首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Seagrasses develop extensive or patchy underwater meadows in coastal areas around the world, forming complex, highly productive ecosystems. Seagrass canopies exert strong effects on water flow inside and around them, thereby affecting flow structure, sediment transport and benthic ecology. The influence of Zostera marina canopies on flow velocity, turbulence, hydraulic roughness and sediment movement was evaluated through laboratory experiments in 2 flumes and using live Z. marina and a mobile sand bed. Profiles of instantaneous velocities were measured and sediment movement was identified upstream, within and downstream of patches of different sizes and shoot density and at different free-stream velocities. Flow structure was characterised by time-averaged velocity, turbulence intensity and Turbulent Kinetic Energy (TKE). When velocity data were available above the canopy, they were fitted to the Law of the Wall and shear velocities and roughness lengths were calculated. When a seagrass canopy was present, three layers were distinguishable in the water column: (1) within canopy represented by low velocities and high turbulence; (2) transition zone around the height of the canopy, where velocities increased, turbulence decreased and TKE was high; and (3) above canopy where velocities were equal or higher than free-stream velocities and turbulence and TKE were lower than below. Shoot density and patch-width influenced this partitioning of the flow when the canopy was long enough (based on flume experiments, at least more than 1 m-long). The enhanced TKE observed at the canopy/water interface suggests that large-scale turbulence is generated at the canopy surface. These oscillations, likely to be related to the canopy undulations, are then broken down within the canopy and high-frequency turbulence takes place near the bed. This turbulence ‘cascade’ through the canopy may have an important impact on biogeochemical processes. The velocity above the canopy generally followed a logarithmic profile. Roughness lengths were higher above the canopy than over bare sand and increased with increasing distance from the leading edge of the canopy; however, they were still small (<1 cm) compared to other studies in the literature. Within and downstream of the canopy, sediment movement was observed at velocities below the threshold of motion. It was likely caused by the increased turbulence at those positions. This has large implications for sediment transport in coastal zones where seagrass beds develop.  相似文献   

2.
ABSTRACT

The presence of aquatic vegetation in riverine and lacustrine environments alters the mean and turbulent flow structure and thus impacts the fate and transport of sediment and contaminants. Turbulent flows through Vallisneria natans (V. natans) and Potamogeton malaianus (P. malaianus) were investigated in a laboratory flume. The impact of plant morphology on mean velocity profile and turbulence distribution was analysed and discrepancies in flow alteration caused by different types of macrophyte were highlighted. Results show that a dense canopy of submerged macrophyte leads to a velocity profile featuring a counter velocity gradient in the lower part of the canopy. Negative Reynolds stress and its local maximum were observed there. Discrepancies in flow structure caused by different morphologies of both tested plants were further identified. With smaller frontal area in the lower part of the canopy, P. malaianus causes a much bigger gradient and local maximum in the velocity profile, and thus a larger local stress maximum than V. natans. The mean velocity gradient around the top of canopy, the Reynolds stress and the turbulence kinetic energy at the canopy interface are smaller than for the flow through the V. natans canopy. Larger reduction of the mean velocity within the V. natans canopy makes the suspended sediment of fine particles more easily deposited than in the P. malaianus canopy.  相似文献   

3.
There is increasing interest in tidal wetlands as mechanisms for sustainable and long-term coastal defence. The complexities of the interaction between the deposition of suspended particulate matter (SPM) and submerged vegetation, however, is to a large extent poorly understood. Consequently, accurate parameterisation of cohesive sediment settling fluxes in these environments is a crucial requirement for the development of high-resolution numerical models of wetland morphodynamics. A novel laboratory experiment is described in which the turbulent flow structure within a canopy of the halophytic macrophyte Spartina anglica is examined, and floc characteristics quantified using a unique floc camera configuration able to measure directly the full spectral floc size (D) and settling velocity (Ws). We provide the first quantitative observations of floc characteristics from shallow (h<0.5 m), vegetated flows and investigate the potential influence that variations in vegetative density may have on flocculation, and thus depositional fluxes, in comparison to unvegetated flows.  相似文献   

4.
Vegetative filter strips (VFSs) can effectively trap sediment in overland flow, but little information is available on its performance in controlling high‐concentration sediment and the runoff hydraulics in VFS. Flume experiments were conducted to investigate the sediment deposition, hydraulics of overland flow and their relationships in simulating VFS under a great range of sediment concentrations with four levels of vegetation cover (bare slope and 4%, 11% and 17%) and two flow rates (15 and 30 L min?1). Sediment concentrations varied from 30 to 400 kg m?3 and slope gradient was 9°. Both the deposited sediment load and deposition efficiency in VFS increased as the vegetation cover increased. Sediment concentration had a positive effect on the deposited load but no effect on deposition efficiency. A lower flow rate corresponded to greater deposition efficiency but had little effect on deposited load. Flow velocities decreased as vegetation cover increased. Sediment concentration had a negative effect on the mean velocity but no effect on surface velocity. Hydraulic resistance increased as the vegetation cover and sediment concentration increased. Sediment deposition efficiency had a much more pronounced relationship with overland flow hydraulics compared with deposited load, especially with the mean flow velocity, and there was a power relationship between them. Flow regime also affected the sediment deposition efficiency, and the efficiency was much higher under subcritical than supercritical flow. The results will be useful for the design of VFS and the control of sediment flowing into rivers in areas with serious soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Studies on emergent flow over vegetative channel bed with downward seepage   总被引:2,自引:2,他引:0  
Experimental observations in a tilting flume having a bed covered with rice plants (Oryza sativa) are used to analyse the flow characteristics of flexible emergent vegetation with downward seepage. The flow velocity for no-seepage and with seepage is reduced by, on average, 52% and 33%, respectively, as the flow reaches the downstream end with vegetation. Higher Reynolds stress occurs at the start of the vegetation zone; hence, bed material transport occurs in this region. The results indicate that the bed is no longer the primary source of turbulence generation in vegetated flow; rather it is dominated by turbulence generated by the vegetation stems. The local effect of the presence of vegetation causes variations in the hydrodynamic characteristics along the vegetated portion of the channel, which leads to erosion and deposition in the vegetation zone. The experiments show that vegetation can provide considerable stability to channels by reducing channel erosion even with downward seepage.  相似文献   

6.
A three-dimensional model has been modified to describe the complex interactions between hydrodynamics, sediment dynamics and biological parameters in the presence of Zostera noltei. The model treats seagrass leafs as flexible blades that bend under hydrodynamic forcing and alter the local momentum and turbulence fluxes and, therefore, the benthic shear conditions; these changes cause related changes to the mass balance at the boundary of the bed, in turn affecting the suspended matter in the column and ultimately primary productivity and the growth of the dwarf-grass. Modelling parameters related to the impact of Z. noltei to the local flow and to erosion and deposition rates were calibrated using flume experimental measurements; results from the calibration of the model are presented and discussed. The coupled model is applied in the Arcachon Bay, an area with high environmental significance and large abundance of dwarf-grass meadows. In the present paper, results from preliminary applications of the model are presented and discussed; the effectiveness of the coupled model is assessed comparing modelling results with available field measurements of suspended sediment concentrations and seagrass growth parameters. The model generally reproduces sediment dynamics and dwarf-grass seasonal growth in the domain efficiently. Investigations regarding the effects of the vegetation to the near-bed hydrodynamics and to the sediment suspension in the domain show that dwarf-grass meadows play an important part to velocity attenuation and to sediment stabilisation, with flow and suspended sediment concentrations damping, compared to an unvegetated state, to reach 35–50 and 65 %, respectively, at peak seagrass growth.  相似文献   

7.
The turbulence characteristics of flows passing through a tetrahedron frame were investigated by using a 2-dimensional fiber-optic laser Doppler velocimeter (2-D FLDV). Experiments for uniform flows with different bed slopes under both submerged and un-submerged conditions were carried out in a re-circulating flume with glass side walls. The experimental bed was a smooth fixed bed. It was observed that with the tetrahedron frame the mean longitudinal velocity decrease in the retardation zone. However, both the longitudinal and the vertical turbulence intensities are larger than those for the undisturbed approach flow. The tetrahedron frame may reduce the probability of sediment entrainment by retarding the flow and reducing the boundary shear stress. In addition, it may induce sediment deposition in a sediment laden flow by changing the flow direction and increasing the energy dissipation.  相似文献   

8.
O. Yagci  M. S. Kabdasli 《水文研究》2008,22(21):4310-4321
In this experimental study, measurements were conducted to explore the impacts of different forms of individual natural vegetative elements within the flow domain on velocity and turbulence characteristics. All the experiments were performed in a flume measuring 26 m in length, 0·98 m in width and 0·85 m in depth, and real tree saplings were utilized to represent the vegetation element. In order to analyse this commonly observed nature phenomenon in floodplains, trees with wide trunks were classified into three groups on the basis of their volume versus height relation. Throughout the velocity measurements three acoustic Doppler velocimeters were employed. Time‐averaged velocity, streamwise and vertical turbulence intensities and turbulent kinetic energy parameters were examined. Additionally, a formulation that gives the velocity profile at a certain distance downstream of vegetation was introduced and the validity of the proposed formulation was checked with experimental data. It is seen that despite their porous structures, the presence of vegetation considerably disturbs the flow field and dissipates a remarkable amount of energy by turbulence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The paper addresses the problem of the resistance due to vegetation in an open channel flow, characterized by partially and fully submerged vegetation formed by colonies of bushes. The flow is characterized by significant spatial variations of velocity between vertical profiles that make the traditional approach based on time averaging of turbulent fluctuations inconvenient. A more useful procedure, based on time and spatial averaging (Double-Averaging Method) is applied for the flow field analysis and characterization. The vertical distribution of mean velocity and turbulent stresses at different spatial locations has been measured with a 3D Acoustic Doppler Velocimeter (ADV) for two different vegetation densities where fully submerged real bushes (salix pentandra) have been used. Velocity measurements were completed together with the measurements of drag exerted on the flow by bushes at different flow depths. The analysis of velocity measurements allows depicting the fundamental characteristics of both the mean flow field and turbulence. The experimental data show that the contribution of form-induced stresses to the momentum balance cannot be neglected. The mean velocity profiles and the spatially averaged turbulent intensity profiles allow inferring that the vegetation density is a driving parameter for the development of a mixing layer at the canopy top in the case of submerged vegetation. Moreover, the net upward turbulent momentum flux, evaluated with the methodology proposed by Lu and Willmarth (1973), appears to be damped for increased vegetation density; this finding can rationally explain the reduction of the suspended sediment transport capacity typically observed in free surface flows over a vegetated bed.  相似文献   

10.
The mechanism of energy balance in an open-channel flow with submerged vegetation was investigated. The energy borrowed from the local flow, energy spending caused by vegetation drag and flow resistance, and energy transition along the water depth were calculated on the basis of the computational results of velocity and Reynolds stress. Further analysis showed that the energy spending in a cross-section was a maximum around the top of the vegetation, and its value decreased progressively until reaching zero at the flume bed or water surface. The energy borrowed from the local flow in the vegetated region could not provide for spending; therefore, surplus borrowed energy in the non-vegetated region was transmitted to the vegetated region. In addition, the total energy transition in the cross-section was zero; therefore, the total energy borrowed from the flow balanced the energy loss in the whole cross-section. At the same time, we found that there were three effects of vegetation on the flow: turbulence restriction due to vegetation, turbulence source due to vegetation and energy transference due to vegetation, where the second effect was the strongest one.  相似文献   

11.
Modifications are made to the revised Morgan–Morgan–Finney erosion prediction model to enable the effects of vegetation cover to be expressed through measurable plant parameters. Given the potential role of vegetation in controlling water pollution by trapping clay particles in the landscape, changes are also made to the way the model deals with sediment deposition and to allow the model to incorporate particle‐size selectivity in the processes of erosion, transport and deposition. Vegetation effects are described in relation to percentage canopy cover, percentage ground cover, plant height, effective hydrological depth, density of plant stems and stem diameter. Deposition is modelled through a particle fall number, which takes account of particle settling velocity, flow velocity, flow depth and slope length. The detachment, transport and deposition of soil particles are simulated separately for clay, silt and sand. Average linear sensitivity analysis shows that the revised model behaves rationally. For bare soil conditions soil loss predictions are most sensitive to changes in rainfall and soil parameters, but with a vegetation cover plant parameters become more important than soil parameters. Tests with the model using field measurements under a range of slope, soil and crop covers from Bedfordshire and Cambridgeshire, UK, give good predictions of mean annual soil loss. Regression analysis of predicted against observed values yields an intercept value close to zero and a line slope close to 1·0, with a coefficient of efficiency of 0·81 over a range of values from zero to 38·6 t ha?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
On the basis of experiments carried out in flume with a wavy bed with vegetation cover, flow velocity, turbulence intensities and Reynolds stress distributions are investigated. The wavy bed was similar to dune in this study. The fixed artificial dunes were constructed over the bed and artificial vegetation put over them in a laboratory flume. An Acoustic Doppler Velocimeter and spatially-averaged method were applied to determine turbulent flow components and shear velocity. Results were compared with a gravel bedform. It was observed that vegetation cover influences considerably the flow structure and displays clearly the flow separation and reattachment point. The law of the wall was not valid within the vegetation cover, but it was fitted well to the zone above the vegetation cover within the inner layer. For a wavy bed having the same dimensions, shear velocity and friction factor over vegetation cover are 1.7 and 2.6 times of those for the gravel bedform, respectively. The results of laboratory study were compared with those of river study.  相似文献   

13.
Estimates of clearance rates (CR) of Cerastoderma edule (300 ind. m−2) as a function of free-stream current velocity (U) (from 5 to 40 cm s−1) were compared between a small annular (60 l) and a large racetrack (8850 l) flume with different hydrodynamic conditions. Results showed that the flumes differ considerably in their hydrodynamic characteristics. The relationship between CR and U is different in the two flume tanks, however there appears to be a straightforward unimodal trend between CR and shear velocity (U*). It was found that the cockles themselves influence the benthic boundary layer (BBL) characteristics, by causing steeper velocity gradients and increasing the mixing over the cockle bed compared to bare sediment. This provides new evidence on how endobenthic organisms can affect the BBL. However, the influence of CR on U* could not be quantified because these parameters have interactive effects that cannot be dissociated.  相似文献   

14.
《国际泥沙研究》2016,(4):360-367
Studies regarding the influence of emergent vegetation on sediment transport are scarce and have mainly focused on flume conditions. To fill this gap and also meet the international need, we aimed to evaluate the influence of emergent vegetation (Echinodorus macrophyllus) on sediment transport of Capibaribe River, Brazil. Bedload and suspended sediment measurements were carried out using the US BLH 84 and US DH 48 samplers, respectively. Measurements of stem diameter, stem spacing and plant density were performed in conjunction with flow and sediment field measurements. Based on our results, 0.45 m s ? 1 was the threshold of mean flow velocity supported by E. macrophyllus under field conditions. This value can be helpful for other rivers with gravel-bed river to armoured layer ratio (AR ? D50-surface)/D50-subsurface ? 12.50) – natural conditions observed in Capibaribe River – or where the vegetation can provide positive effects, such as increase the bed stability, assist water restoration/rehabilitation and decrease water turbidity. Our results can hopefully be used in engineering practice and ecosystem management. In general, both the drag coefficient and drag force varied inversely and directly with the mean flow velocity and vegetation density, respectively. The vegetation resistance force was inversely proportional to the bedload transport owing to the resistance caused by emergent vegetation. This finding was supported by the clear decoupling between nonvegetated and emergent vegetated conditions indicated by cluster analysis. The study results provided a reasonable understanding of the interaction between emergent vegetation, water flow and sediment transport in the Capibaribe River.&2016 International Research and Training Centre on Erosion and Sedimentation/the World Association  相似文献   

15.
《国际泥沙研究》2020,35(2):193-202
The current work focuses on locally resolving velocities,turbulence,and shear stresses over a rough bed with locally non-uniform character.A nonporous subsurface layer and fixed interfacial sublayer of gravel and sand were water-worked to a nature-like bed form and additionally sealed in a hydraulic flume.Two-dimensional Particle Image Velocimetry(2 D-PIV) was applied in the vertical plane of the experimental flume axis.Runs with clear water and weak sediment transport were done under slightly supercritical flow to ensure sediment transport conditions without formation of considerable sediment deposits or dunes.The study design included analyzing the double-averaged flow parameters of the entire measurement domain and investigating the flow development at 14 consecutive vertical subsections.Local geometrical variabilities as well the presence of sediment were mainly reflected in the vertical velocity component.Whereas the vertical velocity decreased over the entire depth in presence of sediment transport,the streamwise velocity profile was reduced only within the interfacial sublayer.In the region with decelerating flow conditions,however,the streamwise velocity profile systematically increased along the entire depth extent.The increase in the main velocity(reduction of flow resistance)correlated with a decrease of the turbulent shear and main normal stresses.Therefore,effects of rough bed smoothening and drag force reduction were experimentally documented within the interfacial sublayer due to mobile sediment.Moreover,the current study leads to the conclusion that in nonuniform flows the maximum Reynolds stress values are a better predictor for the bed shear stress than the linearly extrapolated Reynolds stress profile.This is an important finding because,in natural flows,uniform conditions are rare.  相似文献   

16.
The interactions between overland flow hydraulics and sediment yield were studied in flume experiments on erodible soil surfaces covered by rock fragments. The high erodibility of a non-cohesive fine sediment (D50 + 0·09mm) permitted the effects of local turbulence and scour on sediment yield to be examined. Overland flow hydraulics and sediment yield were compared for experiments with pebble (D50 + 1·5cm) and cobble (D50 + 8·6cm) rock fragment covers. Cover percentages range from 0 to 99 per cent. Rock fragment size strongly affects the relations between flow hydraulics and rock fragment cover. For pebbles spatially-averaged hydraulic parameters (flow velocity, flow depth, effective flow width, unit discharge, total shear stress, Darcy-Weisbach friction factor, percentage grain friction and grain shear stress) vary most rapidly within cover percentages at low covers (power functions). In contrast, for cobbles these parameters vary most rapidly within cover percentages at high covers (exponential functions). As the type of the function that describes the relation between flow hydraulics and cover percentage can be deduced from the ratio of rock fragment height to flow depth, the continuity equation can be employed to determine the actual coefficients of the functions, provided the regression of one hydraulic parameter (e.g. flow velocity) with cover percentage is known and a good estimate exists for two values of another hydraulic variable for a low and a high cover percentage. The variation of sediment yield with cover percentage is also strongly dependent on rock fragment size, but neither the convex-upward relation for pebbles, nor the positive relation for cobbles can be solely attributed to the spatially averaged hydraulics of sheet-flow. Rock fragments induce local turbulence that leads to scour hole development on the stoss side of the rock fragments while deposition commonly occurs in the wake. This local scour and deposition substantially affects sediment yield. However, scour dimensions cannot be predicted by spatially averaged flow hydraulics. An adjustment of existing scour formulas that predict scour around bridge piers is suggested. Sediment yield from non-cohesive soils might then be estimated by a combination of sediment transport and scour formulas.  相似文献   

17.
1 INTRODUCTION Cavity channels are often found in harbor basins, waterways approaching navigation locks, trench intakes and so on. Because of the expansion of channel section, the main flow is separated from the boundary and forms a circulation flow near the cavity crest. In general, the velocity and turbulent intensity in the circulation flow are lower than that in the main flow, as a result, sediment drawn into the cavity basin is very likely to be deposited there. For instance, the de…  相似文献   

18.
Evaluating the benefits of sediment and runoff reduction in different vegetation types is essential for studying the mechanisms of soil and water conservation on the Loess Plateau.The experiment was conducted in shrub-grass plots with nine levels of mixed vegetation coverage from 0%to 70%,three slopes(10,15,and 20)and two rainfall intensities(1.0 and 2.5 mm/min).The results showed that the vegetation coverage and slope gradient significantly affect runoff and sediment yield.Shrub-grass vegetation coverage had a significant effect on the runoff start-time,runoff flow velocity,runoff rate,and soil erosion rate on hillslopes.Mixed vegetation coverage could effectively delay the runoff starttime and decrease the runoff flow velocity.However,the effects of the slope gradient on runoff and sediment yield are opposite to those of vegetation coverage.Shrub-grass vegetation coverage could effectively increase runoff and sediment yield reduction benefits,while their benefits were affected by the rainfall intensity.At the 1.0 mm/min rainfall intensity,the reduction in the sediment production rate was greater than that under the 2.5 mm/min intensity.However,when the shrub-grass vegetation coverage exceeded 42%,the runoff reduction benefit was more obvious at higher rainfall intensities.The cumulative sediment yield increased with increasing cumulative runoff,and the rate of increase in the cumulative runoff was greater than that of the cumulative sediment yield with increasing of shrub-grass vegetation coverage.Moreover,there was a power function relationship between cumulative sediment yield and cumulative runoff yield(P<0.05).Our paper is expected to provide a good reference on the ecological environment and vegetation construction on the Loess Plateau.  相似文献   

19.
A three-dimensional k-ε-Ap two-fluid turbulence model is proposed to study liquid-particle two-phase flow and bed deformation. By solving coupled liquid-phase and solid-phase governing equations in a finite-volume method, the model can calculate the movement of both water and sediment. The model was validated by water-sediment transport in a 180° channel bend with a movable bed. The validation concerns two-phase time-averaged velocities, bed deformation, water depth, depth-averaged streamwise velocity, cross-stream bed profiles, and two-phase secondary flow velocity vectors. The agreement between numerical results and experimental results was generally good. The comparisons of the numerical results of different models show that the three-dimensional k-ε-Ap two-fluid turbulence model has a relatively higher accuracy than one-fluid model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号