首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
It becomes increasingly important and challenging for nitrogen pollution prevention to identify key controls for spatial variability of nitrogen in groundwater that could be affected by multiple factors, including anthropogenic input, groundwater flow, and local geochemistry. This study characterized spatial variability of both nitrate and ammonium in the Pleistocene aquifer of central Yangtze River Basin and assessed the effect of various factors in controlling nitrate and ammonium levels based on multiple statistical approaches (correlation, geostatistics, multiple liner regression). The results indicate that nitrate is mostly influenced by Cl that represents anthropogenic input, while Eh representing local redox state is a secondary variable influencing nitrate concentrations. The groundwater with elevated nitrate concentrations are estimated to occur mainly in areas with higher-permeability near-surface sediments which can facilitate more anthropogenic nitrate transport and less nitrate removal owing to more oxidized state. Ammonium is mostly correlated to Eh, followed by dissolved organic carbon (DOC), but only DOC improves significantly the accuracy of co-kriging prediction model. The groundwater with elevated ammonium concentrations are estimated to occur mainly in areas with more organic-rich sediments within or around the aquifer which can facilitate more ammonium release owing to natural organic matter consumption accompanying strong reducing conditions. The regional groundwater flow is not a factor significantly controlling nitrate or ammonium levels owing to flat topography and sluggish lateral flow.  相似文献   

2.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A recently developed approach to carbon isotope methodology (process recognition via isotope diagrams) is applied in a multidisciplinary study of precipitation‐recharged aquifers of the lowlands–plains area of the Manawatu (south‐west North Island). Urban and rural areas rely on groundwater from the upper levels of a deep basin sequence comprising marine and terrestrial sediments of Pleistocene age. Hydrochemical and isotopic (18O, 3H, 13C and 14C) data are merged with known details of geology and hydrogeology to reveal two separate confined aquifers within the depth range to 200 m. The shallower of these, below unconfined, locally recharged groundwater, is recharged on the foothills of the Ruahine Range to the north‐east of the study area; flow direction is NE–SW. The deeper confined aquifer is recharged on the Tararua Range to the immediate east; flow direction essentially is transverse (SE–NW) to that in the shallower aquifer. Two processes are identified as dominant contributors to concentration and isotopic composition of dissolved inorganic carbon (DIC), namely addition of CO2 from decay of organic materials and carbonate dissolution. Limitations of carbon isotope methods in determining residence times are illustrated by the data. Although the confined groundwater is essentially tritium‐free, only a few samples showed conclusive evidence of significant ageing on the time‐scale of 14C. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
The study area is located on the western part of the alluvium‐filled gap between the Rajmahal hills on the west and the Garo hills on the east. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Three hydrochemical facies with distinct characteristics have been identified which are dominated in general by alkaline earths and weak acids. The major‐ion chemistry of the area is controlled by weathering of silicate minerals, rainfall recharge, ion‐exchange processes and anthropogenic activities such as irrigation return flow and the application of inorganic fertilizers and pesticides. A stoichiometric approach suggests that mineral dissolution and anthropogenic activities contribute 79% and 21% of the total cations dissolved in groundwater. Principal component analysis (PCA) of 42 groundwater samples using 13 chemical parameters indicates that the combined processes of recharge of groundwater from rainfall, sediment water interaction, groundwater flow, infiltration of irrigation return water (which is arsenic rich due to the use of arsenic‐bearing pesticides, wood preservatives, etc. and the pumping of arsenic‐rich groundwater for agriculture purpose), oxidation of natural or anthropogenic organic matter and the reductive dissolution of ferric iron and manganese oxides play a key role in the evolution of groundwater in the study area. Factor 2 scores, associated with the infiltration of irrigation return water and spatial distribution of arsenic concentration reveal that the groundwater of the municipal area will not be affected by arsenic in the future in spite of heavy groundwater abstraction. Another PCA with geologic, geomorphic, anthropogenic, geochemical and landuse factors indicates that arsenic concentration in groundwater increases with increasing area of mango orchards, sand lithofacies and nitrate and decreases with increasing distance of paleochannel from the monitored well and depth of bore wells. High loading on nitrate may be attributed to the use of fertilizer, pesticides, etc. in mango orchards and agricultural land. High loadings on log pCO2, mango orchards (with negative sign) and phosphate (with positive sign) indicate that mango orchards provide the organic waste material which is decomposed to form organic carbon. The organic carbon undergoes oxidative carbon degeneration by different oxidants and increases the concentration of CO2 in the aquifer. The reducing condition thus developed in the aquifer helps to dissolve the arsenic adsorbed on iron hydroxide or oxy‐hydroxide coated margins of sand, iron rich heavy mineral grain margins, clay minerals and Fe–Mn concretions present in the aquifer matrix. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This work attempted to locate clean and safe groundwater for irrigation use in the Choushui River alluvial fan. Multiple‐variable indicator kriging (MVIK) was adopted to evaluate numerous hydrochemical parameters for a standard of water quality for irrigation in Taiwan. Many hydrochemical parameters in groundwater were distinguished into three main categories—salinity/sodium hazard, nitrogen hazard and heavy metal hazard. Safe and potential hazardous regions of groundwater for irrigation were delineated according to different probabilities estimated by MVIK. The probabilistic results of the classifications gave an opportunity to explore the spatial uncertainty of the hazards and helped government administrators establish a sound policy associated with the development and management of groundwater resources. Analysis of the results indicate that the central distal‐fan and mid‐fan aquifers are the best places to extract clean and safe groundwater for irrigation, and the deep aquifer (exceeding 200 m depth) has wider regions with clean and safe groundwater for irrigation than shallow aquifers. The northern and southern aquifers, with multiple hazards, limit groundwater use for irrigation. Although the proximal‐fan aquifer is a zone of groundwater recharge, the high nitrogen content seriously affects the environment and is not suitable for irrigation use. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate‐stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02‐0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2‐11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.  相似文献   

7.
Biologically mediated redox processes in the riparian zone, like denitrification, can have substantially beneficial impacts on stream water quality. The extent of these effects, however, depends greatly on the hydrological boundary conditions. The impact of hydrological processes on a wetland's nitrogen sink capacity was investigated in a forested riparian fen which is drained by a first‐order perennial stream. Here, we analysed the frequency distributions and time‐series of pH and nitrogen, silica, organic carbon and oxygen concentrations in throughfall, soil solution, groundwater and stream water, and the groundwater levels and stream discharges from a 3‐year period. During baseflow conditions, the stream was fed by discharging shallow, anoxic groundwater and by deep, oxic groundwater. Whereas the latter delivered considerable amounts of nitrogen (~0·37 mg l?1) to the stream, the former was almost entirely depleted of nitrogen. During stormflow, near‐surface runoff in the upper 30 cm soil layer bypassed the denitrifying zone and added significant amounts to the nitrogen load of the stream. Nitrate‐nitrogen was close to 100% of deep groundwater and stream‐water nitrogen concentration. Stream‐water baseflow concentrations of nitrate, dissolved carbon and silica were about 1·6 mg l?1, 4 mg l?1 and 7·5 mg l?1 respectively, and >3 mg l?1, >10 mg l?1 and <4 mg l?1 respectively during discharge peaks. In addition to that macroscale bypassing effect, there was evidence for a corresponding microscale effect: Shallow groundwater sampled by soil suction cups indicated complete denitrification and lacked any seasonal signal of solute concentration, which was in contrast to piezometer samples from the same depth. Moreover, mean solute concentration in the piezometer samples resembled more that of suction‐cup samples from shallower depth than that of the same depth. We conclude that the soil solution cups sampled to a large extent the immobile soil‐water fraction. In contrast, the mobile fraction that was sampled by the piezometers exhibited substantially shorter residence time, thus being less exposed to denitrification, but predominating discharge of that layer to the stream. Consequently, assessing the nitrogen budget based on suction‐cup data tended to overestimate the nitrogen consumption in the riparian wetland. These effects are likely to become more important with the increased frequency and intensity of rainstorms that are expected due to climate change. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
This study investigates the applicability of selected pharmaceutical compounds (e.g. sulfamethoxazole, carbamazepine, ibuprofen) as anthropogenic indicators for the interaction of surface water and groundwater in the hyporheic zone of an alluvial stream. Differences in transport behaviour and the resulting distribution of the pharmaceuticals in the riverine groundwater were evaluated. The investigated field site in the Grand Duchy of Luxembourg, Europe is represented by low permeable sediments and confined aquifer conditions. Water samples from single‐screen and multilevel observation wells installed in the riverbank at the field site were taken and analysed for selected pharmaceuticals and major ions for a period of 6 months. Surface water and groundwater levels were recorded to detect effluent and influent aquifer conditions. Nearly all pharmaceuticals that were detected in the stream were also found in the riverine groundwater. However, concentrations were significantly lower in groundwater than in surface water. A classification into mobile and sorbing/degradable pharmaceuticals based on their transport relevant properties was made and verified by the field data. Gradients with depth for some of these pharmaceuticals were documented and a more detailed understanding of the system stream/riverbank was obtained. It was demonstrated that the selected pharmaceutical compounds can be used as anthropogenic indicators at the investigated field site. However, not all compounds seem to be suitable indicators as their transport behaviour is not fully understood. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This study explores linkages between the microbial composition and hydrochemical variables of pristine groundwater to identify active redox conditions and processes. Two confined aquifers underlying the city of Qianjiang in the Jianghan Plain in China were selected for this study, having different recharge sources and strong hydrochemical gradients. Typical methods for establishing redox processes according to threshold concentration criteria for geochemical parameters suggest iron or sulphate reduction processes. High‐throughput 16S rRNA sequencing was used to obtain diversity and taxonomic information on microbial communities. Instead of revealing iron‐ and sulphate‐reducing bacteria, salt‐ and alkali‐tolerant bacteria, such as the phylum Firmicutes and the class Gammaproteobacteria, and in particular, the family Bacillaceae, were dominant in the downstream groundwater of the first aquifer that had high ion concentrations caused by the dissolution of calcite and dolomite; meanwhile, the heterotrophic microaerophilic families Comamonadaceae and Rhodocyclaceae prevailed in the upstream groundwater of the first aquifer. Sulphate‐reducing bacteria were extremely abundant in the upstream groundwater of the second aquifer, as the SO42? concentration was especially high. Methanogens and methanotrophs were predominant in the downstream groundwater of the second aquifer even though the concentration of SO42? was much higher than 0.5 mg L?1. The microbial communities, together with the geochemical parameters, indicated that the upstream region of the first aquifer was suboxic, that Fe(III) and Mn(IV) reductions were not the main redox processes in the downstream groundwater of the first aquifer with high Fe and Mn concentrations, and that the redox processes in the upstream and downstream regions of the second confined aquifer were SO42? reduction and methanogenesis, respectively. This study expands understanding of the linkages between microbial communities and hydrogeochemistry in pristine groundwaters and provides more evidence for identifying active redox conditions and processes.  相似文献   

11.
This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic ‐carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene‐‐contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p < 0.05). Higher levels of HAA were consistently observed at sites with greater levels of PBOC and first‐order decay rates. Because amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.  相似文献   

12.
Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe‐hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude‐oil‐contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe‐hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe‐hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.  相似文献   

13.
Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple‐well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride‐cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high‐chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high‐chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.  相似文献   

14.
In the central part of the Bolivian Altiplano, the shallow groundwater presents electrical conductivities ranging from 0·1 to 20 mS/cm. In order to study the origin of this salinity pattern, a good knowledge is required of the geometry of the aquifer at depth. In this study, geophysics has been used to complement the sparse data available from drill holes. One hundred time‐domain electromagnetic (TDEM) soundings were carried out over an area of 1750 km2. About 20 geological logs were available close to some of the TDEM soundings. Three intermediate results were obtained from the combined data: (i) the relationship between the electrical conductivity of the groundwater and the formation resistivity, (ii) geoelectrical cross‐sections and (iii) geoelectrical maps at various depths. The limited data set shows a relationship between resistivity and the nature of the rock. From the cross‐sections, a conductive substratum with a resistivity of less than 1 Ω·m was identified at most of the sites at depths ranging from 50 to 350 m. This substratum could be a clay‐rich formation containing brines. Using derived relationships, maps of the nature of the formation (sandy, intermediate and clayey sediments) were established at depths of 10 and 50 m. Discrimination between sand and clays was impossible where groundwater conductivity is high (>3 mS/cm). In the central part of the area, where the groundwater conductivity is low, sandy sediments are likely to be present from the surface to a depth of more than 200 m. Clayey sediments are more likely to be present in the south‐east and probably constitute a hydraulic barrier to groundwater flow. In conclusion, the study demonstrates the efficiency of the TDEM sounding method to map conductive zones. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
采用室内培养的方法,以富营养化湖泊太湖为例,研究了沉积物有机质矿化过程中碳、氮、磷的迁移特征.结果表明,在沉积物中的有机质矿化过程中,碳以溶解性无机碳释放至水中,同时以CH4和CO2形式释放至大气中,培养结束时,CH4和CO2累积排放含量分别为1492.21和498.96 mg/g(dw),其中CH4占气态碳的89.16%(以C质量计);此外,大量的氮、磷营养盐释放至上覆水体,水中总氮、总磷和铵态氮的最高浓度分别是初始浓度的62.16、28.16和139.45倍,而硝态氮浓度在整个培养过程中逐渐下降,培养末期浓度是初期的0.21倍;厌氧条件下,沉积物有机质的矿化,不仅可以生成大量的CH4、CO2气体,还能够促使沉积物中铵态氮和磷的释放;而沉积物有机质矿化释放的碳、氮、磷营养元素又能加剧湖泊富营养化程度,促进湖泊水体的初级生产力,从而增加湖泊沉积物有机质输入.这样的循环方式可能是湖泊富营养化自维持的重要机制之一.  相似文献   

17.
Six surface water samples from locations along Otter Creek in Southeastern Montana and a groundwater sample from a nearby monitoring well completed in the Knobloch coal were analyzed for stable carbon isotope ratios. Along the length of its perennial reach, between the towns of Otter and Ashland, Otter Creek crosses several coal outcrops, including the Knobloch coal zone. The carbon isotope ratio of the creek becomes progressively more similar to that of the Knobloch coal aquifer groundwater in samples collected downgradient from the town of Otter. The isotope ratio of the stream changes from ?10.5 to ?8.9‰ reflecting the influence of the coal‐aquifer base flow contribution, as represented by Knobloch coal groundwater, which has a carbon isotope value of +3.9‰. The dissolved inorganic carbon concentrations of the groundwater and surface water are similar (~100 mg/L), which allowed the use of the simplified, first‐order, two‐end‐member mixing equation. Using carbon isotope ratios, calculations of the fraction of water contributed by coal aquifers indicate that approximately 11% of the surface water in Otter Creek at its mouth near Ashland was supplied by groundwater from the coal aquifers that crop out between Otter and Ashland. This study was conducted in December, when Otter Creek is at low flow. At times of higher surface flow, the contribution from groundwater base flow will be correspondingly smaller. This study illustrates that carbon isotopes can be an effective, low‐cost tool in base flow studies.  相似文献   

18.
The use of reclaimed water and its impact on groundwater quality in the middle and southern parts of the Jordan Valley are investigated. The chemical analyses indicate that nitrate and bacteriological pollution is widespread, and thus, seriously affects groundwater use. During the study, 365 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. Three hydrochemical facies are identifed, i. e., (Ca–(Mg)–Na–HCO3), (Ca–Na–SO4–Cl) and (Ca–Na–Cl). The change of facies is accompanied by a gradual increase in the groundwater total dissolved solids (TDS), which is mainly controlled by evaporates and carbonates dissolution in the aquifer matrix. Water analyses indicate that the shallow aquifer in the study area is affected by non‐point pollution sources, primarily from natural (manure) and chemical nitrogen (N)‐fertilizers and treated wastewater used for agriculture. The concentration of nitrate in the groundwater ranges from 10 to 355 mg/L. Considerable seasonal fluctuations in groundwater quality are observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Zarqa River flow. The noticeable levels of total coliform and Escherichia coli in the northern part of the study area may be attributed to contamination from the urban areas, intensive livestock production, and illegal dumping of sewage. Heavy metal concentrations in all samples were found to be significantly lower than the permissible limits for drinking water standards.  相似文献   

19.
This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt–clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near‐saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day?1 and peak rate is 5·6 mm day?1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt–clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3–N ha?1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above‐ground vegetation is high—8·56 t dry matter ha?1 year?1 and 103 kg N ha?1 year?1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha?1year?1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above‐ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Neural network techniques combined with Geographical Information Systems (GIS), are used in the spatial prediction of nitrate pollution in groundwaters. Initially, the most important parameters controlling groundwater pollution by nitrates are determined. These include hydraulic conductivity of the aquifer, depth to the aquifer, land uses, soil permeability, and fine to coarse grain ratio in the unsaturated zone. All these parameters were quantified in a GIS environment, and were standardized in a common scale. Subsequently, a neural network classification was applied, using a multi‐layer perceptron classifier with the back propagation (BP) algorithm, in order to categorize the examined area into categories of groundwater nitrate pollution potential. The methodology was applied to South Rhodope aquifer (Thrace, Greece). The calculation was based on information from 214 training sites, which correspond to monitored nitrate concentrations in groundwaters in the area. The predictive accuracy of the model developed reached 86% in the training samples, 74% in the overall sample and 71% in the test samples. This indicates that this methodology is promising to describe the spatial pattern of nitrate pollution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号