首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Channel geometry, flow and sedimentation in a meander bend of the River South Esk were studied from bankfull stages (January–February) to low water stages (May) in 1974. Bed topography varied little over the study period, showing a typical pool and ripple geometry. Variation of mean depth and velocity with discharge differed from section to section around the bend, due primarily to locally varying flow resistance with stage. The flow pattern for all stages was dominated by a single spiral over the point bar, with a development zone at the bend entrance. Deviation of bed shear stress from the mean flow direction was in general accord with theory, especially for high stages. The use of a uniform longitudinal water surface slope in the calculation of bed shear stress is not justified because of a complicated water surface topography, also such calculated shear may not represent effective bed shear on grains, as it accounts also for energy losses associated with secondary flows. Dunes covered much of the bar at high stages, with increasing proportions of ripples, sand ribbons and lower phase plane beds at low stages. Local flow resistance generally decreases from dunes, diminished and ripple-backed dunes, ripples, sand ribbons to plane beds, and bed forms are predicted quite well by the stream power-grain size scheme. Mean size, sorting and skewness of sediment over the bed changes little with stage. In general, size decreases, sorting improves and skewness changes from positive to negative from the talweg to the inner bank, and in the downstream direction. Allen's (1970a, b) force balance equation for moving bed load particles is supported for bankfull stage, with some reservations, and textural characteristics are explained by progressive sorting in the direction of sediment transport. Large-scale trough cross stratification (with some flat bedding) formed at high stage by dunes (and lower phase plane beds) dominates the point bar sediments. Alternations of fine-medium sand (often cross-laminated) and vegetation-rich layers result from periodic deposition on the grassed upper bar surface. Fining upwards sequences produced by lateral channel migration are modified by a coarsening upward subsequence in the upstream bar region where spiral flow is developing from the bend upstream.  相似文献   

2.
Research into fluvial dunes spans disciplines, studies at grain to reach scales, and methodological approaches that include theoretical, experimental, numerical and field investigations. Despite significant research efforts to date, it remains difficult to provide definitive answers to some fundamental questions regarding dunes. This paper reviews three notable challenges that remain regarding fluvial dunes, namely scale‐consistent linking of bed morphologies with turbulent flow fields, the intriguing question of what causes trains of highly‐ordered sediment waves to form in beds of river sediments, and how to define the important characteristics of a dune‐covered bed, including lengths, shapes, and their statistical nature. In each case, the particular challenge is discussed and then recent research and ways forward are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Bed topography and grain size are predicted for steady, uniform flow in circular bends by consideration of the balance of fluid, gravity and frictional forces acting on bed load particles. Uniform flow pattern is adequately described by conventional hydraulic equations, with bed shear defined as that effectively acting on bed load grains. This analysis is used as a basis to predict bed topography and grain size for steady, non-uniform flow in non-circular bends (represented by a ‘sine-generated’ curve). The non-uniform flow pattern is calculated using the method of Engelund (1974a). Equilibrium bed form, hence sedimentary structure, is found by comparison of existing flow conditions with one of the schemes describing the hydraulic stability limits of the various bed forms. The model was compared with bankfull flow observations from a channel bend on the River South Esk, Scotland. Theoretical bed topography and velocity distribution were very close to the observed data. However, bed shear stress showed only a broad agreement, probably because of the use a constant friction coefficient value. Mean grain size distribution showed good agreement, but theory did not account adequately for gravel sizes in the talweg region and on the upstream, inner part of the bar, possibly due to theoretical underestimation of effective bed shear. Bed form and sedimentary structure are predicted well using the familiar stream power-grain size scheme. The behaviour of the model under unsteady uniform flow conditions in circular bends was analyzed, and suggests that any variation of grain size and bed topography with stage is likely to be limited to deeper parts of the channel.  相似文献   

4.
In natural environments, where unsteady flows prevail, the common one-way bed forms (ripples, dunes, antidunes, parting lineations on plane beds) show delayed responses to changes of flow. A dual classification may then be necessary for the features: 1. Geometric, with no implication of flow conditions. 2. Geometric-hydraulic, in which the shape of the observed forms is combined with the character of the concurrent flow. The delayed responses arise because, under the simplest steady-state equilibrium conditions, the bed forms behave deterministically as populations, which take average dimensions controlled by the bed-material and/or flow conditions. The response of the bed to a change of flow is a rearrangement of the particles forming the bed in an attempt to meet the new conditions. The rate of rearrangement, however, is controlled by the sediment transport rate, in turn determined by the flow conditions, and so is finite. Two specific mechanisms of change of opposing tendency are quantifiable: 1. Creation-destruction of forms, where the new forms are better adjusted than predecessors. 2. The imperfect modification of existing forms during their life-spans. Both rates may be controlled by a combination of flow variables, the attributes of the bed forms, and ‘constants’ specific to each kind of form. A better knowledge of the unsteady responses of these bed forms should increase our understanding of and control over river and tidal systems and may provide models for a better appreciation of still larger features in landscapes and waterscapes.  相似文献   

5.
Flume experiments were conducted on different bed stages across the ripple–dune transition. As flow velocity increases, an initially flat bed surface (made of fairly uniform sandy material) is gradually transformed into a two‐dimensional rippled bed. With further increase in velocity, two‐dimensional ripples are replaced by irregular, linguoid ripples. As the average velocity necessary for the ripple–dune transition to occur is imposed on the bed surface, these non‐equilibrium linguoid ripples are further transformed into larger, two‐dimensional dunes. For each of these stages across the transition, a concrete mould of the bed was created and the flow structure above each fixed bed surface investigated. An acoustic Doppler velocimeter was used to study the flow characteristics above each bed surface. Detailed profiles were used along a transect located in the middle of the channel. Results are presented in the form of spatially averaged profiles of various flow characteristics and of contour maps of flow fields (section view). They clearly illustrate some important distinctions in the flow structure above the different bedform types associated with different stages during the transition. Turbulence intensity and Reynolds stresses gradually increase throughout the transition. Two‐dimensional ripples present a fairly uniform spatial distribution of turbulent flow characteristics above the bed. Linguoid ripples induce three‐dimensional turbulence structure at greater heights above the bed surface and turbulence intensity tends to increase steadily with height above bed surface in the wake region. A very significant increase in turbulence intensity and momentum exchange occurs during the transition from linguoid ripples to dunes. The turbulent flow field properties above dunes are highly dependent on the position along and above the bed surface and these fields present a very high degree of spatial variability (when compared with the rippled beds). Further investigations under natural conditions emphasizing sediment transport mechanisms and rates during the transition should represent the next step of analysis, together with an emphasis on quadrant analysis. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Three dimensional numerical modeling of idealized sand dunes was used to assess the capability of various modeling formulations to capture the flow structure and resistance introduced by bed forms which are similar to those in the Lower Mississippi River. The selected models were: ECOMSED (HydroQual), MIKE 3 [Danish Hydraulic Institute (DHI)] and H3D (Hayco). The study revealed that the hydrostatic versions of models did not capture the flow separation at the crest of the dunes; however, they did respond to the presence of bed forms and gave a total resistance similar to the non-hydrostatic models.  相似文献   

7.
Bed load transport by bed form migration   总被引:1,自引:1,他引:0  
A theoretically-based methodology is presented for the determination of bed load transport from high-resolution measurements of bed surface elevations for steady-state or developing dunes. The methodology is based on the general form of the Exner equation for sediment continuity and requires information on the distribution of sediment volume concentration as well as the migration velocity of bed layers. In order to determine layer speeds, a new method based on cross-correlation analysis of elevation slices is proposed. The methodology is tested using artificially-created data as well as data from a physical model and from a flume study of developing bed forms. The analyses show the applicability of the method to determine bed load transport without the need to introduce assumptions about the form of the migrating surface. It is shown that predicted transport rates match measured or theoretical transport rates for steadily moving bed forms of an arbitrary shape. The method can also be used to predict transport rates over deforming bed forms, with the reasons for potential deviations between predicted and measured or theoretical transport rates for deforming bed forms identified and discussed. It is further shown that a simplified bulk-surface approach, that is relatively straightforward to apply and in which it is assumed that bed-layer velocity is constant with depth, gives results that are comparable to analyses based on determined bed-layer velocity variation with depth.  相似文献   

8.
Basically, sand dunes are patterns resulting from the coupling of hydrodynamic and sediment transport. Once grains move, they modify the surface topography which in turns modifies the flow. This important feedback mechanism lies at the core of continuous dune modelling. Here we present an updated review of such a model for aeolian dunes, including important modifications to improve its predicting power. For instance, we add a more realistic wind model and provide a self‐consistent set of parameters independently validated. As an example, we are able to simulate realistic barchan dunes, which are the basic solution of the model in the condition of unidirectional flow and scarce sediments. From the simulation, we extract new relations describing the morphology and dynamics of barchans that compare very well with existing field data. Next, we revisit the problem of the stability of barchan dunes and argue that they are intrinsically unstable bed‐forms. Finally, we perform more complex simulations: first, a barchan dune under variable wind strength and, second, barchan dune fields under different boundary conditions. The latter has important implications for the problem of the genesis of barchan dunes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The bed of estuaries is often characterized by ripples and dunes of varying size. Whereas smaller bedforms adapt their morphological shape to the oscillating tidal currents, large compound dunes (here: asymmetric tidal dunes) remain stable for periods longer than a tidal cycle. Bedforms constitute a form roughness, that is, hydraulic flow resistance, which has a large-scale effect on tidal asymmetry and, hence, on hydrodynamics, sediment transport, and morphodynamics of estuaries and coastal seas. Flow separation behind the dune crest and recirculation on the steep downstream side result in turbulence and energy loss. Since the energy dissipation can be related to the dune lee slope angle, asymmetric dune shapes induce variable flow resistance during ebb and flood phases. Here, a noncalibrated numerical model has been applied to analyze the large-scale effect of symmetric and asymmetric dune shapes on estuarine tidal asymmetry evaluated by residual bed load sediment transport at the Weser estuary, Germany. Scenario simulations were performed with parameterized bed roughness of symmetric and asymmetric dune shapes and without dune roughness. The spatiotemporal interaction of distinct dune shapes with the main drivers of estuarine sediment and morphodynamics, that is, river discharge and tidal energy, is shown to be complex but substantial. The contrasting effects of flood- and ebb-oriented asymmetric dunes on residual bed load transport rates and directions are estimated to be of a similar importance as the controls of seasonal changes of discharge on these net sediment fluxes at the Lower Weser estuary. This corroborates the need to consider dune-induced directional bed roughness in numerical models of estuarine and tidal environments.  相似文献   

10.
As dunes and larger-scale bed forms such as bars coexist in rivers, the question arises whether dune dynamics are influenced by interaction with the underlying bed topography. The present study aims to establish the degree to which dune characteristics in two and three dimensions are influenced by an underlying topography dominated by non-migrating bars. As a case study, a 20 km stretch in the Waal River in the Netherlands is selected, which represents a sand-bed lowland river. At this location, longitudinal training dams (LTDs) have recently been constructed to ensure sufficient navigation depth during periods with low water levels, and to reduce flood risk. By using data covering 2-year-long periods before and after LTD construction, the robustness of the results is investigated. Before LTD construction, dune characteristics show large variability both spatially and temporally, with dunes being longer, lower, less steep and having a lower lee side angle when they are located on bar tops. The correlation between dune characteristics and the underlying bed topography is disrupted by unsteady conditions for which the dunes are in a state of transition. The bar pattern causes tilting of dune crest lines, which may result from a transverse gradient in bedload sediment transport. As a result of LTD construction, the hydraulic and morphological conditions have changed significantly. Despite this, the main conclusions still hold, which strengthens the validity of the results. ©2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

11.
Underwater dunes are a morphological feature that are explored by marine scientists and coastal engineers alike. This study presents new methodologies in order to simplify bedform identification and morphodynamic analyses. Specifically, subaqueous compound dunes are decomposed with a simple yet extensive tracking algorithm, which relies on a repeated evaluation of unfiltered bed elevation profiles according to five predefined length classes. In a second step, morphological trends are assessed in the form of bed migration rates, bed slope asymmetries and net sediment changes, in which all parameters are referred to equidistant sections of the examined fairway stretch. This integrated approach not only avoids the challenges in weighting the varying size and abundance of dunes of different scales but also ensures comparability between dune-specific and areal parameters, which significantly improves the interpretation of the morphological setting as a whole. The developed methods are applied to the Outer Jade fairway, an anthropogenically influenced and regularly maintained waterway in the German Bight, and allow scrutiny of spatio-temporal trends in this region. Based on a unique data set of 100 sequential high-quality echo-sounding surveys, various types of bedforms are identified, comprising large-scale primary as well as superimposing secondary dunes that are assumed to interfere with each other. Temporal trends show a long-term rise of the troughs of major bedforms and constant maximum crest elevations near the official maintenance depth, which matches the observed long-term aggradation of sediments. The spatial distribution of integrated morphodynamic parameters reflects a previously described zone of primary dune convergence and facilitates the precise localization of this geophysical singularity. The presented findings both confirm the robustness of the proposed methodologies and, in return, enhance the understanding of morphological processes in the Outer Jade. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

12.
Results of field studies conducted in the Terek delta in 2002–2004 are presented. Seasonal vertical deformations of the river bed in the lower course of the main branch (the Novyi Terek) are shown to vary within 0.5–1.3 m; intense development of the delta bar takes place. Regeneration of water streams that died away in the 1980s–1990s, and the formation of a new channel network in the lower part of Terek delta are recorded.  相似文献   

13.
Dune bedforms and salt‐wedge intrusions are common features in many estuaries with sand beds, and yet little is known about the interactions between the two. Flow visualization with an echosounder and velocity measurements with an acoustic Doppler current profiler over areas of flat‐bed and sand dunes in the highly‐stratified Fraser River estuary, Canada, were used to examine the effect of dunes on interfacial mixing. As the salt‐wedge migrates upstream over the flat‐bed, mixing is restricted to the lower portion of the water column. However, as the salt‐wedge migrates into the dune field from the flat bed, there is a dramatic change in the flow, and large internal in‐phase waves develop over each of the larger dunes, with water from the salt‐wedge reaching the surface of the estuary. The friction Richardson number shows that bed friction is more important in interfacial mixing over the dunes than over the flat‐bed, and a plot of internal Froude Number versus obstacle (dune) height shows that the salt‐wedge flow over the dunes is mainly supercritical. Such bedforms can be expected to cause similar effects in interfacial mixing in other estuaries and sediment‐laden density currents, and may thus be influential in fluid mixing and sediment transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
High-resolution multibeam swath-bathymetry and sediment samples were collected across the outer shelf region of the Columbretes Islands (southern Ebro continental shelf, western Mediterranean Sea). Bathymetric data from the submerged part of the Columbretes volcanic system revealed the presence of three main relict sand bodies along the outer shelf, at 80–116 m depth range, above which asymmetric and slightly asymmetric large and very large 2D and 3D subaqueous dunes were observed. These bed features were recognized, mapped and quantified with the aim of evaluating their potential formation mechanisms in relation to the local hydrodynamic and morphologic settings of the area. Dunes range from 150 to 760 m in wavelength and from tens of centimeters to 3 m in height, and are among the longest ever recognized in an outer shelf region. These bedforms are mostly composed of medium-sized sandy sediments, presumably coming from the degraded relict sand bodies on top of which they have developed, mixed with fine fractions from the recent draping holocenic sediments. The orientation of the dunes is SSW, progressively turning W towards the southernmost sector of the area, following the trend of the shelf-edge. Contemporary hydrodynamic measurements at the Ebro continental shelf-edge show that recorded currents are insufficient to form the observed bedforms and that stronger currents are required for sediment mobilization and dune formation. Based on their morphology and orientation, it is proposed that these bedforms are produced by the action of the southward-flowing Liguro-Provençal-Catalan (LPC) geostrophic current. The LPC probably reaches high near-bottom currents during energetic hydrodynamic events through interactions with the seafloor morphology of the study area. Subaqueous dunes are expected to be basically inactive features with respect to present-day processes, although they can be reactivated during high-energy events. The small Δh/λ ratio measured in the dune fields of the Columbretes shelf revealed that the dune heights fall below the values predicted by the Flemming (1988) global equation, as observed in other outer shelf settings also dominated by unidirectional flows. This may suggest a different morphodynamic character of large dunes formed on outer shelves in a micro-tidal regime.  相似文献   

15.
基于多波束测深和高分辨率多道反射地震数据,以及遥感资料研究南海北部东沙海域深水沙丘,总结底形形态分布特征,分析其水动力成因.按照空间分布形态将沙丘分为平行沙丘、波状沙丘和网状沙丘,本文首次发现水下网状沙丘,重点讨论网状沙丘的特征分布和形成机制.网状沙丘发育在东沙环礁东北部水深约352~420 m之间,研究发现其延伸方向共有三个走向:NS、NE-SW和EW,前两个方向为西向传播的内波所致,而最后一个则很有可能是由洋盆西向传播的内波遇到东沙环礁后形成衍射,向北传播的内波引起了向南的近海底底流,冲刷海底底层,剥蚀出足够的沉积物颗粒,从而形成EW走向的水下沙丘.值得一提的是,在多边形网状沙丘的上方,反射地震剖面揭示水层中发育与下方沙丘相当波长的高频震荡内波,并且在遥感资料上也发现相关的衍射和内波干涉区域,而内波干涉很有可能导致高频震荡,从而形成网状沙丘.本研究丰富了水下沙丘形态类型,探讨了新型水下沙丘的形成机制,在陆坡底沙运动及工程应用中具有重要的价值.  相似文献   

16.
The depth‐integrated momentum and kinetic energy equations contain velocity correlation terms that involve products of local deviations in velocity components about depth‐averaged values. Based on velocity data obtained from North Boulder Creek, Colorado, a simple scaling analysis suggests that certain of these terms, which normally can be neglected in the case of smooth channels, can be significant parts of the momentum and energy balances in steep, rough channels owing to the occurrence of non‐logarithmic velocity profiles. A linearized version of the kinetic energy equation suggests that, for flow accelerations over small‐amplitude bed forms, the energy of the mean motion is spatially partitioned between a form involving the depth‐averaged velocity and a form involving the deviatoric part of the velocity profile; this partitioning is associated with spatial variations in the uniformity of the vertical profile of the streamwise velocity. These points are consistent with published flume measurements involving flow over sand‐roughened dunes, and with published field measurements of flow over a gravel bar. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents results of a field investigation conducted to examine the bed sediment, riverbed morphology and flow structure over dunes in natural and regulated channels. Field measurements using an acoustic Doppler current profiler (ADCP) have been carried out on two parts of lowland Wilga River in Poland. It is shown that the bedforms with a low angle of lee side develop more frequently than asymmetrical dunes with high lee-side angles, which are mostly associated with the occurrence of local scours and river meanders. Wavenumber analysis of bed elevation confirms the existence of scaling region in the longitudinal wavenumber spectrum, with “?3” scaling exponents for the natural and regulated channels as well. Moreover, the results of flow velocity field are presented in the form of a 2-D streamwise-vertical vector field, showing several similarities to previous laboratory and field investigations conducted on much deeper rivers than the Wilga. The experimental campaign and methods used to obtain the results are also presented briefly. In addition, a short database of fluvial dunes statistics is provided.  相似文献   

18.
氮是影响和控制水体富营养化的重要因素,不同形态的氮对水体富营养化贡献不同.使用连续提取法对东苕溪干流悬浮物、表层沉积物样品中各形态氮含量进行测定,探讨各形态氮的分布特征及其影响因素.结果表明,东苕溪水体氮污染严重,总氮浓度均值为4.48 mg/L.悬浮物中各形态氮含量均高于沉积物,其中悬浮物中铁锰氧化态氮(IMOF-N)含量所占比例最大,均值为1506.94 mg/kg;沉积物中有机硫化物结合态氮(OSF-N)含量最高,均值为625.31 mg/kg.IMOFN、OSF-N含量受阳离子交换量、粒径影响显著,均与总氮浓度显著相关.相关性分析表明水体的性质对IMOF-N及OSF-N含量影响较显著,并且总体上对悬浮物的影响强于沉积物.另外,悬浮物有助于水体中的氮发生硝化反应向硝态氮转化,沉积物则有助于水体的氮发生还原作用向氨氮转化.在一定程度上,水体中的悬浮物对藻类具有抑制作用.  相似文献   

19.
This paper describes the appearance and maintenance of crescentic dunes in high wind speed conditions on a frozen beach at Schiermonnikoog, The Netherlands. The dunes were cresentic forms with horns. They were barchanoidal in plan view, but had reverse morphologies to typical barchans: the highest and steepest slopes were upwind and led to long low slopes downwind. Slipfaces were absent. It is hypothesized that such crescentic dunes may be a stable aerodynamic form under high to very high (c. 15–20 m s−1) flow conditions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
This paper addresses the development of a flow region associated with turbulence and stress characteristics over a series of 2-D asymmetric dunes placed successively at the flume surface. Experiments were conducted over twelve asymmetric dunes of mean length 32 cm, crest height 3 cm and the dune width almost as wide as width of the flume, using 3-D Micro-ADV at the Indian Statistical Institute, Calcutta. The variations of turbulence statistics along the flow affected by the wavy bottom roughness have been studied. Quadrant decomposition of the instantaneous Reynolds shear stress has been adopted to calculate the contribution of ejection and sweeping events in shear stress generation. The relative dominance of two events are found to contribute in a cyclic manner (spatially) in the near bed region, whereas such phenomenon seems to be disappeared towards the main flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号