首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
青藏高原东北缘壳幔过渡带研究   总被引:8,自引:1,他引:8       下载免费PDF全文
利用穿过青藏高原东北缘的两条地震测深剖面提供的PMP波形资料,研究了该区不同构造单元壳幔过渡带的复杂性、频谱特征和速度模型.结果表明, 鄂尔多斯盆地和陵中盆地Moho具有稳定的构造特征,壳幔耦合为简单的一级间断面;海原地震区和巴颜喀拉地块与柴达木地块结合带莫霍面具有明显的活动迹象,壳幔耦合为复杂的高、低速相间的多层壳幔过渡带,总厚度达到20多千米.不同构造单元的莫霍面差异性反映了研究区壳幔耦合层的非均匀特征;海原地震区和玛沁断裂壳幔过渡带的细结构差异, 则反映了两个陆 陆碰撞带不同的深部物质结构与地块之间的相互作用结果.   相似文献   

2.
1999~2000年从青海玛沁到陕西榆林,横跨青藏高原东北缘和鄂尔多斯布设了一条由47台宽频带数字地震仪组成的长约1000km的流动地震台阵观测剖面.利用记录到的远震体波波形资料和接收函数方法获得了剖面下0~100km深度的地壳和上地幔S波速度结构.结果表明,沿观测剖面地壳结构显示了明显的分块特征; 地壳厚度自东向西由40km增加到64km左右;在海原地震带下方和西秦岭断裂以西到日月山断裂之间的区域Moho间断面结构复杂;在1920年海原震区及其西侧,上地壳存在明显的低速层,在该地区的绝大部分地震分布在该低速层东边界偏向高速区一侧;祁连山东缘Moho面有约4km的深度间断,壳内向西逐渐减薄的低速层内有大量微震发生,沿祁连山的逆冲加走滑的构造运动在深度上已经穿透了Moho面;在玛沁断裂和日月山断裂之间,上地壳存在厚度很大的低速层,同时该区域下地壳也明显加厚.研究结果表明,青藏高原东北缘与鄂尔多斯地块之间的过渡带地壳变形强烈,地壳结构较为破碎,这与该地区地震频发相一致.  相似文献   

3.
张家口-渤海断裂带西缘壳幔过渡带研究   总被引:8,自引:1,他引:7       下载免费PDF全文
利用复杂性系数、频谱分析和小波变换方法处理了穿过张家口—渤海断裂带西缘的地震测深剖面的Pm波形资料,研究不同构造单元壳幔过渡带的多参数特征以及它们在岩石圈构造演化中的意义. 结果表明: 不同构造单元Pm波的复杂性系数和频谱特征有较大差异,内蒙地轴复杂性系数小,莫霍面具有明显的一级间断面特征,怀安—张北位于张家口—渤海断裂带的西缘,该区域Pm波复杂性系数大并且频谱为多极值,Moho面为复杂的壳幔过渡带. 利用小波分析和反射率理论地震图得到该壳幔过渡带由2~3层组成,总厚度约为6~9km,最大厚度位于怀安盆地下方. 该壳幔过渡带是大陆裂谷环境中底侵作用的产物,壳幔过渡带的分层特征与该区域中新生代的多期岩浆活动有密切联系.  相似文献   

4.
玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究   总被引:75,自引:27,他引:75  
为研究青藏高原块体和鄂尔多斯地块间的相互作用和构造变形的深部驱动机制,布设了1000km长的玛沁-兰州-靖边综合地球物理探测剖面.本文只介绍由人工地震观测资料所得到的初步结果.地壳分层性明显,以C界面为界,总体上可分为上、下地壳两大部分,每个部分又包含一些次一级的界面;横向变化的总趋势是从东北至西南地壳逐渐变厚,地壳厚度的变化主要由下地壳厚度的变化所引起;地壳平均速度,总的变化趋势是自东北向西南逐渐降低,其中在泽库以西和海原地区的速度值明显偏低;在泽库以西存在多个壳内低速层,在海原附近存在一个低速层;壳内反射界面,沿测线由东北至西南逐步增多;从地震反射波形来看,在海原地区Pc波非常强,且延续时间长;另外,在海原地区和泽库以西地区Pm波的复杂性系数很大,远远大于其他地段的值.以上结果表明,泽库以西地区和海原地区地壳-上地幔存在着明显结构异常,反映了巴颜喀拉地块和柴达木地块、祁连地块和鄂尔多斯地块间的相互作用  相似文献   

5.
玛沁—兰州—靖边剖面壳幔复杂性的研究   总被引:6,自引:1,他引:6  
利用波的瞬时特性和波列长度参数量,给出一种地震波形复杂性系数的计算方法,该方法呆以用于描述研究区介质的复杂性,处理了中国地震局物探中心于1999年7月实施的玛沁-兰州-靖边地震测深剖面,得到了该剖莫霍界面复杂性系数分布图,结果表明沿剖面的不同构造单元。莫霍界面的复杂性有较大差异,复杂性系数分布沿剖面存在两个明显的变化特征,在该剖面的玛沁裂断和海原地地震的下方,莫霍界面的复杂性系数明显大于沿剖面的其它位置,对穿过各个构造单元的PmP波形做了频频分析,在玛沁断裂和海原地震的下方,频谱的优势频率范围明显较其它位置宽并且出现多峰值。  相似文献   

6.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372km的大地电磁剖面,通过二维反演计算,获得了沿剖面180km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

7.
以东北地区的地学断面及其相关资料为基础,分析了郯庐断裂北带地区的地壳-上地幔结构特征与不同地壳构造单元地震活动性之间的关系.结果表明:郯庐断裂北带两侧的壳幔结构存在明显差异,断裂带本身的发育与壳幔结构变异带关系密切;断裂的活动特点及分段明显受到地壳介质力学特性影响;郯庐断裂北带地区软流层的起伏与地貌形态呈明显的镜像关系,前者还制约着不同地壳构造单元的构造活动性及变形方式;郯庐断裂北带地区南、北两端地震较为活跃地段均与壳内低速 高导层发育地段相对应的事实,证明了刚性地块中壳幔结构较为复杂的活动断裂段是构成中强地震的主要控震构造.   相似文献   

8.
太行山东缘汤阴地堑地壳结构和活动断裂探测   总被引:7,自引:1,他引:6       下载免费PDF全文
采用深、浅地震反射和钻孔地质剖面相结合的探测方法,对太行山东缘汤阴地堑的地壳结构和隐伏活动断裂进行了研究.结果表明,该区地壳厚度约36~42 km,莫霍面从华北平原区向太行山下倾伏.汤阴地堑是一个受汤东断裂控制的半地堑构造,其基底面形态与莫霍面展布呈"镜像"关系.汤东断裂是1条继承性的隐伏活动断裂,该断裂向上错断了埋深约20 m的中更新世晚期地层,向下延伸至上地壳底部.综合分析深地震反射和已有深地震宽角反射/折射剖面结果,发现深地震反射剖面上的中-下地壳强反射层和壳幔过渡带反射,与深地震宽角反射/折射剖面上出现的中-下地壳正负速度梯度变化层有着较好的对应关系,这表明本区中-下地壳和壳幔过渡带可能为一系列速度递变层或高低速物质的互变层,埋深约15~16 km的强反射带为上地壳与中-下地壳的转换带,壳幔过渡带的底界为地壳与地幔的分界.研究结果为深入理解该区的深部动力学过程、分析研究深浅构造关系、评价断裂的活动性提供了依据.  相似文献   

9.
根据1992年延怀盆地的深地震反射共中心点(CDP)叠加剖面图,提出了延怀盆地的壳幔过渡带初始模型.对于1993年通过延怀盆地的北京—怀来—丰镇剖面的宽角反射与折射剖面资料,进行震相分析.在一维模型基础上进行走时反演和二维射线追踪.最后,采用反射率法对延怀盆地壳—幔过渡带的上下界面的反射波PM′和PM进行了波形拟合,证明了其存在;同时明确了延怀盆地莫霍不连续面是高低速相间的薄层组成的过渡带性质.这一结构与邢台地震区壳幔过渡带结构相似.这一特征说明由于延怀盆地莫霍面附近存在深大断裂,有可能从地幔中“贯入”熔体或流体的透镜体,从而形成低速层多层结构.  相似文献   

10.
成瑾  李清河 《地震学报》1998,20(1):68-75
根据1992年延怀盆地的深地震反射共中心点(CDP)叠加剖面图,提出了延怀盆地的壳-幔过渡带初始模型.对于1993年通过延怀盆地的北京——怀来——丰镇剖面的宽角反射与折射剖面资料,进行震相分析.在一维模型基础上进行走时反演和二维射线追踪.最后,采用反射率法对延怀盆地壳——幔过渡带的上下界面的反射波PM和PM进行了波形拟合,证明了其存在;同时明确了延怀盆地莫霍不连续面是高低速相间的薄层组成的过渡带性质.这一结构与邢台地震区壳-幔过渡带结构相似.这一特征说明由于延怀盆地莫霍面附近存在深大断裂,有可能从地幔中贯入熔体或流体的透镜体,从而形成低速层多层结构.   相似文献   

11.
Introduction At the juncture of Qinghai-Xizang, Ordos and Alxa blocks lies the Qinghai-Xizang plateau, an area with complicated topographic and morphologic features, strong tectonic activities and frequent earthquakes (many large-magnitude earthquakes have taken place), has become a focal area for geoscience study. Many geophysical and geological surveys have been carried out in and around the area, such as deep seismic sounding (DSS), gravimetry, magnetotelluric sounding, magnetic anomaly …  相似文献   

12.
由于活动的青藏高原不断的隆升和推挤作用,在西南向东北的推挤作用和周缘块体的阻挡以及东北缘内部块体挤压形变的作用下,形成了多个走向不同的青藏高原东北缘构造体系.新生代构造变形和地震活动强烈,区内分布多条大型深断裂带.海原断裂是青藏高原东北缘发育的弧形活动断裂带中规模最大、活动最为强烈的一条左旋走滑型断裂带,是重要的大地构造区边界,也是控制现今强震活动的活断层.本文利用2009年完成的高分辨率深地震反射剖面的北段资料,对其进行初步构造解释,揭示出海原断裂带的深部几何形态和其两侧地壳上地幔细结构.结果显示海原断裂并不是简单的陡立或者较缓,其几何形态随着深度变化.在海原断裂之下的Moho并未错断的反射特征显示海原断裂并不是直接错断莫霍面的超壳断裂.海原断裂带及两侧岩石圈结构和构造样式的研究为探讨青藏高原东北缘岩石圈变形机制提供地震学依据.  相似文献   

13.
Located at the bend of the northeastern margin of Qinghai-Tibet Plateau, the Haiyuan fault zone is a boundary fault of the stable Alashan block, the stable Ordos block and the active Tibet block, and is the most significant fault zone for the tectonic deformation and strong earthquake activity. In 1920, a M8.5 earthquake occurred in the eastern segment of the fault, causing a surface rupture zone of about 240km. After that, the segment has been in a state of calmness in seismic activity, and no destructive earthquakes of magnitude 6 or above have occurred. Determining the current activity of the Haiyuan fault zone is very important and necessary for the analysis and assessment of its future seismic hazard. To study activity of the Haiyuan fault zone, the degree of fault coupling and the future seismic hazard, domestic and foreign scholars have carried out a lot of research using geology methods and GPS geodetic techniques, but these methods have certain limitations. The geology method is a traditional classical method of fault activity research, but dislocation measurement can only be performed on a local good fault outcrop. There are a limited number of field measurement points and the observation results are not equally limited depending on the sampling location and sampling method. The distribution of GPS stations is sparse, especially in the near-fault area, there is almost no GPS data. Therefore, the spatial resolution of the deformation field features obtained by GPS is low, and there are certain limitations in the kinematic parameter inversion using this method. In this study, we obtain the average InSAR line-of-sight deformation field from the Maomaoshan section to the mid-1920s earthquake rupture segment of the Haiyuan earthquake in the period from 2003 to 2010 based on the PSInSAR technique. The results show that there are obvious differences between the slip rates of the two walls of the fault in the north and the south, which are consistent with the motion characteristics of left-lateral strike-slip in the Haiyuan fault zone. Through the analysis of the high-density cross-fault deformation rate profile of the Laohushan segment, it is determined that the creep length is about 19km. Based on the two-dimensional arctangent model, the fault depth and deep slip rate of different locations in the Haiyuan fault zone are obtained. The results show that the slip rate and the locking depth of the LHS segment change significantly from west to east, and the slip rate decreases from west to east, decreasing from 7.6mm/a in the west to 4.5mm/a in the easternmost. The western part of the LHS segment and the middle part are in a locked state. The western part has a locking depth of 4.2~4.4km, and the middle part has a deeper locking depth of 6.9km, while the eastern part is less than 1km, that is, the shallow surface is creeping, and the creep rate is 4.5~4.8mm/a. On the whole, the 1920 earthquake's rupture segment of the Haiyuan fault zone is in a locked state, and both the slip rate and the locking depth are gradually increased from west to east. The slip rate is increased from 3.2mm/a in the western segment to 5.4mm/a in the eastern segment, and the locking depth is increased from 4.8km in the western segment to 7.5km in the eastern segment. The results of this study refine the understanding of the slip rate and the locking depth of the different segments of the Haiyuan fault zone, and provide reference information for the investigation of the strain accumulation state and regional seismic hazard assessment of different sections of the fault zone.  相似文献   

14.
海原断裂高湾子地点三维探槽的开挖与古地震研究   总被引:22,自引:6,他引:22       下载免费PDF全文
对海原断裂高湾子地点进行大比例尺地质地貌填图和三维探槽开挖,揭示出7次古地震事件,除1920年地震外,它们的年龄分别为距今(10004±3196),(6689±169),(6120±505),(4208±577),(2763±372)和(1005±465)a;重复间隔分别为(3315±3200),(561±532),(1920±766),(1425±686),(1578±595)和(980±465)a。事件Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ的水平位移量分别为(5.6±2.3),(1.5±1.1),(1.5±1.1),(2±1)和(7±0.5)m。显示出重复间隔时间的分段性和特征行为的分级性。两次类似1920年强度的地震间隔期间,有3次位移量为1~2m的地震发生  相似文献   

15.
20世纪20年代,青藏高原东北发生了两次8级以上强震,其中1920年12月16日发生的海原M8.5地震距今已经100年。海原断裂带作为青藏高原东北缘最活跃的断裂带之一,至今仍控制着该区域微震及中强地震活动。本文基于ISCE软件和StaMPS平台,以2017年3月至2020年6月覆盖研究区的72景哨兵一号(Sentinel-1)SAR影像为数据源,采用PS-InSAR技术对海原断裂带进行时序形变监测,并以区域内GPS速度场进行校正,获取了其三年多来雷达视线向(Line of sight,LOS)的年平均形变速率。研究结果表明:①海原断裂带南北两盘形变速率差异明显,这与左旋走滑的运动性质相符;②毛毛山断裂、老虎山断裂西段处于闭锁状态,老虎山断裂中东段处于较为活跃状态,观测到蠕滑变形;海原地震破裂带部分断裂浅部处于愈合状态;③老虎山断裂中东段的蠕滑变形是青藏高原东北缘最为显著的区段,推断与1888年和1990年景泰的两次六级地震有关。  相似文献   

16.
月亮山东麓断裂古地震活动的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
月亮山东麓断裂位于海原断裂带的东段。1920年海原大地震时该断裂也发生了破裂。对该段断裂的古地震活动特征的初步研究表明,全新世以来,月亮山东断裂可能发生过5次破裂事件,主要分布在全新世的早期和末期。海原断裂带具有分段破裂的特征,因此需要对照整个断裂带的古地震活动特征,才能确定月亮山东断裂是一个独立的破裂单元还是其他段落破裂的影响段。  相似文献   

17.
青藏高原东北缘合作-大井剖面地壳电性结构研究   总被引:14,自引:8,他引:6       下载免费PDF全文
青藏高原东北缘合作-大井剖面的大地电磁探测结果表明,该区域的电性结构呈明显的纵向分层、横向分块的特点,中下地壳普遍存在高导层.青藏高原东北缘西秦岭北缘断裂带、北祁连南缘断裂带、北祁连北缘断裂带(海原断裂带)及龙首山南缘断裂带等区域性断裂带在电性结构模型中均表现为电性梯度带或低阻异常带.电性结构的横向分区与构造上的地块划分有明显的一致性,各个地块的电性结构存在明显差异.西秦岭北缘断裂带作是一个大型的板块边界,但板块结合带附近没有明显逆冲或俯冲痕迹,可能主要以左旋走滑为主.北祁连地块向北仰冲与阿拉善地块向南俯冲边界可能不是海原断裂带,而是龙首山南缘断裂带.西秦岭造山带内的壳内高导层与青藏高原内部存在的高导层具有可对比性,可能是由于部分熔融与含盐水流体共同作用的结果.中祁连地块内的高导层可能是含盐水流体引起的.而北祁连与河西走廊过渡带内的高导层则可能是板块俯冲或仰冲的构造运动痕迹,也可能是由含盐水流体引起的.  相似文献   

18.
The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main fault zones in the Sichuan-Yunnan region, i.e., the block boundary zone, cannot be ignored. In this paper, changes of movement and stress of the fault zones before and after a strong earthquake were simulated based on the GPS repetition survey results recently obtained during 1999–2007, 2009–2011, and 2011–2013 with a two-dimensional finite-element contact model and the "block- loading" method. The results show that, before the Wenchuan earthquake, the movement of the Longmenshan fault zone was very slow and its compressive stress accumulated rapidly; after the Wenchuan earthquake, movements toward the E-SSE direction of the Bayan Har, southwestern Yunnan, and rhombic blocks were enhanced, and the dextral and horizontal compressive speeds and annual accumulative compressive stress of the Longmenshan fault zone increased markedly by factors of 4.5, 2.1, and 2.5, respectively. The southern Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Lijiang-Xiaojinhe fault zones accumulated compressive stress rapidly, forming enhanced compressive stress zones along a NE strike crossing the central part of the Sichuan-Yunnan region. The tensional movement of the Xianshuihe fault zone was enhanced and the slip movement in the central part of the zone was reversed in a short time. The changes are tightly related to the medium-intensity earthquakes that occurred during the same period in this region, revealing that the spatial migration of seismic activity is related to changes of movement of the blocks.  相似文献   

19.
As the northeast boundary of the Tibetan plateau, the Haiyuan-Liupan Shan fault zone has separated the intensely tectonic deformed Tibetan plateau from the stable blocks of Ordos and Alxa since Cenozoic era. It is an active fault with high seismic risk in the west of mainland China. Using geology and geodetic techniques, previous studies have obtained the long-term slip rate across the Haiyuan-Liupan Shan fault zone. However, the detailed locking result and slip rate deficit across this fault zone are scarce. After the 2008 Wenchuan MS8.0 earthquake, the tectonic stress field of Longmen Shan Fault and its vicinity was changed, which suggests that the crustal movement and potential seismic risk of Haiyuan-Liupan Shan fault zone should be investigated necessarily. Utilizing GPS horizontal velocities observed before and after Wenchuan earthquake(1999~2007 and 2009~2014), the spatial and temporal distributions of locking and slip rate deficit across the Haiyuan-Liupan Shan fault zone are inferred. In our model, we assume that the crustal deformation is caused by block rotation, horizontal strain rate within block and locking on block-bounding faults. The inversion results suggest that the Haiyuan fault zone has a left-lateral strike-slip rate deficit, the northern section of Liupan Shan has a thrust dip-slip rate deficit, while the southern section has a normal dip-slip rate deficit. The locking depths of Maomao Shan and west section of Laohu Shan are 25km during two periods, and the maximum left-lateral slip rate deficit is 6mm/a. The locking depths of east section of Laohu Shan and Haiyuan segment are shallow, and creep slip dominates them presently, which indicates that these sections are in the postseismic relaxation process of the 1920 Haiyuan earthquake. The Liupan Shan Fault has a locking depth of 35km with a maximum dip-slip rate deficit of 2mm/a. After the Wenchuan earthquake, the high slip rate deficit across Liupan Shan Fault migrated from its middle to northern section, and the range decreased, while its southern section had a normal-slip rate deficit. Our results show that the Maomao Shan Fault and west section of Laohu Shan Fault could accumulate strain rapidly and these sections are within the Tianzhu seismic gap. Although the Liupan Shan Fault accumulates strain slowly, a long time has been passed since last large earthquake, and it has accumulated high strain energy possibly. Therefore, the potential seismic risks of these segments are significantly high compared to other segments along the Haiyuan-Liupan Shan fault zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号