis is solved using the finite difference method on the cylindrical system of coordinates. This system allows one to model the 3D propagation in a 2D medium with a revolution symmetry. In case of approximately horizontal layering, this approximation is sufficient. The full‐wave inversion method is applied to a crosswell synthetic 2‐component (radial and vertical) dataset generated using a 2D model with three different anisotropic regions. Complex noise has been added to these synthetic observed data. This noise is Gaussian and has the same amplitude f?k spectrum as the data. Part of the noise is localized as a coda of arrivals, the other part is not localized. Five parameter fields are estimated, (vertical) P‐wave velocity, (vertical) S‐wave velocity, volumetric mass and the Thomsen anisotropic parameters epsilon and delta. Horizontal exponential correlations have been used. The results show that the full‐wave inversion of cross‐well data is relatively robust for high‐level noise even for second‐order parameters such as Thomsen epsilon and delta anisotropic parameters.  相似文献   

18.
Dispersion and radial depth of investigation of borehole modes   总被引:2,自引:0,他引:2  
Sonic techniques in geophysical prospecting involve elastic wave velocity measurements that are performed by placing acoustic transmitters and receivers in a fluid‐filled borehole. The signals recorded at the receivers are processed to obtain compressional‐ and shear‐wave velocities in the surrounding formation. These velocities are generally used in seismic surveys for the time‐to‐depth conversion and other formation parameters, such as porosity and lithology. Depending upon the type of transmitter used (e.g. monopole or dipole) and as a result of eccentering, it is possible to excite axisymmetric (n= 0) , flexural (n= 1) and quadrupole (n= 2) families of modes propagating along the borehole. We present a study of various propagating and leaky modes that includes their dispersion and attenuation characteristics caused by radiation into the surrounding formation. A knowledge of propagation characteristics of borehole modes helps in a proper selection of transmitter bandwidth for suppressing unwanted modes that create problems in the inversion for the compressional‐ and shear‐wave velocities from the dispersive arrivals. It also helps in the design of a transmitter for a preferential excitation of a given mode in order to reduce interference with drill‐collar or drilling noise for sonic measurements‐while‐drilling. Computational results for the axisymmetric family of modes in a fast formation with a shear‐wave velocity of 2032 m/s show the existence of Stoneley, pseudo‐Rayleigh and anharmonic cut‐off modes. In a slow formation with a shear‐wave velocity of 508 m/s, we find the existence of the Stoneley mode and the first leaky compressional mode which cuts in at approximately the same normalized frequency ωa/VS= 2.5 (a is the borehole radius) as that of the fast formation. The corresponding modes among the flexural family include the lowest‐order flexural and anharmonic cut‐off modes. For both the fast and slow formations, the first anharmonic mode cuts in at a normalized frequency ωa/VS= 1.5 approximately. Cut‐off frequencies of anharmonic modes are inversely proportional to the borehole radius in the absence of any tool. The borehole quadrupole mode can also be used for estimating formation shear slownesses. The radial depth of investigation with a quadrupole mode is marginally less than that of a flexural mode because of its higher frequency of excitation.  相似文献   

19.
Wave‐induced fluid flow plays an important role in affecting the seismic dispersion and attenuation of fractured porous rocks. While numerous theoretical models have been proposed for the seismic dispersion and attenuation in fractured porous rocks, most of them neglect the wave‐induced fluid flow resulting from the background anisotropy (e.g. the interlayer fluid flow between different layers) that can be normal in real reservoirs. Here, according to the theories of poroelasticity, we present an approach to study the frequency‐dependent seismic properties of more realistic and complicated rocks, i.e. horizontally and periodically layered porous rock with horizontal and randomly orienting fractures, respectively, distributed in one of the two periodical layers. The approach accounts for the dual effects of the wave‐induced fluid flow between the fractures and the background pores and between different layers (the interlayer fluid flow). Because C33 (i.e., the modulus of the normally incident P‐wave) is directly related to the P‐wave velocity widely measured in the seismic exploration, and its comprehensive dispersion and attenuation are found to be most significant, we study mainly the effects of fracture properties and the stiffness contrast between the different layers on the seismic dispersion and attenuation of C33. The results show that the increasing stiffness contrast enhances the interlayer fluid flow of the layered porous rocks with both horizontal and randomly orienting fractures and weakens the wave‐induced fluid flow between the fractures and the background pores, especially for the layered porous rock with horizontal fractures. The modelling results also demonstrate that for the considered rock construction, the increasing fracture density reduces the interlayer fluid flow while improves the dispersion and attenuation in the fracture‐relevant frequency band. Increasing fracture aspect ratio is found to reduce the dispersion and attenuation in the fracture‐relevant frequency band only, especially for the layered porous rock with horizontal fractures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号