首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Analytical solutions for the water flow and solute transport equations in the unsaturated zone are presented. We use the Broadbridge and White nonlinear model to solve the Richards’ equation for vertical flow under a constant infiltration rate. Then we extend the water flow solution and develop an exact parametric solution for the advection-dispersion equation. The method of characteristics is adopted to determine the location of a solute front in the unsaturated zone. The dispersion component is incorporated into the final solution using a singular perturbation method. The formulation of the analytical solutions is simple, and a complete solution is generated without resorting to computationally demanding numerical schemes. Indeed, the simple analytical solutions can be used as tools to verify the accuracy of numerical models of water flow and solute transport. Comparison with a finite-element numerical solution indicates that a good match for the predicted water content is achieved when the mesh grid is one-fourth the capillary length scale of the porous medium. However, when numerically solving the solute transport equation at this level of discretization, numerical dispersion and spatial oscillations were significant.  相似文献   

3.
Analytical solutions for contaminant transport in a non‐uniform flow filed are very difficult and relatively rare in subsurface hydrology. The difficulty is because of the fact that velocity vector in the non‐uniform flow field is space‐dependent rather than constant. In this study, an analytical model is presented for describing the three‐dimensional contaminant transport from an area source in a radial flow field which is a simplest case of the non‐uniform flow. The development of the analytical model is achieved by coupling the power series technique, the Laplace transform and the two finite Fourier cosine transform. The developed analytical model is examined by comparing with the Laplace transform finite difference (LTFD) solution. Excellent agreements between the developed analytical model and the numerical model certificate the accuracy of the developed model. The developed model can evaluate solution for Peclet number up to 100. Moreover, the mathematical behaviours of the developed solution are also studied. More specifically, a hypothetical convergent flow tracer test is considered as an illustrative example to demonstrate the three‐dimensional concentration distribution in a radial flow field. The developed model can serve as benchmark to check the more comprehensive three‐dimensional numerical solutions describing non‐uniform flow contaminant transport. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Jin Xu  Xudong Wang 《Ground water》2016,54(5):719-726
A finite layer approach for the general problem of three‐dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three‐layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems.  相似文献   

6.
Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10?10) than for solute transport (10?6). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only.  相似文献   

7.
Analytical solutions to debris avalanche problems involving shock waves are derived. The debris avalanche problems are described in two different coordinate systems, namely, the standard Cartesian and topography-linked coordinate systems. The analytical solutions can then be used to test debris avalanche numerical models. In this article, finite volume methods are applied as the numerical models. We compare the performance of the finite volume method with reconstruction of the conserved quantities based on stage, height, and velocity to that of the conserved quantities based on stage, height, and momentum for solving the debris avalanche problems involving shock waves. The numerical solutions agree with the analytical solution. In addition, both reconstructions lead to similar numerical results. This article is an extension of the work of Mangeney et al. (Pure Appl Geophys 157(6–8):1081–1096, 2000).  相似文献   

8.
Romero DM  Silver SE 《Ground water》2006,44(6):797-802
The ground water flow model MODFLOW inherently implements a nongeneralized integrated finite-difference (IFD) numerical scheme. The IFD numerical scheme allows for construction of finite-difference model grids with curvilinear (piecewise linear) rows. The resulting grid comprises model cells in the shape of trapezoids and is distorted in comparison to a traditional MODFLOW finite-difference grid. A version of MODFLOW-88 (herein referred to as MODFLOW IFD) with the code adapted to make the one-dimensional DELR and DELC arrays two dimensional, so that equivalent conductance between distorted grid cells can be calculated, is described. MODFLOW IFD is used to inspect the sensitivity of the numerical head and velocity solutions to the level of distortion in trapezoidal grid cells within a converging radial flow domain. A test problem designed for the analysis implements a grid oriented such that flow is parallel to columns with converging widths. The sensitivity analysis demonstrates MODFLOW IFD's capacity to numerically derive a head solution and resulting intercell volumetric flow when the internal calculation of equivalent conductance accounts for the distortion of the grid cells. The sensitivity of the velocity solution to grid cell distortion indicates criteria for distorted grid design. In the radial flow test problem described, the numerical head solution is not sensitive to grid cell distortion. The accuracy of the velocity solution is sensitive to cell distortion with error <1% if the angle between the nonparallel sides of trapezoidal cells is <12.5 degrees. The error of the velocity solution is related to the degree to which the spatial discretization of a curve is approximated with piecewise linear segments. Curvilinear finite-difference grid construction adds versatility to spatial discretization of the flow domain. MODFLOW-88's inherent IFD numerical scheme and the test problem results imply that more recent versions of MODFLOW 2000, with minor modifications, have the potential to make use of a curvilinear grid.  相似文献   

9.
Owing to the mathematical similarities between heat and mass transport, the multi-species transport model MT3DMS should be able to simulate heat transport if the effects of buoyancy and changes in viscosity are small. Although in several studies solute models have been successfully applied to simulate heat transport, these studies failed to provide any rigorous test of this approach. In the current study, we carefully evaluate simulations of a single borehole ground source heat pump (GSHP) system in three scenarios: a pure conduction situation, an intermediate case, and a convection-dominated case. Two evaluation approaches are employed: first, MT3DMS heat transport results are compared with analytical solutions. Second, simulations by MT3DMS, which is finite difference, are compared with those by the finite element code FEFLOW and the finite difference code SEAWAT. Both FEFLOW and SEAWAT are designed to simulate heat flow. For each comparison, the computed results are examined based on residual errors. MT3DMS and the analytical solutions compare satisfactorily. MT3DMS and SEAWAT results show very good agreement for all cases. MT3DMS and FEFLOW two-dimensional (2D) and three-dimensional (3D) results show good to very good agreement, except that in 3D there is somewhat deteriorated agreement close to the heat source where the difference in numerical methods is thought to influence the solution. The results suggest that MT3DMS can be successfully applied to simulate GSHP systems, and likely other systems with similar temperature ranges and gradients in saturated porous media.  相似文献   

10.
In this paper we describe the transport of pollution in groundwater in the neighbourhood of a well in a uniform background flow. We compute the rate at which contaminated particles reach the well as a function of the place of the source of pollution. The motion of a particle in a dispersive flow is seen as a random walk process. The Fokker-Planck equation for the random motion of a particle is transformed using the complex potential for the advective flow field. The resulting equation is solved asymptotically after a stretching transformation. Finally, the analytical solution is compared with results from Monte Carlo simulations with the random walk model. The method can be extended to arbitrary flow fields. Then by a numerical coordinate transformation the analytical results can still be employed.  相似文献   

11.
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.  相似文献   

12.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

13.
Accurate simulation of flow and transport processes in fractured rocks requires that flow in fractures and shear zones to be coupled with flow in the porous rock matrix. To this end, we will herein consider a single-continuum approach in which both fractures and the porous rock are represented as volumetric objects, i.e., as cells in an unstructured triangular grid with a permeability and a porosity value associated with each cell. Hence, from a numerical point of view, there is no distinction between flow in the fractures and the rock matrix. This enables modelling of realistic cases with very complex structures. To compute single-phase advective transport in such a model, we propose to use a family of higher-order discontinuous Galerkin methods. Single-phase transport equations are hyperbolic and have an inherent causality in the sense that information propagates along streamlines. This causality is preserved in our discontinuous Galerkin discretization. We can therefore use a simple topological sort of the graph of discrete fluxes to reorder the degrees-of-freedom such that the discretized linear system gets a lower block-triangular form, from which the solution can be computed very efficiently using a single-pass forward block substitution. The accuracy and utility of the resulting transport solver is illustrated through several numerical experiments.  相似文献   

14.
As is frequently cited, dispersivity increases with solute travel distance in the subsurface. This behaviour has been attributed to the inherent spatial variation of the pore water velocity in geological porous media. Analytically solving the advection–dispersion equation with distance-dependent dispersivity is extremely difficult because the governing equation coefficients are dependent upon the distance variable. This study presents an analytical technique to solve a two-dimensional (2D) advection–dispersion equation with linear distance-dependent longitudinal and transverse dispersivities for describing solute transport in a uniform flow field. The analytical approach is developed by applying the extended power series method coupled with the Laplace and finite Fourier cosine transforms. The developed solution is then compared to the corresponding numerical solution to assess its accuracy and robustness. The results demonstrate that the breakthrough curves at different spatial locations obtained from the power series solution show good agreement with those obtained from the numerical solution. However, owing to the limited numerical operation for large values of the power series functions, the developed analytical solution can only be numerically evaluated when the values of longitudinal dispersivity/distance ratio eL exceed 0·075. Moreover, breakthrough curves obtained from the distance-dependent solution are compared with those from the constant dispersivity solution to investigate the relationship between the transport parameters. Our numerical experiments demonstrate that a previously derived relationship is invalid for large eL values. The analytical power series solution derived in this study is efficient and can be a useful tool for future studies in the field of 2D and distance-dependent dispersive transport. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
基于并行化直接解法的频率域可控源电磁三维正演   总被引:9,自引:8,他引:1       下载免费PDF全文
电磁法的三维数值模拟是一个对数值算法和计算机硬件要求都非常高的问题.对常用的微分类方法如有限单元法和有限差分法而言,求解最后所得的大型线性方程组是至关重要的一步,直接影响到正演算法的实用性.如何高效、稳定且准确地解线性方程长期以来一直是被探讨的问题.本文实现了基于线性系统直接求解技术的频率域可控源电磁(CSEM)三维正演.使用交错网格有限体积法(FV)来离散化关于二次电场的Helmholtz方程;使用直接解法取代传统的迭代解法来求解离散线性系统,即对系统矩阵进行完全LU分解,具体通过调用大规模并行矩阵直接求解器(MUMPS)来实现.基于理论模型做了一系列数值实验,首先证明了直接解法的高精度和稳定性,并考察了其内存需求、计算时间和并行可伸缩性等主要计算性能,最后检验了所开发的算法快速模拟多场源CSEM问题的能力以及对常规海洋和陆地CSEM模拟的有效性.  相似文献   

16.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

17.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   

18.
This paper compares the performance of analytical and numerical approaches for modeling DNAPL dissolution with biodecay. A solution derived from a 1-D advective transport formulation (“Parker” model) is shown to agree very closely with high resolution numerical solutions. A simple lumped source mass balance solution in which with decay is assumed proportional to DNAPL mass (“Falta1” model) over- or underpredicts aqueous phase biodecay depending on the magnitude of the exponential factor governing the relationship between dissolution rate and DNAPL mass. A modification of the Falta model that assumes decay proportional to the source exit concentration is capable of accurately simulating source behavior with strong aqueous phase biodecay if model parameters are appropriately selected or calibrated (“Falta2” model). However, parameters in the lumped models exhibit complex interdependencies that cannot be quantified without consideration of transport processes within the source zone. Combining the Falta2 solution with relationships derived from the Parker model was found to resolve these limitations and track the numerical model results. A method is presented to generalize the analytical solutions to enable simulation of partial mass removal with changes in source parameters over time due to various remedial actions. The algorithm is verified by comparison with numerical simulation results. An example application is presented that demonstrates the interactions of partial mass removal, enhanced biodecay, enhanced mass transfer and source zone flow reduction applied at various time periods on contaminant flux reduction. Increasing errors that arise in numerical solutions with coarse discretization and high decay rates are shown to be controlled by using an adjusted decay coefficient derived from the Parker analytical solution.  相似文献   

19.
A numerical method has been proposed by Ross [Ross PJ. Modeling soil water and solute transport-fast, simplified numerical solutions. Agron J 2003; 95(6): 1352–1361.] to solve one-dimensional soil water movement problems. The Ross method is a noniterative numerical scheme, that can reduce computational time without sacrificing computational accuracy. The main aim of this study is to present a general form of the Ross method for two- and three-dimensional variably saturated flow. The established numerical model (R3D) is widely tested using five problems, in which the numerical solutions of R3D are compared with analytical solutions, laboratory data, and solutions from a traditional iterative numerical model. The comparison shows that R3D accommodates various hydraulic functions and boundary conditions. Results from R3D, which does not require iteration, are as accurate as results from iterative model. With the help of the primary variable switching technique, this model is unconditionally mass conservative, and computes infiltration into dry soil more efficiently. R3D is thus considered as an efficient tool for its high accuracy and efficiency for solving two- and three-dimensional variably saturated flow problems.  相似文献   

20.
Soil vapour extraction (SVE) is a common remediation technique for cleaning up unsaturated soils contaminated by volatile organic compounds (VOCs). Analytical solutions, which result from simple mathematical models, can allow the fast approximation of the time‐dependent effluent concentration and the gaining of insight into the processes that take place during soil remediation. Deriving the analytical solutions to advection–dispersion equations that simultaneously take into account the mechanical dispersion and molecular diffusion is very difficult because of the variable dependence of governing equations' coefficients. In this study, we first present two simplified analytical solutions that only consider mechanical dispersion or molecular diffusion. The two developed analytical solutions are compared with the numerical solution that simultaneously considers both mechanical dispersion and molecular diffusion to examine the applicability of the two simplified analytical solutions and distinguishes the individual contribution of the mechanical dispersion and molecular diffusion to total VOCs transport in an SVE system. Results show that dispersion plays an important role during SVE decontamination and neither the diffusion‐dominated solution nor the dispersion‐dominated solution can agree well with the numerical solution when both mechanical dispersion and molecular diffusion have significant contributions to the total VOCs transport flux. A composite analytical solution that linearly couples the diffusion‐ and dispersion‐dominated analytical solutions, which is proposed herein to eliminate the discrepancy between the analytical solutions and the numerical solution. Results indicate that the proposed composite analytical solution agrees well with the numerical solution and is an effective tool for quickly and accurately evaluating the time‐dependent effluent concentration for parameters of the different ranges of interest in an SVE remedial system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号