首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
This paper explores the potential of a new time domain identification procedure to detect changes in structural dynamic characteristics on the basis of measurements. This procedure is verified using mathematical models simulated on the computer. The experiments involve two eight-storey steel structures with and without energy devices, and a 47-storey building at San Francisco during the Loma Prieta earthquake. The recursive instrumental variable method and extended Kalman filter algorithm are used as identification algorithms. An exploratory investigation is made of the usefulness of various indices, such as mode shape and storey drift, that can be extracted accurately from identification to quantify changes in the characteristics of the physical system. It is concluded that the change of storey drift is the key information to the detection of changes in structural parameters, from which the proposed system identification algorithm can be applied with an appropriate inelastic model to simulate the dynamic behaviour of real structures undergoing strong ground motion excitations.  相似文献   

2.
Inter‐story drift displacement data can provide useful information for story damage assessment. The authors' research group has developed photonic‐based sensors for the direct measurement of inter‐story drift displacements. This paper proposes a scheme for evaluating the degree of damage in a building structure based on drift displacement sensing. The scheme requires only measured inter‐story drift displacements without any additional finite element analysis. A method for estimating yield drift deformation is proposed, and then, the degree of beam end damage is evaluated based on the plastic deformation ratios derived with the yield drift deformation values estimated by the proposed method. The validity and effectiveness of the presented scheme are demonstrated via experimental data from a large‐scale shaking table test of a one‐third‐scale model of an 18‐story steel building structure conducted at E‐Defense. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
文俊  蒋友宝 《地震工程学报》2020,42(2):326-331,367
为测试高层钢结构建筑抗震性能,在有限元模型中以某高层钢框架结构办公大厦作为研究对象,测试其横向支撑地震动力响应状况。选取地震峰值加速度为200 cm/s^2的El-Centro波作为地震波输入,采用瞬态动力方法分析不同楼板厚度下建筑地震模拟响应,得到建筑顶层位移时程曲线;在SAP2000结构软件中分析建筑工程添加横向支撑前后的反应谱,记录各楼层垂直与水平方向位移与层间位移角。得到如下结果:高层钢结构建筑在地震响应下产生的位移不随楼板厚度的增加而增大,楼板厚度为100 mm、170 mm时位移波动显著;添加横向支撑后,建筑水平刚度显著提升,同理,添加横向支撑后横向层间位移角的最大值变化较大,且低于1/250,符合相关建筑标准。  相似文献   

4.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of different structures configurations on the collision between adjacent planar RC building frames subjected to strong earthquakes is examined in this paper. Two 5‐storey and two 8‐storey frames, regular or with setbacks, are combined together to produce nine different pairs of adjacent RC structures. These pairs of buildings are subjected to six strong ground motions that are absolutely compatible with the design process. Various parameters are investigated such as maximum displacements, permanent displacements, members' ductility and internal forces and interstorey drift ratios. It is concluded that the effect of collision of adjacent frames seems to be unfavourable for most of the cases and, therefore, the structural pounding phenomenon is rather detrimental than beneficial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The objective of this study was to investigate the effects of near-fault ground motions on substandard bridge columns and piers. To accomplish these goals, several large scale reinforced concrete models were constructed and tested on a shake table using near- and far-field ground motion records. Because the input earthquakes for the test models had different characteristics, three different measures were used to evaluate the effect of the input earthquake. These measures are peak shake table acceleration, spectral acceleration at the fundamental period of the test specimens, and the specimen drift ratios. For each measure, force-displacement relationships, strains, curvatures, drift ratios, and visual damage were evaluated. Results showed that regardless of the measure of input or response, the near-fault record generally led to larger strains, curvatures, and drift ratios. Furthermore, residual displacements were small compared to those for columns meeting current seismic code requirements.  相似文献   

7.
The recently developed precise point positioning (PPP) technique permits to compute instantaneous coordinates of a GPS station relatively to distant reference stations and waveforms of ground displacements during strong motions at the 1 Hz level. This is another application of GPS, different from the computation of static coseismic movements or of accurate monitoring of dynamic displacements of structures using a static receiver and a nearby moving receiver (DGPS). Recently, earthquake ground displacement waveforms using 10‐Hz GPS data have also been calculated, but no independent evidence to assess their quality exists. To overcome this problem, we evaluated the output of 10‐Hz PPP results on the basis of supervised learning experiments. Semistatic and dynamic displacements (damped harmonic oscillations) of known characteristics of the order of a few centimeter were produced and were recorded by GPS, an accelerometer, and a robotic total station. Time series of instantaneous displacements were analyzed using different PPP techniques and were compared with reference (true) values derived from DGPS and the other sensors. Our analysis revealed that the PPP‐derived coordinates are contaminated by long‐period noise but they can display the details of semistatic displacements, while their short‐period component describes well the pattern of waveforms and spectra (at least up to 4 Hz) of dynamic displacements, with up to 20 mm accuracy for isolated points. These results indicate that 10‐Hz PPP‐GPS is useful for earthquake engineering and can safely be used to reconstruct waveforms of deflections of the ground and of various points on structures during strong motions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Seismic protection of buildings under risk can be achieved by increasing the knowledge about the behaviour of existing structures. Operational Modal Analysis is a powerful tool used for this purpose all over the world. It provides the dynamic characteristics of structures under operational conditions or some particular environmental issues such as blasts and earthquakes. The main objective of this study is to evaluate blast effects on a reinforced concrete (RC) building considering experimentally determined dynamic characteristics. The study consists of three phases: the measurement of vibration characteristics of blasting, the theoretical modal analysis of the inspected building, and experimental verification of dynamic characteristics using modal testing. The vibration characteristics of blasting are measured around the inspected building on hard soil using a geophone set. The initial analytical model of the building is constructed according to the in-situ investigation on building. The theoretical modal analysis results are verified by carrying out modal testing on the RC building. The Operational Modal Analysis method is used for the extraction of the dynamic characteristics of the building, and blast vibrations are taken into account as environmental vibrations. The effects of blasting on the reinforced concrete building are introduced by assessing the vibration of blasting with the dynamic characteristics of the building.  相似文献   

9.
The experimental results of using a hybrid platform to mitigate vibration of a batch of high‐tech equipment installed in a building subject to nearby traffic‐induced ground motion have been presented and discussed in the companion paper. Based on the identified dynamic properties of both the building and the platform, this paper first establishes an analytical model for hybrid control of the building‐platform system subject to ground motion in terms of the absolute co‐ordinate to facilitate the absolute velocity feedback control strategy used in the experiment. The traffic‐induced ground motion used in the experiment is then employed as input to the analytical model to compute the dynamic response of the building‐platform system. The computed results are compared with the measured results, and the comparison is found to be satisfactory. Based on the verified analytical model, coupling effects between the building and platform are then investigated. A parametric study is finally conducted to further assess the performance of both passive and hybrid platforms at microvibration level. The analytical study shows that the dynamic interaction between the building and platform should be taken into consideration. The hybrid control is effective in reducing both velocity response and drift of the platform/high‐tech equipment at microvibration level with reasonable control force. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Engineering vibration monitoring by GPS: long duration records   总被引:1,自引:0,他引:1  
Monitoring the performance of any structure requires real-time measurements of the change of position of critical points.Different techniques can be used for this purpose,each one offering advantages and disadvantages.The technique based on satellite positioning systems(GPS,GLONASS and the future GALILEO)seems to be very promising at least for long period structures.The GPS in particular provides sampling rates that are able to track dynamic displacements with high accuracy.Its service ability is indepen...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号