首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, an analytical method is proposed to determine the dynamic response of 3‐D rectangular liquid storage tanks with four flexible walls, subjected to horizontal seismic ground motion. Fluid–structure interaction effects on the dynamic responses of partially filled fluid containers, incorporating wall flexibility, are accounted for in evaluating impulsive pressure. The velocity potential in which boundary conditions are satisfied is solved by the method of separation of variables using the principle of superposition. The impulsive pressure distribution is then computed. Solutions based on 3‐D modeling of the rectangular containers are obtained by applying the Rayleigh–Ritz method using the vibration modes of flexible plates with suitable boundary conditions. Trigonometrical functions that satisfy boundary conditions of the storage tank such that the flexibility of the wall is thoroughly considered are used to define the admissible vibration modes. The analysis is then performed in the time domain. Moreover, an analytical procedure is developed for deriving a simple formula that evaluates convective pressure and surface displacements in a similar rigid tank. The variation of dynamic response characteristics with respect to different tank parameters is investigated. A mechanical model, which takes into account the deformability of the tank wall, is developed. The parameters of such a model can be obtained from developed charts, and the maximum seismic loading can be predicted by means of a response spectrum characterizing the design earthquake. Accordingly, a simplified but sufficiently accurate design procedure is developed to improve code formulas for the seismic design of liquid storage tanks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a new analytical model for describing the large rocking response of an elastic multi‐mass structure resting on ideally rigid ground. Using the experimental results from a rocking steel column, the ability of the proposed analytical model to estimate the rocking and translational acceleration response under free vibration, pulse and earthquake excitations is evaluated. It is observed that the classical treatment of impact may result in an unrealistically large transfer of energy to vibrations. Therefore a new Dirac‐delta type impact model that spreads the effects of impact over time and space is proposed. The use of a Dirac‐delta model and accurate restitution factors play a pivotal role in prediction of rocking and acceleration responses. In order to characterize the nonlinear response better, a modal analysis of the linearized system is proposed. With this approach, the vibration mode frequencies and shapes during rocking action were determined. A comparison of analytical and experimental modal estimations suggests good agreement. The results emphasize that the vibration characteristics of several vibration modes are affected by rocking action, and these modes may be excited at impact. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Earthquake‐induced deck‐abutment contact alters the boundary conditions at the deck level and might activate a different mechanical system than the one assumed during the design of the bridge. Occasionally this discrepancy between the assumed and the actual seismic behavior has detrimental consequences, for example, pier damage, deck unseating, or even collapse. Recently, an insightful shake‐table testing of a scaled deck‐abutment bridge model 1 , showed unexpected in‐plane rotations even though the deck was straight. These contact‐induced rotations produced significant residual displacements and damage to the piers and the bents. The present paper utilizes that experimental data to examine the validity and the limitations of a proposed nonsmooth dynamic analysis framework. The results show that the proposed approach satisfactorily captures the planar rigid‐body dynamics of the deck which is characterized by deck‐abutment contact. The analysis brings forward the role of friction on the physical mechanism behind the rotation of the deck, and underlines the importance of considering the frictional contact forces during deck‐abutment interaction even for straight bridges, which typically are neglected. Finally, the paper investigates the sensitivity of the rotation with respect to macroscopic contact parameters (i.e., the coefficient of friction and the coefficient of restitution). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The non‐stationary rocking response of liquid storage tanks under seismic base excitations including soil interaction has been developed based on the wavelet domain random vibration theory. The ground motion has been characterized through statistical functionals of wavelet coefficients of the ground acceleration history. The tank–liquid–foundation system is modelled as a multi‐degree‐of‐freedom (MDOF) system with both lateral and rocking motions of vibration of the foundation. The impulsive and convective modes of vibration of the liquid in the tank have been considered. The wavelet domain coupled dynamic equations are formulated and then solved to get the expressions of instantaneous power spectral density function (PSDF) in terms of functionals of input wavelet coefficients. The moments of the instantaneous PSDF are used to obtain the stochastic responses of the tank in the form of coefficients of hydrodynamic pressure, base shear and overturning base moment for the largest expected peak responses. Parametric variations are carried out to study the effects of various governing parameters like height of liquid in the tank, height–radius ratio of the tank, ratio of total liquid mass to mass of foundation, and shear wave velocity in the soil medium, on the responses of the tank. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so‐called local mechanisms, often associated with the out‐of‐plane wall behavior, whose stability is evaluated by static force‐based approaches and, more recently, by some displacement‐based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no‐tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi‐body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full‐scale shaking‐table tests on stone masonry buildings: a sacco‐stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two‐storey double‐leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A Markov method of analysis is presented for obtaining the seismic response of cable‐stayed bridges to non‐stationary random ground motion. A uniformly modulated non‐stationary model of the random ground motion is assumed which is specified by the evolutionary r.m.s. ground acceleration. Both vertical and horizontal components of the motion are considered to act simultaneously at the bridge supports. The analysis duly takes into account the angle of incidence of the earthquake, the spatial correlation of ground motion and the quasi‐static excitation. A cable‐stayed bridge is analysed under a set of parametric variations in order to study the non‐stationary response of the bridge. The results of the numerical study indicate that (i) frequency domain spectral analysis with peak r.m.s. acceleration as input could provide more r.m.s. response than the peak r.m.s. response obtained by the non‐stationary analysis; (ii) the longitudinal component of the ground motion significantly influences the vertical vibration of the bridge; and (iii) the angle of incidence of the earthquake has considerable influence on the deck response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
A study of the response to horizontal ground shaking of a rigid cylindrical tank containing an inviscid liquid with a continuous vertical variation in density is presented. In addition to the free vibrational sloshing characteristics of the liquid, the responses examined include the vertical displacements at the free surface, and the impulsive and convective components of the hydrodynamic wall pressures and associated tank forces. The equations of motion for the system are formulated for an arbitrary variation in liquid density but the solutions presented are for a density that increases exponentially from top to bottom. Comprehensive numerical data are included which elucidate the underlying response mechanisms and the effects and relative importance of the various parameters involved. The solution for the continuous density variation considered herein is also compared with a previously reported solution in which the liquid was modelled as a multi-layered, discrete system.  相似文献   

9.
An approximation approach of seismic analysis of two‐way asymmetric building systems under bi‐directional seismic ground motions is proposed. The procedures of uncoupled modal response history analysis (UMRHA) are extended to two‐way asymmetric buildings simultaneously excited by two horizontal components of ground motion. Constructing the relationships of two‐way base shears versus two‐way roof translations and base torque versus roof rotation in ADRS format for a two‐way asymmetric building, each modal pushover curve bifurcates into three curves in an inelastic state. A three‐degree‐of‐freedom (3DOF) modal stick is developed to simulate the modal pushover curve with the stated bifurcating characteristic. It requires the calculation of the synthetic earthquake and angle β. It is confirmed that the 3DOF modal stick is consistent with single‐degree‐of‐freedom modal stick in an elastic state. A two‐way asymmetric three‐story building was analyzed by UMRHA procedure incorporating the proposed 3DOF modal sticks. The analytical results are compared with those obtained from nonlinear response history analysis. It is shown that the 3DOF modal sticks are more rational and effective in dealing with the assessment of two‐way asymmetric building systems under two‐directional seismic ground motions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The traffic‐induced variability in the dynamic properties of a cable‐stayed bridge is investigated using ambient vibration measurements. Under a relatively steady wind and temperature environment, the ambient vibration test was conducted on the bridge with normal traffic conditions and totally 24 h acceleration response time histories were recorded. These data are divided into 12 sections with each data section containing 2 h measurements. Thereby the modal variability due to changing traffic loading is investigated through post‐processing of the data in each section in both amplitude and frequency domains. The result indicates that the natural frequencies of the global modes can exhibit as much as 1% variation within a day. The modal amplitudes of each mode as well as the modal deflection at each measurement position vary insignificantly. The damping ratios however are sensitive to the vibration intensity, especially when the deck vibration exceeds a certain level. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
为研究考虑桩土相互作用的储液罐的动力响应及长周期地震波对储液晃动、储罐提离的影响,根据量纲分析法设计了桩-土-储罐模型进行了振动台试验。试验中采用4条基岩波、4条地表波进行振动台试验。试验显示基岩波与地表波输入时,体系变化规律基本一致,其结果表明:土体地表加速度被放大,且输入加速度峰值增加,地表加速度放大倍数减小;一般地震波时,随着输入加速度峰值的增加,储液晃动波高大致呈线性增加。长周期地震波下则为非线性增加,且晃动波较大。此外,液体产生的晃动波高与储罐类型相关。细高型储罐产生的波高稍大;储罐提离高度随着输入加速度峰值的增加呈非线性增长。长周期地震波激励下,储罐提离高度小于一般地震波时的提离高度。细高型储罐在长短周期地震波激励下,提离高度较为接近,而一般储罐在两种地震波激励下,提离高度相差较大。细高型储罐提离高度大于一般储罐的提离高度。建议在储罐设计时考虑长周期地震波的影响。  相似文献   

12.
The eigenvalue problem is analytically formulated in symmetric bridges with distributed mass and moment of inertia under transverse earthquake. The piers are elastically supported on the ground. The deck is monolithically connected to one or two piers for all degrees of freedom and restrained or transversely free at the abutments. The characteristic equation, symmetric normal modes, modal participation factors, and participating mass ratios are given analytically. The problem is expressed in terms of few dimensionless parameters: (i) the radius of gyration of the deck mass divided by the pier height; (ii) the ratio of the rotational stiffness of a footing to that of the pier at the base; (iii) the ratio of flexural stiffness of the outer spans to those of the pier; (iv) the ratio of torsional stiffness of side spans to the rotational stiffness of the pier top; (v) for two piers, the side‐to‐central‐span ratio. Modal response spectrum analysis gives the moment at the base of the footings and the torque in the deck at its supports on the abutments as ratios to the values at incipient uplifting from the ground or the bearings. The peak ground acceleration of the motion at the onset of either one of these two types of nonlinearity is depicted as a function of the dimensionless parameters and the fundamental period of an elastic deck supported only at the abutments, or of a rigid deck on piers fixed against rotation at top and bottom. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on seismic vulnerability assessment of restrained block‐type non‐structural components under sliding response on the basis of seismic inputs specified by current seismic codes. The general representation of restrained equipment considered in this study consists of a rigid block restrained by four post‐tensioned, symmetrically arranged cables. Two sliding‐related failure modes are considered: restraint breakage and excessive absolute acceleration. Fragility analysis is proposed as an appropriate tool to evaluate these failure modes. Sample fragility curves developed through Monte‐Carlo simulations show that the restraint breakage limit state is sensitive to the parameters of the equation of motion. For instance, fragility estimates obtained without taking into account vertical base accelerations can be significantly unconservative for relatively large values of the coefficient of friction. In contrast, the excessive absolute acceleration limit state exhibits little sensitivity to the parameters of the equation of motion. Peak absolute acceleration response is almost always equal to or greater than the horizontal peak base acceleration. Representative results suggest that reasonable response estimates for blocks located at stories other than the ground in multistorey buildings can in general be obtained by simply scaling the ground acceleration to the peak acceleration at the corresponding storey. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Shaking‐table data for a tuned liquid damper with a sloped bottom of 30° with the horizontal are investigated using a non‐linear numerical model previously developed by Yu, Jin‐kyu, Nonlinear characteristics of tuned liquid dampers. Ph.D. Thesis, Department of Civil Engineering, University of Washington, Seattle, WA, 98195 (1997). Stiffness and damping parameters for this model are obtained and compared with those previously derived for box‐shaped tanks. The values for these parameters reflect the softening spring behaviour of the sloped‐bottom system in contrast to the hardening system evident for the box‐shaped TLD. Consequently, the sloped‐bottom tank should be tuned slightly higher than the fundamental structural frequency in order to obtain the most effective damping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Experimental and analytical studies were conducted to determine dynamic soil–structure interaction characteristics of a single-span, prestressed-concrete bridge with monolithic abutments supported by spread footings. The experimental programme, consisting of harmonic forced vibration excitation of the bridge in the transverse and longitudinal directions, revealed the presence of four modes in the frequency band, 0 to 11 Hz, and the onset of a fifth mode at 14 Hz, the highest frequency attained during the tests. The fundamental mode at 4.7 Hz was the primary longitudinal bending mode of the deck and had a relatively low damping ratio (ζ1), that was approximately 0.025 of critical. The second and third modes at 6.4 Hz and 8.2 Hz were the primary twisting modes of the deck which involved substantial transverse rocking, transverse translation and torsion of the footings. As expected, the damping ratios associated with these two modes, ζ2 = 0.035 and ζ3 = 0.15, were directly related to the relative amounts of deck and footing motion. The fourth mode at 10.6 Hz was the second twisting mode of the deck and involved relatively little motion of the footings and abutment walls, which was consistent with the low damping, ζ4 = 0.02, observed in this mode. The response data at 14 Hz suggested that the fifth mode beyond this frequency was the second longitudinal bending mode of the deck involving longitudinal translation and bending of the abutment walls. A three-dimensional finite element model of the bridge, with Winkler springs attached to the footings and abutment walls to represent the soil–structure interaction, was able to reproduce the experimental data (natural frequencies, mode shapes and bridge response) reasonably well. Although the stiffnesses assigned to the Winkler springs were based largely on the application of a form of Rayleigh's principle to the experimental data, these stiffnesses were similar to theoretical foundation stiffnesses of the same size footings on a linearly elastic half space and theoretical lateral stiffnesses of a rigid retaining wall against a linearly elastic backfill.  相似文献   

17.
18.
An analytical model, which aims at reproducing the response of a large‐scale dynamic testing facility, that is a system composed of the specimen/shaking table/reaction‐mass/airbags/dampers/soil is developed. The Lagrangian of the system is derived, under the assumption of large displacements and rotations. A set of four nonlinear differential equations is obtained and solved with numerical methods. Preliminary verifications of the derived model are carried out by reproducing both well‐known results in the literature as well as those of a lumped model employed in the design of an existing dynamic testing facility. The case‐study for validating the nonlinear equations of motion is the shaking table of the EUCENTRE Laboratory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A refined substructure technique in the frequency domain is developed, which permits consideration of the interaction effects among adjacent containers through the supporting deformable soil medium. The tank‐liquid systems are represented by means of mechanical models, whereas discrete springs and dashpots stand for the soil beneath the foundations. The proposed model is employed to assess the responses of adjacent circular, cylindrical tanks for harmonic and seismic excitations over wide range of tank proportions and soil conditions. The influence of the number, spatial arrangement of the containers and their distance on the overall system's behavior is addressed. The results indicate that the cross‐interaction effects can substantially alter the impulsive components of response of each individual element in a tank farm. The degree of this impact is primarily controlled by the tank proportions and the proximity of the predominant natural frequencies of the shell‐liquid‐soil systems and the input seismic motion. The group effects should be not a priori disregarded, unless the tanks are founded on shallow soil deposit overlying very stiff material or bedrock. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A wavelet‐based random vibration theory has been developed for the non‐stationary seismic response of liquid storage tanks including soil interaction. The ground motion process has been characterized via estimates of statistical functionals of wavelet coefficients obtained from a single time history of ground accelerations. The tank–liquid–soil system has been modelled as a two‐degree‐of‐freedom (2‐DOF) system. The wavelet domain equations have been formulated and the wavelet coefficients of the required response state are obtained by solving two linear simultaneous algebraic equations. The explicit expression for the instantaneous power spectral density function (PSDF) in terms of the functionals of the input wavelet coefficients has been obtained. The moments of this PSDF are used to estimate the expected pseudo‐spectral acceleration (PSA) response of the tank. Parametric variations are carried out to study the effects of tank height, foundation natural frequency, shear wave velocity of soil and ratio of the mass of tank (including liquid) to the mass of foundation on the PSA responses of tanks. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号