首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentration–discharge (CQ) relationships are widely used to assess the link between hydrological and biogeochemical processes at the catchment scale. CQ relationships are mainly calibrated using mono-objective methods to represent, either concentrations or discharge-weighted concentrations (i.e., load). Based on its wide use in hydrological modelling, we test a multi-objective calibration for the CQ relationship parameters, using both concentration and load, and compare it to a mono-objective calibration applied on either concentrations or load. This work is carried out on a high-frequency dataset (ORACLE-Orgeval Observatory, France). Our findings show that the multi-objective calibration yield a better representation of CQ relationships parameters during the high and low-flow events. The multi-objective calibration can be used for all forms of CQ relationships and avoids issues of under-representation of dilution processes characterized by high-discharge, low-concentration periods.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Nearshore sandbars are important features in the surf zone of many beaches because they strongly influence the mean circulation and evolving morphology. Due to variations in wave conditions, sandbars can experience cross-shore migration and vary in shape from alongshore uniform (shore-parallel) to alongshore rhythmic (crescentic). Sandbar dynamics have been studied extensively, but existing observational studies usually do not quantify the processes leading to crescentic bar formation and straightening. This study analyses the dynamics of crescentic bar events at the fetch-limited beach of Castelldefels (northwestern Mediterranean Sea, Spain) using 7.5 years of hourly time-exposure video images and detailed wave conditions. The results show that, despite the generally calm wave conditions, the sandbars were very dynamic in the cross-shore and longshore directions. They often migrated rapidly offshore during storms (up to 70 m in one day) and more slowly onshore during post-storm conditions. Crescentic bars were often present at the study site (48% of the time), but only when the sandbar was at least 10 m from the shoreline. They displayed a large variability in wavelengths (100–700 m), alongshore migration speeds (0–50 m/day) and cross-shore amplitudes (5–20 m). Wavelengths increased for larger bar–shoreline distances and the alongshore migration speeds were strongly correlated with the alongshore component of the radiation stresses. Crescentic patterns typically developed during low–medium energetic waves with limited obliquity ( θ20° at 10 m depth), while bar straightening occurred during medium–high energetic waves with strong oblique angles of incidence ( θ15°). Overall, this study provides further proof for the important role of wave direction in crescentic bar dynamics and highlights the strong dependence of crescentic bar development on the initial bathymetric configuration.  相似文献   

9.
10.
Forest fires and post-fire practices influence sediment connectivity (SC). In this study, we use the ‘aggregated index of connectivity’ (AIC) to assess SC in five Mediterranean catchments (198–1090 ha) affected by a wildfire in 2012 in south-eastern Spain. Two temporal scenarios were considered, immediately after the fire and before post-fire management, and 2 years after the fire including all practices (hillslope barriers, check-dams, afforestation, salvage logging and skid trails). One LiDAR (light detection and ranging)-derived digital elevation model (DEM, 2 m × 2 m resolution) was generated, per scenario. The five catchment outlets were established as the computation target (AICOUT), and structural and functional SC were calculated. Index outputs were normalized to make the results of the non-nested catchments comparable (AICN-OUT). The output analysis includes the SC distribution along the catchments and at local scale (929 sub-catchments, 677 in the burned area), the hillslope and channel measures' effect on SC, and a sedimentological analysis using observed area-specific sediment yield (SSY) at 10 new (built after post-fire practices) concrete check-dams located in the catchments (SSY = 1.94 Mg ha−1 yr−1; σ = 1.22). The catchments with more circular shapes and steeper slopes were those with higher AICN-OUT. The structural SC maps – removing the rainfall erosivity influence – allowed evaluating the actual role played by the post-fire practices that reduced SC ( x¯= − 1.19%; σ = 0.41); while functional SC was linked to the actual change of SC ( x¯= + 5.32%; σ = 0.62). Hillslope treatments resulted in significant changes on AICN-OUT at sub-catchment scale with certain disconnectivity. A good and positive correlation was found between the SSY and the changes of AICN-OUT. However, the coarse DEM resolution explained the lack of effect of the rock check-dams – located on the secondary channels – on AICN-OUT. AICN-OUT proved to be a useful tool for decision making in post-fire restoration, but an optimal input data is still necessary to refine calculations.  相似文献   

11.
Release of nitrogen compounds into groundwater, particularly those compounds from excessive agricultural fertilization, is a major concern in an aquifer recharge. Among the nitrogen compounds, ammonium ( ) is a common one. In order to assess the risk of agricultural fertilizer contamination to an aquifer through infiltration, adsorption onto a loamy agricultural soil profile (0–0.60 m depth) was studied using a soil column experiment and modelling simulation. The soil used in the experiment was drawn from an agricultural field in Xinzhen, Fangshan district, Beijing, China, and reconstituted in laboratory soil columns. Column experiments were conducted using bromide (conservative tracer) and ‐bearing aqueous solutions. The ammonium concentrations in the soil water samples were measured, and their values were plotted as the breakthrough curves. The chemical's soil–water distribution coefficients (Kd) were calculated using breakthrough curves. Then the retardation factor (R) in saturated soil was calculated. For the ‐bearing aqueous solutions, the strongest adsorption occurred at the soil depth of 0.30–0.45 m. The convection–dispersion equation model and chemical non‐equilibrium model in Hydrus‐1D were used to simulate transport in the loamy soil. The two‐site chemical non‐equilibrium model in Hydrus‐1D was best to simulate transport through the soil column. Parameter sensitivity study was conducted to investigate the influences of solute transport by Kd, the fraction of exchange sites assuming to be in equilibrium with the solution phase (f), the longitudinal dispersivity (λ), and the first‐order rate coefficients (ω). The sensitivity analysis results indicate Kd is the most critical parameter.  相似文献   

12.
Ambient noise tomography is a powerful tool that has found increasing application in reservoir analysis and imaging. The Cachar fold belt in lower Assam, northeast India encompasses several wells under active hydrocarbon production, along with several dry wells. To overcome the lack of active seismic data over the entire fold belt, a passive seismic study was carried out to image the concealed three-dimensional sub-surface structures. The data were recorded from February to November 2011 by a network of 65 wideband seismometers spanning an area of about 40 × 60 km2. The data are crosscorrelated in the 2–5 s band, followed by phase-weighted stacking to estimate noise correlation functions with surface wave signatures. The traveltimes picked from the frequency-time analysis are utilized in a tomographic inversion for Rayleigh wave group velocities. The group velocity anomalies have a lateral resolution of ~ 3.5 × 5.5 km2 and variations of up to ±20% $\pm 20\%$ for each period. The group velocities are in turn inverted for S-wave velocity distribution as a function of depth. The three-dimensional S-wave velocity tomograms reveal the tight anticlines and broad synclines, with high- and low-velocity zones corresponding to structural highs and lows, respectively. The structural interpretation is supported for the part of the region with producing wells and covered by active seismic data, wherein the post-stack time migrated seismic section shows anticlinal and synclinal features similar to those obtained from ambient noise tomography. The structures revealed by ambient noise tomography can help identify zones of interest to be targeted by active seismic surveys in the Cachar fold belt.  相似文献   

13.
Urban stream features can be used to promote nutrient retention; however, their interactions with different hydrological regimes impact nutrient cycling, decrease their retention capacity, and inhibit stream ecosystem functioning. This study analysed the temporal and spatial dynamics of the uptake of three nutrients (nitrate, ammonium, and phosphorus) in an urban drainage stream during high flows. In particular, we studied variations in net uptake along the right margin (with native vegetation and a roots mat) comparatively to the left margin (a non‐rooted grassy bank). Applying the spiralling approach within each subreach on either side, we determined nutrient subreach (sr) retention metrics: uptake rate coefficients , mass transfer rates , and areal uptake rates . Our results showed nitrate (NO3) and ammonium (NH4) net uptakes on the right side were higher and more frequent along subreaches where the root mat was more abundant ( [μg m?2 s?1] = 22.80 ± 1.13 for NO3 and 10.50 ± 0.81 for NH4), whereas on the left side both nutrients showed patchy and inconsistent net uptake patterns despite the homogeneous grass distribution. Net uptake for filtered reactive phosphorus (FRP) was not observed on either side at any flow rate. The impact of hydrological factors such as discharge, travel time, water depth, and concentration, on uptake metrics was studied. Despite increases in travel time as the flow decreased, there was a reduction in net uptake rates, and , on either side. This was attributed to a reduction in water level with declining flows, which decreased hydrologic connectivity with the stream banks, combined with a decrease in water velocity and a reduction in nutrient concentrations. We concluded the rooted bank acted as an effective retention area by systematically promoting net uptake resulting in a twofold increased dissolved inorganic nitrogen (DIN) retention relative to the non‐rooted side where net uptake was spatially localized and highly dynamic. Overall, this work emphasized the importance of strategically sampling close to biologically active surfaces to more accurately determine areas where gross uptake surpasses release process.  相似文献   

14.
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simulations of run‐off generation over a soil with a spatially heterogenous saturated hydraulic conductivity (Ks) to derive an expression for an aerially averaged saturated hydraulic conductivity ( ) that depends on the rainfall rate, the statistical properties of Ks, and the spatial correlation length scale associated with Ks. The proposed method for determining is tested by simulating run‐off on synthetic topography over a wide range of spatial scales. Results provide a simplified expression for an effective saturated hydraulic conductivity that can be used to relate a distribution of small‐scale Ks measurements to infiltration and run‐off generation over larger spatial scales. Finally, we use a hydrologic model based on to simulate run‐off and debris flow initiation at a recently burned catchment in the Santa Ana Mountains, CA, USA, and compare results to those obtained using an infiltration model based on the Soil Conservation Service Curve Number.  相似文献   

15.
The proportion of water younger than 2–3 months (young water fraction, Fyw) has become increasingly investigated in catchment hydrology. Fyw is typically estimated by comparing seasonal tracer cycles in precipitation and streamflow, through water sampling. However, some open research questions remain, such as: (i) whether part of the summer precipitation should be discarded because the high evapotranspiration demand, (ii) how well Fyw serves as a metric to compare catchments, and (iii) how sampling frequency affects Fyw estimates. To address these questions, we investigated Fyw in soil-, ground- and stream waters for the small Mediterranean Can Vila catchment. Rainfall was sampled at 5-mm intervals. Mobile soil water and groundwater were sampled fortnightly. Stream water was sampled depending on flow at variable time intervals (30 min to 1 week). Over 58 months, this sampling provided 1,529 δ18O determinations. Isotopic analyses results led us to include summer precipitation in the input signal. We found the highest Fyw in mobile soil waters (34%), while this was almost zero for groundwater except during wet periods. For stream waters, Fyw depended on the discharge variations, so that the flow-weighted young water fraction () was 22.6%, whereas the time-weighted Fyw was just 6.2%. Both and its discharge sensitivity (Sd) varied when different 12-month sampling periods were investigated. The young water fraction that would be obtained from a virtual thorough sampling () was estimated from the Sd and the observed stream flow. This showed an underestimation of by 25% for the frequent dynamic sampling and 66% for weekly sampling, due to missing high flows. Our results confirm that Fyw and its discharge sensitivity are metrics very sensitive to meteorological forcing during the analysed period. Thus, comparisons between catchments need long-term mean annual values and their variability. Our findings also support the dependence of Fyw estimates on the sampling rate and show the advantages of flow-weighted analysis. Finally, catchment water turnover investigations should be accompanied by the analysis of flow duration curves.  相似文献   

16.
The atmospheric chloride mass balance (CMB) method allows spatial evaluations of the average diffuse aquifer recharge by rainfall () in large and varied territories when long‐term steady conditions can be assumed. Often, the distributed average CMB variables necessary to calculate have to be estimated from the available variable‐length data series, which may be of suboptimal quality and spatial coverage. This paper explains the use of these data and the reliability of the results in continental Spain, chosen as a large and varied territory. The CMB variables have been regionalized by ordinary kriging at the same 4976 nodes of a 10 km × 10 km grid. Nodal values vary from 14 to 810 mm year–1, 90% ranging from 30 to 300 mm year–1. The recharge‐to‐precipitation ratios vary from 0.03 in low‐permeability formations and semiarid areas to 0.65 in some carbonate massifs. Integrated average results for the whole of continental Spain yield a potential aquifer recharge of 64 km3 year?1, the net recharge over permeable formations (40% of the territory) being 32 km3 year?1. Two main sources of uncertainty affecting (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables (CVR) and from mapping (), have been segregated. The average CVR is 0.13 and could be improved with longer data series. The average is 0.07 and may be decreased with better data coverage. The estimates were compared with other regional and local recharge estimates, being 4% and 1% higher, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Although changes in rainfall characteristics have been noted across the world, few studies have reported those in mountainous areas. This study was undertaken to clarify spatial and temporal variations in rainfall characteristics such as annual rainfall amount (Pr), mean daily rainfall intensity (η), and ratio of rain days (λ) in mountainous and lowland areas in Taiwan. To this aim, we examined spatial and year‐to‐year variations and marginal long‐term trends in Pr, η, and λ, based on rainfall data from 120 stations during the period 1978–2008. The period mean rainfall () at the lowland stations had strong relationships with the period mean daily rainfall intensity () and the period mean ratio of rain days () during those 31 years. Meanwhile, was only strongly related to at mountainous stations, indicating that influences on spatial variations in were different between lowland and mountainous stations. Year‐to‐year variations in Pr at each station were primarily determined from the variation in η at most stations for both lowland and mountainous stations. Long‐term trend analysis showed that Pr and η increased significantly at 10% and 31% of the total 120 stations, respectively, and λ decreased significantly at 6% of the total. The increases in Pr were mostly accompanied by increases in η. Although stations with significant η increases were slightly biased toward the western lowland area, increases or decreases in Pr and λ were not common. These results contribute to understanding the impacts of possible climate changes on terrestrial hydrological cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Evapotranspiration (ET) can cause diel fluctuations in the elevation of the water table and the stage in adjacent streams. The diel fluctuations of water levels change head gradients throughout the day, causing specific discharge through near‐stream sediment to fluctuate at the same time scale. In a previous study, we showed that specific discharge controls the residence time of groundwater in streambed sediment that, in turn, exerted the primary control on removal from groundwater passing through the streambed. In this study, we examine the magnitude of diel specific discharge patterns through the streambed driven by ET in the riparian zone with a transient numerical saturated–unsaturated groundwater flow model. On the basis of a first‐order kinetic model for removal, we predicted diel fluctuations in stream concentrations. Model results indicated that ET drove a diel pattern in specific discharge through the streambed and riparian zone (the removal zones). Because specific discharge is inversely proportional to groundwater travel time through the removal zones and travel time determines the extent of removal, diel changes in ET can result in a diel pattern in concentration in the stream. The model predictions generally matched observations made during summertime base‐flow conditions in a small coastal plain stream in Virginia. A more complicated pattern was observed following a seasonal drawdown period, where source components to the stream changed during the receding limb of the hydrograph and resulted in diel fluctuations being superimposed over a multi‐day trend in concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We investigate the dependence of quasi P-wave phase velocity propagating in orthotropic media on particular elasticity parameters. Specifically, due to mathematical facilitation, we consider the squared-velocity difference, , resulted from propagation in two mutually perpendicular symmetry planes. In the context of the effective medium theory, may be viewed as a parameter evaluating the influence of cracks – embedded in the background medium – parallel to one or both aforementioned planes. Our investigation is both theoretical and numerical. Based on Christoffel's equations, we propose two accurate approximations of . Due to them, we interpret the aforementioned squared-velocity difference as being twice more dependent on , than on . To describe the magnitude of the dependence, we consider the proportions between the partial derivatives of . Further, it occurs that is influenced by the ratio of vertically propagating quasi P-wave to vertically propagating quasi S-wave. Anomalously high might be caused by the low P/S ratio, which in turn can be an indicator of the presence of gas in natural fractures or aligned porosity. Also, we carry out numerical sensitivity study, according to which is approximately twice more dependent on than on , twice more sensitive to than to , and equally dependent on as on . The dependence on and can be neglected, especially for small phase angles. We verify the approximations and perform the sensitivity study, using eight examples of the elasticity tensors.  相似文献   

20.
Ebb-tidal deltas are highly dynamic environments affected by both waves and currents that approach the coast under various angles. Among other bedforms of various scales, these hydrodynamics create small-scale bedforms (ripples), which increase the bed roughness and will therefore affect hydrodynamics and sediment transport. In morphodynamic models, sediment transport predictions depend on the roughness height, but the accuracy of these predictors has not been tested for field conditions with strongly mixed (wave–current dominated) forcing. In this study, small-scale bedforms were observed in the field with a 3D Profiling Sonar at five locations on the Ameland ebb-tidal delta, the Netherlands. Hydrodynamic conditions ranged from wave dominated to current dominated, but were mixed most of the time. Small-scale ripples were found on all studied parts of the delta, superimposed on megaripples. Even though a large range of hydrodynamic conditions was encountered, the spatio-temporal variations in small-scale ripple dimensions were relatively small (height 0.015 m, length 0.11 m). Also, the ripples were always highly three-dimensional. These small dimensions are probably caused by the fact that the bed consists of relatively fine sediment. Five bedform height predictors were tested, but they all overestimated the ripple heights, partly because they were not created for small grain sizes. Furthermore, the predictors all have a strong dependence on wave- and current-related velocities, whereas the ripple heights measured here were only related to the near-bed orbital velocity. Therefore, ripple heights and lengths in wave–current-dominated, fine-grained coastal areas ( mm) may be best estimated by constant values rather than values dependent on the hydrodynamics. In the case of the Ameland ebb-tidal delta, these values were found to be m and m. ©2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号