首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field studies suggest that a cohesive floodplain is a necessary condition for meandering in contrast to braided rivers. However, it is only partly understood how the balance between floodplain construction by overbank deposition and removal by bank erosion and chutes leads to meandering. This is needed because only then does a dynamic equilibrium exist and channels maintain meandering with low width–depth ratios. Our objective is to understand how different styles of floodplain formation such as overbank deposition and lateral accretion cause narrower channels and prevent chute cutoffs that lead to meandering. In this study we present two experiments with a self‐forming channel in identical conditions, but to one we added cohesive silt at the upstream boundary. The effect of cohesive silt on bank stability was tested in auxiliary bank erosion experiments and showed that an increase in silt reduced erosion rates by a factor of 2. The experiment without silt developed to a braided river by continuous and extensive shifting of multiple channels. In contrast, in the meandering river silt deposits increased bank stability of the cohesive floodplain and resulted in a reduction of chute cutoffs and increased sinuosity by continuous lateral migration of a single channel. Overbank flow led to deposition of the silt and two styles of cohesive floodplain were observed: first, overbank vertical‐accretion of silt, e.g. levee, overbank sedimentation or splays; and second, lateral point bar accretion with silt on the scrolls and in the swales. The first style led to a reduction in bank erosion, while the second style reduced excavation of chutes. We conclude that sedimentation of fine cohesive material on the floodplain by discharge exceeding bankfull is a necessary condition for meandering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the morphology, sequential development and general sedimentology of concave-bank benches on the Murrumbidgee River of southeastern Australia, and also notes their important role in floodplain formation on certain meandering rivers in western Canada. Benches form against the concave bank (cut-bank) of abruptly curving bends immediately upstream of the point of maximum curvature. As a result of flow deflection against the upstream limb of the convex bank, the channel widens here and produces a zone of expanded flow facilitating flow separation near the upstream limb of the concave bank. Sedimentation within this zone starts with a longitudinal-shaped bar of medium sand forming a platform isolated even at low flow by a narrow secondary channel against the concave bank. Aggradation of the longitudinal-shaped bar with fine sand, mud and organic matter permits the establishment of trees. Further sedimentation, particularly around the young trees, results in the formation of a fully developed bench isolated by the secondary channel from the remainder of the floodplain only during high flows. Observations on confined meandering rivers in western Canada provide evidence of substantial floodplain formation by concave-bank bench accretion, a process distinctly different in character to the more familiar mechanism of lateral point-bar accretion. Furthermore, the preservation of abundant organic debris means that extensive bench deposits may be a source of locally useful natural gas from within floodplain sediments.  相似文献   

4.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Scroll bars across a 65-km stretch of the Trinity River in Texas, USA were studied using LiDAR data as well as with a series of 11 trenches spread out across the survey area. We conclude that scroll bars are levees that are deposited along the inner banks of these meandering river bends. Scroll bar crests were found to have similar elevations to those of outer bank levee crests, implying that they are constructional features that create positive topographic relief above the elevation of the floodplain. Trenches reveal that scroll bars are built from reworked suspended sediment, with common ripple-scale cross stratification, planar laminations and muddy bioturbated layers – characteristics often associated with levee sedimentation in other systems. LiDAR observation of the erosion of scroll bars by bed material transport during flood implies that scroll bar spacing is an imperfect proxy for estimating overall channel migration rates. In addition, interspersed lenses of coarser sediment with dune-scale cross stratification represent the stratigraphic record of these erosional events and suggest that erosion of the channel-ward edge of the scroll bar is not uncommon. Preservation of scroll bars is unlikely, given that they are responsible for an average of only the uppermost 12% of the total inner bank relief. We suggest that misidentification of point bar lateral accretion surfaces as scroll bars is common and can lead to issues with reconstructing channel properties due to systematic differences between point bar and scroll bar planform geometries. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

7.
The effects of floodplain vegetation on river planform have been investigated for a medium‐sized river using a 2D morphodynamic model with submodels for flow resistance and plant colonization. The flow resistance was divided into a resistance exerted by the soil and a resistance exerted by the plants. In this way it was possible to reproduce both the decrease in bed shear stress, reducing the sediment transport capacity of the flow within the plants, and the increase in hydraulic resistance, reducing the flow velocities. Colonization by plants was obtained by instantaneously assigning vegetation to the areas that became dry at low water stages. This colonization presents a step forward in the modelling of bank accretion. Bank erosion was related to bed degradation at adjacent wet cells. Bank advance and retreat were reproduced as drying and wetting of the computational cells at the channel margins. The model was applied to a hypothetical case with the same characteristics as the Allier River (France). The river was allowed to develop its own geometry starting from a straight, uniform, channel. Different vegetation densities produced different planforms. With bare floodplains, the river always developed a braided planform, even if the discharge was constant and below bankfull. With the highest vegetation density (grass) the flow concentrated in a single channel and formed incipient meanders. Lower vegetation density (pioneer vegetation) led to a transitional planform, with a low degree of braiding and distinguishable incipient meanders. The results comply with flume experiments and field observations reported in the literature.  相似文献   

8.
This study focused on a spatial and temporal analysis of the active channel and associated floodplain lakes using aerial photographs spanning five decades (1942, 1962, 1985, 1999) over a 140 km long reach of the Sacramento. Planimetric changes were analysed longitudinally and temporally to highlight the spatial structures and their evolution through time. The results underline complex changes and space–time pattern in bank erosion, channel length and active channel width. The bank erosion and also channel lengthening were higher between 1962 and 1985 than in the two periods studied before and after. Active channel width significantly decreased from 1942 to 1999; partly progressively from upstream to downstream with local widening whatever the studied periods. Similarly the floodplain lakes observed before 1942–1962 were significantly different in size and geometry from those which appeared during the most recent period. The creation of lakes is less frequent after the 1940s, with a secondary peak of occurrence during the 1962–1985 period. The interpretation of these changes is complex because of various human pressures acting over different time scales (bank protection, flow diversion, sediment starvation, land‐use changes) and various natural influences (flood sequences through out the period, geological setting). The findings are discussed by comparison with previous work, and highlight the important effect of dam impact on peak flow and sediment starvation modifying longitudinally hydraulic conditions within the channel, but also the increase in riprap protection which induced change in bank erosion, channel planimetry and floodplain lake characters (geometry, frequency of renewal). Variation in flood intensities is also observed as having positive effects on the bank erosion pattern. Secondarily, land‐use changes also controlled bank erosion intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The Ma?a Panew is a meandering river that flows 20 km through a closed forest. During times of high discharge the riverbed and floodplain are transformed under the influence of riparian trees. The changes provide the opportunity to measure the intensity of erosion and sediment accumulation based on tree ages, the dating of coarse woody debris (CWD) in the riverbed, and the dating of eccentric growth of tilting trees and exposed roots. The bed and floodplain in reaches of the Ma?a Panew River with low banks were greatly altered as a result of long periods of flooding between 1960 and 1975. Banks were undercut during these floods and black alders tilted. Those parts of alder crowns or stems which tilt and sink generate small sand shadows. When erosion is intensive alder clumps are undercut from concave banks and become mid‐channel islands, while on the other side of the channel meandering bar levels are created. The reaches with higher banks were altered by large floods, especially in 1985 and 1997. The concave banks are undercut and sediment with CWD is deposited within the riverbed, forming sand shadows behind the CWD. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench‐marked cross‐sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change (1972–2000). The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross‐section surveys suggest that channel width has increased by an average of 0·74 (±0·47) m a?1 over the study period (or ~0·8% yr?1). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a?1. The cross‐section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Artificially straight river channels tend to be unstable, and ultimately develop into river meanders through bank erosion and point‐bar deposition. In this paper account is taken of the effects of riparian and floodplain vegetation on bank strength, floodplain flow resistance, shear stress partitioning, and bedload transport. This is incorporated into an existing 2D hydrodynamic‐morphological model. By applying the new model to an initially straight and single‐threaded channel, the way that its planform and cross‐sectional geometry evolve for different hydraulic and floodplain vegetation conditions is demonstrated. The results show the formation and upstream migration of gravel bars, confluence scouring and the development of meandering and braiding channel patterns. In cases where the channel becomes unstable, the instability grows out of bar formation. The resulting braiding patterns are similar to analytical results. The formation of a transition configuration requires a strong influence from vegetation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In analytical and numerical models of river meandering, initiation of meandering typically occurs uniformly along the streamwise coordinate in the channel. Based on a historical analysis of the Nierskanaal, here we show how and under which circumstances meandering has initiated in isolated sections of a channel. The Nierskanaal was constructed by the end of the 18th century, as a straight channel between the river Niers and the river Meuse. The purpose of this measure was to reduce flood risk in the downstream reaches of the river Niers. The banks on the Dutch part of the channel were left unprotected and developed into a morphodynamically active channel, featuring a meandering planform and valley incision. The planform development and incision process is analysed using topographic maps and airborne LiDAR data. Meandering initiated in three sections of the channel, where the channel sinuosity developed asynchronously. Sedimentary successions in the study area show layers of iron oxide, indicating groundwater seepage from aeolian river dunes and river deposits located nearby. Only at the spots where meandering has initiated iron oxide is found close to the surface level. This provides a clue that seepage triggered bank erosion by increasing moisture content of the banks. The isolated meandering sections expanded in the longitudinal direction. Valley incision has developed in the first decades after the construction of the channel, and diminished after a gravel layer was reached. Gravel was deposited in the downstream half of the channel bed, acting as an armouring layer. The spatial variation in meandering behaviour, as observed in the Nierskanaal, justifies efforts to implement the influence of floodplain heterogeneity and the effect of seepage on bank erosion in meander models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The long‐term (10–100 years) evolution of tidal channels is generally considered to interact with the bio‐geomorphic evolution of the surrounding intertidal platform. Here we studied how the geometric properties of tidal channels (channel drainage density and channel width) change as (1) vegetation establishes on an initially bare intertidal platform and (2) sediment accretion on the intertidal platform leads to a reduction in the tidal prism (i.e. water volume that during a tidal cycle floods to and drains back from the intertidal platform). Based on a time series of aerial photographs and digital elevation models, we derived the channel geometric properties at different time steps during the evolution from an initially low‐elevated bare tidal flat towards a high‐elevated vegetated marsh. We found that vegetation establishment causes a marked increase in channel drainage density. This is explained as the friction exerted by patches of pioneer vegetation concentrates the flow in between the vegetation patches and promotes there the erosion of channels. Once vegetation has established, continued sediment accretion and tidal prism reduction do not result in significant further changes in channel drainage density and in channel widths. We hypothesize that this is explained by a partitioning of the tidal flow between concentrated channel flow, as long as the vegetation is not submerged, and more homogeneous sheet flow as the vegetation is deeply submerged. Hence, a reduction of the tidal prism due to sediment accretion on the intertidal platform, reduces especially the volume of sheet flow (which does not affect channel geometry), while the concentrated channel flow (i.e. the landscape forming volume of water) is not much affected by the tidal prism reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We modify a simple numerical stream‐pattern model to examine the effect of sediment stabilization by roots on the channel pattern of bedload rivers. In the model, vegetation enhances bank resistance to erosion, causing the development of a single channel instead of a rapidly changing, multiple channel (braided) pattern. Net aggradation resulting from a high sediment supply, however, causes frequent avulsions that destroy vegetation locally, leading to the development of a multiple‐channel pattern. A stability diagram representing multiple model runs predicts whether a river will exhibit single or multiple channels, based on plant‐enhanced bank strength, and on the time scale of plant development relative to a time scale for change in unvegetated channels. A second stability diagram predicts the way in which the amplitude and period of a fluctuating imposed sediment load influence whether a single or multiple‐channel pattern develops. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Channel erosion along the Carmel river,Monterey county,California   总被引:1,自引:0,他引:1  
Historic maps, photographs, and channel cross-sections show that the channel of the Carmel River underwent massive bank erosion, channel migration, and aggradation in a major flood in 1911, then narrowed and incised by 1939. The channel was stable until 1978 and 1980, when bank erosion affected some reaches but not others. The narrowing and incision were in response to a lack of major floods after 1914 and construction in 1921 of a dam that cut off sediment supply from the most actively eroding half of the basin. Localized erosion in 1978 and 1980 occurred during low magnitude events along reaches whose bank strength had been reduced by devegetation. These events illustrate that the stability of a fluvial system can be disrupted either by application of a large erosive force in a high magnitude event (the 1911 flood) or in a low magnitude event, by reducing the resistance to erosion (bank devegetation). The Carmel River is a potentially unstable system. Its discharge and slope characteristics place it near the threshold between meandering and braided. On the Lower Carmel, the presence of bank vegetation can make the difference between a narrow, stable meandering channel and a wide shifting channel with braided reaches.  相似文献   

16.
Many models of river meander migration rely upon a simple formalism, whereby the eroding bank is cut back at a rate that is dictated by the flow, and the depositing bank then migrates passively in response, so as to maintain a constant bankfull channel width. Here a new model is presented, in which separate relations are developed for the migration of the eroding bank and the depositing bank. It is assumed that the eroding bank consists of a layer of fine‐grained sediment that is cohesive and/or densely riddled with roots, underlain by a purely noncohesive layer of sand and/or gravel. Following erosion of the noncohesive layer, the cohesive layer fails in the form of slump blocks, which armor the noncohesive layer and thereby moderate the erosion rate. If the slump block material breaks down or is fluvially entrained, the protection it provides for the noncohesive layer diminishes and bank erosion is renewed. Renewed bank erosion, however, rejuvenates slump block armoring. At the depositing bank, it is assumed that all the sediment delivered to the edge of vegetation due to the transverse component of sediment transport is captured by encroaching vegetation, which is not removed by successive floods. Separate equations describing the migration of the eroding and depositing banks are tied to a standard morphodynamic formulation for the evolution of the flow and bed in the central region of the channel. In this model, the river evolves toward maintenance of roughly constant bankfull width as it migrates only to the extent that the eroding bank and depositing bank ‘talk’ to each other via the medium of the morphodynamics of the channel center region. The model allows for both (a) migration for which erosion widens the channel, forcing deposition at the opposite bank, and (b) migration for which deposition narrows the channel forcing erosion at the opposite bank. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Effects of large organic material on channel form and fluvial processes   总被引:1,自引:0,他引:1  
Stream channel development in forested areas is profoundly influenced by large organic debris (logs, limbs and rootwads greater than 10 cm in diameter) in the channels. In low gradient meandering streams large organic debris enters the channel through bank erosion, mass wasting, blowdown, and collapse of trees due to ice loading. In small streams large organic debris may locally influence channel morphology and sediment transport processes because the stream may not have the competency to redistribute the debris. In larger streams flowing water may move large organic debris, concentrating it into distinct accumulations (debris jams). Organic debris may greatly affect channel form and process by: increasing or decreasing stability of stream banks; influencing development of midchannel bars and short braided reaches; and facilitating, with other favourable circumstances, development of meander cutoffs. In steep gradient mountain streams organic debris may enter the channel by all the processes mentioned for low gradient streams. In addition, considerable debris may also enter the channel by way of debris avalanches or debris torrents. In small to intermediate size mountain streams with steep valley walls and little or no floodplain or flat valley floor, the effects of large organic debris on the fluvial processes and channel form may be very significant. Debris jams may locally accelerate or retard channel bed and bank erosion and/or deposition; create sites for significant sediment storage; and produce a stepped channel profile, herein referred to as ‘organic stepping’, which provides for variable channel morphology and flow conditions. The effect of live or dead trees anchored by rootwads into the stream bank may not only greatly retard bank erosion but also influence channel width and the development of small scour holes along the channel beneath tree roots. Once trees fall into the stream, their influence on the channel form and process may be quite different than when they were defending the banks, and, depending on the size of the debris, size of the stream, and many other factors, their effects range from insignificant to very important.  相似文献   

18.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This article explores the length scales and statistical characteristics of form roughness along the outer banks of two elongate bends on a large meandering river through investigation of topographic variability of the bank face. The analysis also examines how roughness varies over the vertical height of the banks and when the banks are exposed subaerially and inundated during flood stage. Detailed data on the topography of the outer banks were obtained subaerially using terrestrial LiDAR during low flow conditions and subaqueously using multibeam echo sounding (MBES) during near‐bankfull conditions. The contributions of various length scales of topographic irregularity to roughness for subaerial conditions were evaluated for different elevation contours on the bank faces using Hilbert–Huang Transform (HHT) spectral analysis. Statistical characteristics for discrete areas on the bank faces were determined by calculating the root‐mean‐square of normal distances from a triangulated irregular network (TIN) surface. Results of the HHT analysis show that the characteristics of roughness along bank faces composed primarily of non‐cohesive sediment, and eroding into cropland, vary with bank elevation and exhibit a dominant range of roughness length scales (~15–50 m). However, bank faces composed predominantly of cohesive material and carved into a forested floodplain have relatively uniform topographic roughness characteristics over the vertical extent of the bank face and do not exhibit a dominant roughness length scale or range of length scales. Additionally, comparison between local surface roughness for subaerial versus subaqueous conditions shows that roughness decreases considerably when the banks are submerged, most likely because of the removal of vegetation and eradication of small‐scale erosional features in non‐cohesive bank materials by flow along the bank face. Thus, roughness appears to be linked to the hydraulic conditions affecting the bank, at least relative to conditions that develop when banks are exposed subaerially. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
1 INTRODUCTION The construction of more than 75,000 dams and reservoirs on rivers in the United States (Graf, 1999) has resulted in alteration of the hydrology, geometry, and sediment flow in many of the river channels downstream of dams. Additionally, hydrologic and geomorphic impacts lead to changes in the physical habitat affecting both the flora and fauna of the riparian and aquatic environments. Legislation for protection of endangered species as well as heightened interest in ma…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号