首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.

  相似文献   

2.
Well Yingnan 2,an important exploratory well in the east of Tarim Basin,yields high commercial oil and gas flow in Jurassic.Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas.Because this region presents many suits of hydrocarbon source rocks,there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present.By using the kinetics of hydrocarbon generation and carbon isotope,natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas,about 72%,it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir.The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2,so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

3.
Well Yingnan 2, an important exploratory well in the east of Tarim Basin, yields high commercial oil and gas flow in Jurassic. Natural gas components and carbon isotopic composition indicate that it belongs to sapropel type gas. Because this region presents many suits of hydrocarbon source rocks, there are some controversies that natural gases were generated from kerogen gas or crude oil cracking gas at present. By using the kinetics of hydrocarbon generation and carbon isotope, natural gas of Well Yingnan 2 is composed mainly of crude oil cracking gas, about 72%, it is generated from secondary kerogen gas of Cambrian-Lower Ordovician source rock and crude oil cracking gas of Mid-Upper Ordovician oil reservoir. The main oil and gas filling time is 65 Ma later in the Jurassic gas reservoir of Well Yingnan 2, so the gas reservoir belongs to late accumulation and continuous filling type.  相似文献   

4.
Lunnan region is a large-scale paleohigh with many coexisting oil and gas bearing series.At present, about 2 billions tons of proved,probable and possible oil and gas reverses have been proved there.Eight oil and gas bearing series have been found in the Ordovician,Carboniferous,Triassic and Jurassic of Lunnan region,they all bear the characteristics of large-scale multilayer oil-gas province.Ordovician is the main reservoir series where over 0.8 billion tons of oil geologic reserves were discovered,and a super large-scale marine carbonate oil and gas field has formed.Reservoir space of the carbonate reservoirs is mainly composed of dissolved hole,dissolved pore and fracture in Lunnan paleo-burial hill.Generally, dissolved holes are widely distributed among them.Reservoir developments are mainly controlled by karstification and tectonic disruption.Due to the similar geochemical characters,the Ordovician,Carboniferous,Triassic and Jurassic oil and gas reservoirs present the same oil source rock of Mid-Upper Ordovician,the latter except Ordovician are mostly of secondary oil and gas reservoirs migrated vertically by faults during the process of multiple phase tectonic movement,adjustment and reconstruction. Lunnan composite oil and gas accumulation region is situated in the vicinity of large-scale hydrocarbon generation depressions in three directions,ample oil and gas from hydrocarbon generation depressions supplied the adjacent oil and gas reservoirs once.Hereby,the succeed paleohigh is the long-term hydrocarbon accumulation region,which is favor for the formations of high quality reservoirs,fault systems and huge-scale composite oil and gas accumulation.  相似文献   

5.
Lunnan region is a large-scale paleohigh with many coexisting oil and gas bearing series. At present, about 2 billions tons of proved, probable and possible oil and gas reverses have been proved there. Eight oil and gas bearing series have been found in the Ordovician, Carboniferous, Triassic and Jurassic of Lunnan region, they all bear the characteristics of large-scale multilayer oil-gas province. Ordovician is the main reservoir series where over 0.8 billion tons of oil geologic reserves were discovered, and a super large-scale marine carbonate oil and gas field has formed. Reservoir space of the carbonate reservoirs is mainly composed of dissolved hole, dissolved pore and fracture in Lunnan paleo-burial hill. Generally, dissolved holes are widely distributed among them. Reservoir developments are mainly controlled by karstification and tectonic disruption. Due to the similar geochemical characters, the Ordovician, Carboniferous, Triassic and Jurassic oil and gas reservoirs present the same oil source rock of Mid-Upper Ordovician, the latter except Ordovician are mostly of secondary oil and gas reservoirs migrated vertically by faults during the process of multiple phase tectonic movement, adjustment and reconstruction. Lunnan composite oil and gas accumulation region is situated in the vicinity of large-scale hydrocarbon generation depressions in three directions, ample oil and gas from hydrocarbon generation depressions supplied the adjacent oil and gas reservoirs once. Hereby, the succeed paleohigh is the long-term hydrocarbon accumulation region, which is favor for the formations of high quality reservors, fault systems and huge-scale composite oil and gas accumulation.  相似文献   

6.

Lunnan region is a large-scale paleohigh with many coexisting oil and gas bearing series. At present, about 2 billions tons of proved, probable and possible oil and gas reverses have been proved there. Eight oil and gas bearing series have been found in the Ordovician, Carboniferous, Triassic and Jurassic of Lunnan region, they all bear the characteristics of large-scale multilayer oil-gas province. Ordovician is the main reservoir series where over 0.8 billion tons of oil geologic reserves were discovered, and a super large-scale marine carbonate oil and gas field has formed. Reservoir space of the carbonate reservoirs is mainly composed of dissolved hole, dissolved pore and fracture in Lunnan paleo-burial hill. Generally, dissolved holes are widely distributed among them. Reservoir developments are mainly controlled by karstification and tectonic disruption. Due to the similar geochemical characters, the Ordovician, Carboniferous, Triassic and Jurassic oil and gas reservoirs present the same oil source rock of Mid-Upper Ordovician, the latter except Ordovician are mostly of secondary oil and gas reservoirs migrated vertically by faults during the process of multiple phase tectonic movement, adjustment and reconstruction. Lunnan composite oil and gas accumulation region is situated in the vicinity of large-scale hydrocarbon generation depressions in three directions, ample oil and gas from hydrocarbon generation depressions supplied the adjacent oil and gas reservoirs once. Hereby, the succeed paleohigh is the long-term hydrocarbon accumulation region, which is favor for the formations of high quality reservors, fault systems and huge-scale composite oil and gas accumulation.

  相似文献   

7.
The effectiveness of gas accumulation processes is controlled by several main geological factors in-cluding charging force,features of gas conduit,sealing properties of caprock,etc. Based on the analysis and statistics of the large-medium size gas accumulations in China,the main parameters,in-cluding the excess pressure difference between the source rock and reservoir bed,the area coefficient of the gas conduit,and the thickness or displacement pressure of caprock,and the criteria for the as-sessment of gas accumulation processes have been established. Using the parameters and the criteria above,the effectiveness of gas accumulation processes in the Kuqa depression was quantitatively evaluated. By integrating the parameters of the excess pressure difference between the source rock and reservoir bed,the area coefficient of fault conduit system,and the caprock thickness in gas charging period,a comprehensive assessment of the effectiveness of gas accumulation in the Kuqa depression has been made. The result reveals that the Tubei-Dawan area,the Central Kelasu area and the Dongqiu-Dina area are three highly-effective areas for gas accumulation in the Kuqa depression.  相似文献   

8.
The degree of gas hydrate saturation at Integrated Ocean Drilling Program (IODP) Site C0002 in the Kumano Basin, Nankai Trough, was estimated from logging‐while‐drilling logs and core samples obtained during IODP Expeditions 314 and 315. Sediment porosity data necessary for the calculation of saturation were obtained from both core samples and density logs. Two forms of the Archie equation (‘quick‐look’ and ‘standard’) were used to calculate gas hydrate saturation from two types of electrical resistivity log data (ring resistivity and bit resistivity), and a three‐phase Biot‐type equation was used to calculate gas hydrate saturation from P‐wave velocity log data. The gas hydrate saturation baseline calculated from both resistivity logs ranges from 0% to 35%, and that calculated from the P‐wave velocity log ranges from 0% to 30%. High levels of gas hydrate saturation (>60%) are present as spikes in the ring resistivity log and correspond to the presence of gas hydrate concentrations within sandy layers. At several depths, saturation values obtained from P‐wave velocity data are lower than those obtained from bit resistivity data; this discrepancy is related to the presence of free gas at these depths. Previous research has suggested that gas from deep levels in the Kumano Basin has migrated up‐dip towards the southern and seaward edge of the basin near Site C0002. The high saturation values and presence of free gas at site C0002 suggest that a large gas flux is flowing to the southern and seaward edge of the basin from a deeper and/or more landward part of the Kumano Basin, with the southern edge of the Kumano Basin (the location of site C0002) being the main area of fluid accumulation.  相似文献   

9.
Partially saturated reservoirs are one of the major sources of seismic wave attenuation, modulus defect and velocity dispersion in real seismic data. The main attenuation and dispersion phenomenon is wave induced fluid flow due to the heterogeneity in pore fluids or porous rock. The identification of pore fluid type, saturation and distribution pattern within the pore space is of great significance as several seismic and petrophysical properties of porous rocks are largely affected by fluid type, saturation and fluid distribution pattern. Based on Gassmann-Wood and Gassmann- Hill rock physics models modulus defect, velocity dispersion and attenuation in Jurassic siliclastic partially-saturated rocks are studied. For this purpose two saturation patterns - uniform and patchy - are considered within the pore spaces in two frequency regimes i.e., lower frequency and higher frequency. The results reveal that at low enough frequency where saturation of liquid and gas is uniform, the seismic velocity and bulk modulus are lower than at higher frequency where saturation of fluid mixture is in the form of patches. The velocity dispersion and attenuation is also modeled at different levels of gas saturation. It is found that the maximum attenuation and velocity dispersion is at low gas saturation. Therefore, the dispersion and attenuation can provide a potential way to predict gas saturation and can be used as a property to differentiate low from high gas saturation.  相似文献   

10.
呼图壁地下储气库部分区域地表垂直形变机理研究   总被引:1,自引:0,他引:1  
利用在呼图壁地下储气库开展的2013~2015年7期二等水准测量获得的高差数据,对由于地表气井压力变化影响而发生的地下储气库地表垂直变形进行了分析。研究表明,呼图壁地下储气库区的地表变形除了构造成因引起的盆地下沉以外,其他主要形变成因来源有2个方面:一个是呼图壁地区的地下水超采影响着该地区的地表垂直变化;另一个是储气库集采气期间井口压力变化影响下的地表沉降,根据计算,储气库每MPa气井压力变化影响到的地表变化约为0.625~1.125mm。  相似文献   

11.
12.
Amplitude variation with offset (AVO) analysis and waveform inversion are techniques used to determine qualitative or quantitative information on gas hydrates and free gas in sediments. However, the quantitative contribution of gas hydrates to the acoustic impedance contrast observed at the bottom‐simulating reflector and the reliability of quantitative AVO analyses are still topics of discussion. In this study, common‐midpoint gathers from multichannel wide‐angle reflection seismic data, acquired offshore Costa Rica, have been processed to preserve true amplitude information at the bottom‐simulating reflector for a quantitative AVO analysis incorporating angles of incidence of up to 60°. Corrections were applied for effects that significantly alter the observed amplitudes, such as the source directivity. AVO and rock‐physics modelling indicate that free gas immediately beneath the gas‐hydrate stability zone can be detected and low concentrations can be quantified from AVO analysis, whereas the offset‐dependent reflectivity is not sensitive to gas‐hydrate concentrations of less than about 10% at the base of the gas‐hydrate stability zone. Bulk free‐gas saturations up to 5% have been determined from the reflection seismic data assuming a homogeneous distribution of free gas in the sediment. Assuming a patchy distribution of free gas increases the estimated concentrations up to 14%. There is a patchy occurrence of bottom‐simulating reflectors south‐east of the Nicoya Peninsula on the continental margin, offshore Costa Rica. AVO analysis indicates that this phenomenon is related to the local presence of free gas beneath the gas‐hydrate stability zone, probably related to a focused vertical fluid flow. In areas without bottom‐simulating reflectors, the results indicate that no free gas is present.  相似文献   

13.
The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava.  相似文献   

14.
The origin and genetic types of natural gas in the Sichuan Basin are still disputed.To classify the origin and genetic types in different areas,the paper analyzes the carbon isotopic composition of gases and geologic features in the Sichuan Basin.The results showed that the gas sourced from terrestrial layers is typically characterized by terrestrial origin and was mainly accumulated nearby to form reservoir.The carbon isotopic composition of gas showed a normal combination sequence distribution,suggesting that natural gas in continental strata is not affected by secondary alteration or that this deformation is very weak.The gas source is singular,and only gas from the southern and northern Sichuan Basin shows the characteristic of mixed sources.However,marine gas presents the characteristics of an oil-formed gas.The carbon isotopic composition of natural gas in the western and central part of the basin mostly distributes in a normal combination sequence,and few of them showed an inversion,indicating that the gas perhaps had not experienced secondary alteration.The carbon isotopic composition of marine-origin gas in the southern,northern and eastern Sichuan Basin displays a completely different distribution pattern,which is probably caused by different mixing ratio of gas with multi-source and multi-period.  相似文献   

15.
The Sebei gasfield is the largest biogas accumulation found in China and many reservoirs and seal rocks superposed on a syndepositional anticline in Quaternary. The biogas charging and dissipating process and its distribution have been a research focus for many years. The authors suggest a diffusing and accumulating model for the biogas, as they find that the shallower the gas producer, the more methane in the biogas, and the lighter stable carbon isotope composition of methane. Based on the diffusing model, diffused biogas is quantitatively estimated for each potential sandy reservoir in the gasfield, and the gas charging quantity for the sandy reservoir is also calculated by the diffused gas quantity plus gas reserve in-place. A ratio of diffusing quantity to charging quantity is postulated to describe biogas accumulating state in a sandy reservoir, if the ratio is less than 0.6, the reservoir forms a good gas-pool and high-production layer in the gasfield, which often occurs in the reservoirs deeper than 900 m; if the ratio is greater than 0.6, a few gas accumulated in the reservoir, which frequently exists in the reservoirs shallower than 900 m. Therefore, a biogas accumulation model is built up as lateral direct charging from gas source for the sands deeper than 900 m and indirect charging from lower gas-bearing sands by diffusion at depth shallower than 900 m. With this charging and diffusion quantitative model, the authors conducted re-evaluation on each wildcat in the central area of the Qaidam Basin, and found many commercial biogas layers.  相似文献   

16.

Hetianhe gasfield in Bachu region of the Tarim Basin is mainly composed of three reservoir-caprock assembly, namely regional caprock of upper mudstone, middle mudstone and lower mudstone of the Carboniferous and reservoir of Bachu bioclastic limestone, glutenite and the Ordovician carbonate buried hill. Natural gas in Hetianhe gasfield sourced from the Cambrian source rock. It is thought that gases in Ma4 well block in the east of Hetianhe gasfield are mainly crude-oil cracked gases, while those in Ma3 and Ma8 well blocks in the west are the mixture gases of kerogen cracked gases and crude-oil cracked gases. Natural gas is rich in H2S and accumulated in multiply stages as the result of TSR. The accumulation history is divided into three stages, namely accumulation and breakage in the late Caledonian-early Hercynian, migration and dissipation in the late Hercynian and accumulation in Himalayan. The main accumulation of reformed gas reservoir is in Himalayan.

  相似文献   

17.
Hetianhe gasfield in Bachu region of the Tarim Basin is mainly composed of three reservoir-caprock assembly, namely regional caprock of upper mudstone, middle mudstone and lower mudstone of the Carboniferous and reservoir of Bachu bioclastic limestone, glutenite and the Ordovician carbonate buried hill. Natural gas in Hetianhe gasfield sourced from the Cambrian source rock. It is thought that gases in Ma4 well block in the east of Hetianhe gasfield are mainly crude-oil cracked gases, while those in Ma3 and Ma8 well blocks in the west are the mixture gases of kerogen cracked gases and crude-oil cracked gases. Natural gas is rich in H2S and accumulated in multiply stages as the result of TSR. The accumulation history is divided into three stages, namely accumulation and breakage in the late Caledonian-early Hercynian, migration and dissipation in the late Hercynian and accumulation in Himalayan. The main accumulation of reformed gas reservoir is in Himalayan.  相似文献   

18.
The Sebei gasfield is the largest biogas accumulation found in China and many reservoirs and seal rocks superposed on a syndepositional anticline in Quaternary.The biogas charging and dissipating process and its distribution have been a research focus for many years.The authors suggest a diffusing and accumulating model for the biogas,as they find that the shallower the gas producer,the more methane in the biogas,and the lighter stable carbon isotope composition of methane.Based on the diffusing model,diffused biogas is quantitatively estimated for each potential sandy reservoir in the gasfield,and the gas charging quantity for the sandy reservoir is also calculated by the diffused gas quantity plus gas reserve in-place.A ratio of diffusing quantity to charging quantity is postulated to describe biogas accumulating state in a sandy reservoir,if the ratio is less than 0.6,the reservoir forms a good gas-pool and high-production layer in the gasfield,which often occurs in the reservoirs deeper than 900 m;if the ratio is greater than 0.6,a few gas accumulated in the reservoir,which frequently exists in the reservoirs shallower than 900 m.Therefore,a biogas accumulation model is built up as lateral direct charging from gas source for the sands deeper than 900 m and indirect charging from lower gas-bearing sands by diffusion at depth shallower than 900 m.With this charging and diffusion quantitative model,the authors conducted re-evaluation on each wildcat in the central area of the Qaidam Basin,and found many commercial biogas layers.  相似文献   

19.
Hetianhe gasfield in Bachu region of the Tarim Basin is mainly composed of three reservoir-caprock assembly,namely regional caprock of upper mudstone,middle mudstone and lower mudstone of the Carboniferous and reservoir of Bachu bioclastic limestone,glutenite and the Ordovician carbonate buried hill.Natural gas in Hetianhe gasfield sourced from the Cambrian source rock.It is thought that gases in Ma4 well block in the east of Hetianhe gasfield are mainly crude-oil cracked gases,while those in Ma3 and Ma8 well blocks in the west are the mixture gases of kerogen cracked gases and crude-oil cracked gases.Natural gas is rich in H2S and accumulated in multiply stages as the result of TSR.The accumulation history is divided into three stages,namely accumulation and breakage in the late Caledonian-early Hercynian,migration and dissipation in the late Hercynian and accumulation in Himalayan. The main accumulation of reformed gas reservoir is in Himalayan.  相似文献   

20.
Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins.At present,shallow gas resources have opened up giant potentials.The previous researches indicate the intimate genetic relationship between shallow gas and heavy oil.Shallow gas resources are generated from crude oil degraded by anaerobic microscopic organism,it belongs to biogenic gas family of secondary genesis, namely heavy oil degraded gas.Shallow gas resources are usually distributed in the upward position or the vicinity of heavy oil reservoirs.They are mainly of dry gas,which are composed of methane and only tiny C2 heavy hydrocarbon and relatively higher contents of nitrogen gas.Generally,methane isotopes are light,whose values are between biogenic gas and thermal cracking gas.Ethane isotopes are heavy,which mixed possibly with thermogenic gas.Carbon dioxide bear the characteristics of very heavy carbon isotope,so carbon isotopic fractionation effects are very obvious on the process of microscopic organism degradation crude oil.The heavy oil degraded gas formation,a very complex geological,geochemical and microbiological geochemical process,is the result of a series of reactions of organic matter-microbes and water-hydrocarbon,which is controlled by many factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号