首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The dynamics of natural pipe hydrological behaviour in blanket peat   总被引:1,自引:0,他引:1  
Natural soil pipes are found in peatlands, but little is known about their hydrological role. This paper presents the most complete set of pipe discharge data to date from a deep blanket peatland in Northern England. In a 17.4‐ha catchment, we identified 24 perennially flowing and 60 ephemerally flowing pipe outlets. Eight pipe outlets along with the catchment outlet were continuously gauged over an 18‐month period. The pipes in the catchment were estimated to produce around 13.7% of annual streamflow, with individual pipes often producing large peak flows (maximum peak of 3.8 l s?1). Almost all pipes, whether ephemerally or perennially flowing, shallow or deep (outlets > 1 m below the peat surface), showed increased discharge within a mean of 3 h after rainfall commencement and were dominated by stormflow, indicating good connectivity between the peatland surface and the pipes. However, almost all pipes had a longer period between the hydrograph peak and the return to base flow compared with the stream (mean of 23.9 h for pipes, 19.7 h for stream). As a result, the proportion of streamflow produced by the pipes at any given time increased at low flows and formed the most important component of stream discharge for the lowest 10% of flows. Thus, a small number of perennially flowing pipes became more important to the stream system under low‐flow conditions and probably received water via matrix flow during periods between storms. Given the importance of pipes to streamflow in blanket peatlands, further research is required into their wider role in influencing stream water chemistry, water temperature and fluvial carbon fluxes, as well as their role in altering local hydrochemical cycling within the peat mass itself. Enhanced piping within peatlands caused by environmental change may lead to changes in the streamflow regime with larger low flows and more prolonged drainage of the peat. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distribution of soil pipe collapse features. The study aimed to determine the connectivity of multiple soil pipe networks as well as determine pipe flow velocities during storm events. Fluorescein dye was injected directly into soil pipes at the upper most pipe collapse feature of four different hillslopes. Breakthrough curves (BTC) were determined by sampling multiple pipe collapse features downslope. The BTCs were used to determine the ‘average’ (centre of mass) and ‘maximum’ (first arrival) flow velocities. This study confirmed that these catchments contain individual continuous soil pipe networks that extend over 190 m and connect the upper most hillslopes areas with the catchment outlet. While the flow paths are continuous, the individual pipe networks consist of alternating reaches of subsurface flow through soil pipes and reaches of surface flow through gullies formed by pipe collapses. In addition, flow can be occurring both through the subsurface soil pipes simultaneous with surface flow generated by artesian flow from the soil pipes. The pipe flow velocities were as high as 0.3 m/s, which was in the range of streamflow velocities. These pipe flow velocities were also in the range of velocities observed in pinhole erosion tests suggesting that these large, mature soil pipes are still actively eroding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Peatlands are important carbon stores and many have natural pipes (tunnels) that transport water and carbon. Pipes are often viewed as passive and slowly changing features of peatland landscapes, particularly for sites that are relatively undisturbed by land management. However, there is a lack of data on pipe morphology change over time. This paper presents the first survey of natural pipe outlets in a peatland in which morphological changes in pipe outlets through time were measured. Three surveys of natural pipe outlets between 2007 and 2010 were conducted in a 17.4 ha, relatively undisturbed, blanket‐peat‐covered catchment in northern England. 27 of the 91 pipe outlets mapped in the first survey had perennial discharge and these outlets were significantly larger and shallower than those from ephemerally‐flowing pipes. The cross‐sectional area of 85% of pipe outlets changed (increased or decreased) during the study, with 20% of pipe outlet areas changing by more than 50 cm2 (equivalent to a median 207 % change in area for this upper fifth of pipes) up to a maximum of 312 cm2 for one pipe outlet. During the study, 18 pipe outlets completely infilled, while four new ones appeared. Mean pipe outlet area increased between August 2007 and July 2009 but decreased from July 2009 to April 2010. The largest changes in pipe morphology occurred between July 2009 and April 2010, which spanned the coldest winter for 31 years in the UK. During this period there was a significant increase in the proportion of vertically‐elongated pipes and a decrease in the proportion of circular pipes. Pipe outlet morphology in blanket peat catchments is shown to be dynamic and may respond relatively quickly to changes in flow or extreme events, linked to short‐term changes in weather and hence potentially to longer‐term changes in climate or land management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Complex networks of both natural and engineered flow paths control the hydrology of streams in major cities through spatio-temporal variations in connection and disconnection of diverse water sources. We used spatially extensive and temporally intensive sampling of water stable isotopes to disentangle the hydrological sources of the heavily urbanized Panke catchment (~220 km2) in the north of Berlin, Germany. The isotopic data enabled us to partition stream water sources across the catchment using a Bayesian mixing analysis. The upper part of the catchment streamflow is dominated by groundwater (~75%) from gravel aquifers. In dry summer periods, streamflow becomes intermittent in the upper catchment, possibly as a result of local groundwater abstractions. Storm drainage dominates the responses to precipitation events. Although such events can dramatically change the isotopic composition of the upper stream network, storm drainage only accounts for 10%–15% of annual streamflow. Moving downstream, subtle changes in sources and isotope signatures occur as catchment characteristics vary and the stream is affected by different tributaries. However, effluents from a wastewater treatment plant (WWTP), serving 700,000 people, dominate stream flow in the lower catchment (~90% of annual runoff) where urbanization effects are more dramatic. The associated increase in sealed surfaces downstream also reduces the relative contribution of groundwater to streamflow. The volume and isotopic composition of storm runoff is again dominated by urban drainage, though in the lower catchment, still only about 10% of annual runoff comes from storm drains. The study shows the potential of stable water isotopes as inexpensive tracers in urban catchments that can provide a more integrated understanding of the complex hydrology of major cities. This offers an important evidence base for guiding the plans to develop and re-develop urban catchments to protect, restore, and enhance their ecological and amenity value.  相似文献   

5.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The management of the riparian zone has been suggested as a technique for controlling the amounts of phosphorus (P) entering watercourses draining pasture catchments. A study was therefore made of P entering a stream from various sources (rainfall, surface and subsurface derived runoff, direct fallout from aerial topdressing), with the object of providing a rational basis for the design of effective riparian management schemes. P entrained in surface runoff could account for virtually all of the P entering the stream during storms. Approximately 20 per cent of the annual P export from the catchment could be accounted for by direct aerial input of P to the stream during autumn fertilizer topdressing. More than 85 per cent of the P was exported from the catchment as particulate P. Stream sediment had higher P sorption capacities, and were enriched with P relative to the soils from which they were derived. There was a pronounced seasonal variation in sediment enrichment which could be predicted (r2 = 0.92) by the logarithm of the rainfall since fertilizer topdressing (LNFERT) and flood intensity. The amount of P lost in streamflow during any flood event was predicted (r2 = 0.94) by peak flow, seven day antecedent peak flow and LNFERT. Approximately 40 per cent of the 1.3 kg P ha?1 exported during 1981 occurred in four storms with recurrence intervals of more than three months. From a P budget compiled from nine events it was hypothesized that the stream acted as a net sink for P at baseflow and low-medium intensity floods but was a source of P at higher flood intensities. It was concluded that P losses from hill pasture catchments could be reduced by avoidance of direct application of P fertilizer to the stream channel, and by fencing out stock from seasonally saturated areas during periods of saturation. The ultimate success of the latter technique would depend on whether buffer vegetation could retain accumulated P during extreme storm events.  相似文献   

7.
8.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The major goals of this study were to determine stream bed sediment erosion/deposition rates, sediment age, percent ‘new’ sediment, and suspended sediment origin during two storm events of contrasting magnitudes (11.9 mm over 5 h and 58.9 mm over 39 h) using fallout radionuclides (excess lead 210 – 210Pbxs and beryllium 7 – 7Be) and link the nature and type of sediment source contributions to potential phosphorus (P) off‐site transport. The study was conducted in cropland‐dominated and mixed land use subwatersheds in the non‐glaciated Pleasant Valley watershed (50 km2) in South Central Wisconsin. Fine sediment deposition and erosion rates on stream beds varied from 0.76 to 119.29 mg cm?2 day?1 (at sites near the watershed outlet) and 1.72 to 7.72 mg cm?2 day?1 (at sites in the headwaters), respectively, during the two storm events. The suspended sediment age ranged from 123 ± 12 to 234 ± 33 days during the smaller storm event; however, older sediment was more prevalent (p = 0.037) in the streams during the larger event with suspended sediment age ranging from 226 ± 9 to 322 ± 114 days. During the small and large storm event, percent new sediment in suspended sediment ranged from 5.3 ± 2.1 to 21.0 ± 2.9% and 5.3 ± 2.7 to 6.7 ± 5.7%, respectively. In the cropland‐dominated subwatershed, upland soils were the major source of suspended sediment, whereas in the mixed land use subwatershed, both uplands and stream banks had relatively similar contributions to suspended sediment. In‐stream (suspended and bed) sediment P levels ranged from 703 ± 193 to 963 ± 84 mg kg?1 during the two storm events. The P concentrations in suspended and bed sediment were reflective of the dominant sediment source (upland or stream bank or mixed). Overall, sediment transport dynamics showed significant variability between subwatersheds of different land use characteristics during two contrasting storm events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Land use change as conversion pasture to forest produces several changes on hydrological cycle. In this paper, we analyse the effects on stream discharge of afforestation of a small watershed devoted to pasture using the HBV hydrological model. Streamflow data obtained over the first 10 years after planting were employed to evaluate the capacity of HBV model to simulate hydrological behaviour of catchment after afforestation. Obtained results indicate that the estimation of streamflow was accurate as reflected by statistics (R2 = 0.90, NSC = 0.89 and PBIAS = 0.34). Afterwards, streamflow under pasture land use (if afforestation had not occurred) was simulated using hydrometeorological data collected during the period of study and model parameters optimized previously, together with two parameters, pcorr and cevpfo, that were adjusted for pasture conditions. The HBV model results indicate that afforestation produced a water yield reduction around 2000 mm (22% of total stream discharge) during the first 10 years of planting growth. The differences between forest and pasture land cover are increasing in all seasons year by year. The greatest streamflow reduction was observed in wet period (autumn and winter) with 76% of total reduction. In summer, streamflow reduction represents only 3% of total, however, represents 24.7% of discharge in this season. Streamflow reduction was related to increase of rainfall interception (mainly in wet periods) and the increase of evapotranspiration by plantation in dry periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Following wildfires, the probability of flooding and debris flows increase, posing risks to human lives, downstream communities, infrastructure, and ecosystems. In southern California (USA), the Rowe, Countryman, and Storey (RCS) 1949 methodology is an empirical method that is used to rapidly estimate post-fire peak streamflow. We re-evaluated the accuracy of RCS for 33 watersheds under current conditions. Pre-fire peak streamflow prediction performance was low, where the average R2 was 0.29 and average RMSE was 1.10 cms/km2 for the 2- and 10-year recurrence interval events, respectively. Post-fire, RCS performance was also low, with an average R2 of 0.26 and RMSE of 15.77 cms/km2 for the 2- and 10-year events. We demonstrated that RCS overgeneralizes watershed processes and does not adequately represent the spatial and temporal variability in systems affected by wildfire and extreme weather events and often underpredicted peak streamflow without sediment bulking factors. A novel application of machine learning was used to identify critical watershed characteristics including local physiography, land cover, geology, slope, aspect, rainfall intensity, and soil burn severity, resulting in two random forest models with 45 and five parameters (RF-45 and RF-5, respectively) to predict post-fire peak streamflow. RF-45 and RF-5 performed better than the RCS method; however, they demonstrated the importance and reliance on data availability. The important parameters identified by the machine learning techniques were used to create a three-dimensional polynomial function to calculate post-fire peak streamflow in small catchments in southern California during the first year after fire (R2 = 0.82; RMSE = 6.59 cms/km2) which can be used as an interim tool by post-fire risk assessment teams. We conclude that a significant increase in data collection of high temporal and spatial resolution rainfall intensity, streamflow, and sediment loading in channels will help to guide future model development to quantify post-fire flood risk.  相似文献   

12.
For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less‐urbanized and non‐urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: in the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline‐rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less‐urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: values were 0·54 for the two Blue Ridge streams, 0·37 for the four middle Piedmont streams (near Atlanta), and 0·28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater than peak flows for the other streams. The storm recession period for the urban stream was 1–2 days less than that for the other streams and the recession was characterized by a 2‐day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less‐urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater recharge areas. The timing of daily or monthly groundwater‐level fluctuations was similar annually in each well, reflecting the seasonal recharge. Although water‐level monitoring only began in the 1980s for the two urban wells, water levels displayed a notable decline compared with non‐urban wells since then; this is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is ~0·6 m in thickness in the uplands and ~0·1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded ~0·1 m above the claypan/duripan. Perched groundwater discharge accounted for 30–60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate‐nitrogen concentrations were lower (e.g. 0·17 to 0·39 mg l?1) and dissolved organic carbon concentrations were higher (e.g. 5·97 to 3·24 mg l?1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface‐water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape‐scale water quality. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Urbanization negatively impacts water quality in streams by reducing stream-groundwater interactions, which can reduce a stream's capacity to naturally attenuate nitrate. Meadowbrook Creek, a first order urban stream in Syracuse, New York, has an inverse urbanization gradient, with heavily urbanized headwaters that are disconnected from the floodplain and downstream reaches that have intact riparian floodplains and connection to riparian aquifers. This system allows assessment of how stream-groundwater interactions in urban streams impact the net sources and sinks of nitrate at the reach scale. We used continuous (15-min) streamflow measurements and weekly grab samples at three gauging stations positioned longitudinally along the creek to develop continuous nitrate load estimates at the inlet and outlet of two contrasting reaches. Nitrate load estimates were determined using a USGS linear regression model, RLOADEST, and differences between loads at the inlet and outlet of contrasting reaches were used to quantify nitrate sink and source behaviour year-round. We observed a nitrate load of 1.4 × 104 kg NO3 per water year, on average, at the outlet of the urbanized reach while the nitrate load at the outlet of the downstream, connected reach was 1.0 × 104 kg NO3 per water year, on average. We found the more heavily urbanized, hydrologically-disconnected reach was a net source of nitrate regardless of season. In contrast, stream-groundwater exchange caused the hydrologically connected reach to be both a source and sink for nitrate, depending on time of year. Both reaches alter nitrate source and sink behaviour at various spatiotemporal scales. Groundwater connection in the downstream, connected reach reduces annual nitrate loads and provides more opportunities for sources and sinks of nitrate year-round than the hydrologically disconnected stream reach. Mechanisms include groundwater discharge into the stream with variable nitrate concentrations, surface-water groundwater interactions that foster denitrification, and stream load loss to surrounding near-stream aquifers. This study emphasizes how loads are important in understanding how stream-groundwater interactions impact reach scale nitrate export in urban streams.  相似文献   

16.
Urban growth is a global phenomenon, and the associated impacts on hydrology from land development are expected to increase, especially in peri‐urban catchments. It is well understood that greater peak flows and higher stream flashiness are associated with increased surface imperviousness and storm location. However, the effect of the distribution of impervious areas on runoff peak flow response and stream flashiness of peri‐urban catchments has not been well studied. In this study, a new geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri‐urban catchments with runoff peak flows and stream flashiness. Study sites include 21 suburban catchments in New York representing a range of drainage area from 5 to 189 km2 and average imperviousness from 10% to 48%. On the basis of RNICO, all development patterns are divided into 3 classes: upstream, centralized, and downstream. Results showed an obvious increase in runoff peak flows and decrease in time to peak when moving from upstream to centralized and downstream urbanization classes. This indicates that RNICO is an effective tool for classifying urban development patterns and for macroscale understanding of the hydrologic behavior of small peri‐urban catchments, despite the complexity of urban drainage systems. We also found that the impact of impervious distribution on runoff peak flows and stream flashiness decreases with catchment scale. For small catchments (A < 40 km2), RNICO was strongly correlated with the average (R2 = .95) and maximum (R2 = .91) gaged peak flows due to the relatively efficient subsurface routing through stormwater and sewer networks. Furthermore, the Richards–Baker stream flashiness index in small catchments was positively correlated with fractional impervious area (R2 = .84) and RNICO (R2 = .87). For large catchments (A > 40 km2), the impact of impervious surface distribution on peak flows and stream flashiness was negligible due to the complex drainage network and great variability in travel times. This study emphasizes the need for greater monitoring of discharge in small peri‐urban catchments to support flood prediction at the local scale.  相似文献   

17.
A topological representation of a rural catchment is proposed here in addition to the generally used topographic drainage network. This is an object‐oriented representation based on the identification of the inlets and outlets for surface water flow on each farmer's field (or plot) and their respective contributing areas and relationships. It represents the catchment as a set of independent plot outlet trees reaching the stream, while a given plot outlet tree represents the pattern of surface flow relationships between individual plots. In the present study, we propose to implement functions related to linear and surface elements of the landscape, such as hedges or road networks, or land use, to obtain what we call a landscape drainage network which delineates the effective contributing area to the stream, thus characterizing its topological structure. Landscape elements modify flow pathways and/or favour water infiltration, thus reducing the area contributing to the surface yield and modifying the structure of the plot outlet trees. This method is applied to a 4·4‐km2 catchment area comprising 43 955 pixels and 312 plots. While the full set of 164 plot outlet trees, with an average of 7 plots per tree, covers 100% of the total surface area of the catchment, the landscape drainage network comprises no more than 37 plot outlet trees with an average of 2 plots per tree, accounting for 52 and 7% of the catchment surface area, when taking account of linear elements and land use, respectively. This topological representation can be easily adapted to changes in land use and land infrastructure, and provides a simple and functional display for intercomparison of catchments and decision support regarding landscape and water management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A study was made of the nitrogen (N) inputs to, and exports from, a stream draining a pasture catchment near Hamilton, New Zealand, in order to plan measures for minimizing N losses to natural waters. An estimated 7 kg N ha?1 was exported from the catchment during 1981 of which 86 per cent was in reduced forms (Kjeldahl-N, TKN) and the remainder as nitrate-N (NO3-N). Virtually all of the reduced N inputs came from saturated overland flow whereas NO3-N inputs were dominantly subsurface derived. The TKN exported by individual storm events could be predicted (R2 = 0.97) from peak flow and from the peak flow rate in the seven days preceding the storm. A TKN balance for eight events showed that except for large floods (return period approximately a year) the stream system was a net sink for TKN. During large floods, scouring of the organic rich seepage areas resulted in the stream system itself being a net source of TKN. Microbial assays for nitrification and denitrification activity indicated that the main nitrate source was the well-aerated greywacke and ash soils and that the permanently saturated seepage zones were a significant nitrate sink. An in-stream nitrate addition experiment showed that up to 20mg N m?2 h?1 was removed from the stream. Simultaneous measurements of in situ denitrification activity demonstrated that only about 1 per cent of this removal could be accounted for by denitrification. It was inferred that plant uptake was responsible for the remainder. Retention of near-stream seepage areas is suggested as a measure for minimizing NO3-N export, whilst removal of stock from seasonally saturated areas during periods of saturatior should reduce soil loss and hence TKN inputs to the stream.  相似文献   

19.
Headwaters contribute a substantial part of the flow in river networks. However, spatial variations of streamflow generation processes in steep headwaters have not been well studied. In this study, we examined the spatio-temporal variation of streamflow generation processes in a steep 2.98-ha headwater catchment. The time when baseflow of the upstream section exceeded that downstream was coincident with the time when the riparian groundwater switched from downwelling to upwelling. This suggests that upwelling of the riparian groundwater increased considerably in the upstream section during the wet period, producing a shift in the relative size of baseflow between the upstream and downstream sections. The timing of fluctuations among hillslope soil moisture, hillslope groundwater and streamflow reveals that the hillslope contributed to storm flow, but this contribution was limited to the wet period. Overall, these results suggest that streamflow generation has strong spatial variations, even in small, steep headwater catchments.

EDITOR A. Castellarin ASSOCIATE EDITOR X. Chen  相似文献   

20.
Few systematic studies of valley‐scale geomorphic drivers of streamflow regimes in complex alpine headwaters have compared response between catchments. As a result, little guidance is available for regional‐scale hydrological research and monitoring efforts that include assessments of ecosystem function. Physical parameters such as slope, elevation range, drainage area and bedrock geology are often used to stratify differences in streamflow response between sampling sites within an ecoregion. However, these metrics do not take into account geomorphic controls on streamflow specific to glaciated mountain headwaters. The coarse‐grained nature of depositional features in alpine catchments suggests that these landforms have little water storage capacity because hillslope runoff moves rapidly just beneath the rock mantle before emerging in fluvial networks. However, recent studies show that a range of depositional features, including talus slopes, protalus ramparts and ‘rock‐ice’ features may have more storage capacity than previously thought. To better evaluate potential differences in streamflow response among basins with extensive coarse depositional features and those without, we examined the relationships between streamflow discharge, stable isotopes, water temperature and the amplitude of the diurnal signal at five basin outlets. We also quantified the percentages of colluvial channel length measured along the stepped longitudinal profile. Colluvial channels, characterized by the presence of surficial, coarse‐grained depositional features, presented sediment‐rich, transport‐limited morphologies that appeared to have a cumulative effect on the timing and volume of flow downstream. Measurements taken from colluvial channels flowing through depositional landforms showed median recession constants (Kr) of 0.9–0.95, δ18O values of ≥?14.5 and summer diurnal amplitudes ≤0.8 as compared with more typical surface water recession constant values of 0.7, δ18O ≤ ?13.5 and diurnal amplitudes >2.0. Our results demonstrated strong associations between the percentage of colluvial channel length within a catchment and moderated streamflow regimes, water temperatures, diurnal signals and depleted δ18O related to groundwater influx. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号